
OMERO
Release 5.6.5-SNAPSHOT-1

The Open Microscopy Environment

May 27, 2022

CONTENTS

1 OMERO Overview and CLI User Documentation 3

2 System Administrator Documentation 73

3 Developer Documentation 331

Index 735

i

ii

OMERO, Release 5.6.5-SNAPSHOT-1

The documentation for OMERO 5.6.4 is divided into three parts:

OMERO Overview and CLI User Documentation introduces the user-facing client applications and how to get started,
details the CLI client, and indicates where users can access further help and support.

System Administrator Documentation includes instructions for installing and configuring an OMERO server and also
information on managing users and data, a task which full system administrators can now delegate to facility managers
or other trusted users using the new ‘restricted administrator’ role.

Developers can find more specific and technical information about OMERO in the Developer Documentation.

Additional online resources can be found at:

• Downloads

• Security Advisories

• User help website

• OME YouTube channel for tutorials and presentations

• Demo server - managed by the main OME team, providing the latest released versions of OMERO and plugins
for you to try out

• OMERO API documentation - OmeroJava API, OmeroPy API, OmeroBlitz / Slice API

OMERO 5.6.4 uses the June 2016 schema of the OME Data Model. The CHANGELOGS page details the development
of OMERO functionality over time.

A summary of breaking changes and new features for 5.6.4 can be found on the pages below:

• What’s new for OMERO users

• What’s new for OMERO sysadmins

• What’s new for OMERO developers

The source code is hosted on Github. To propose changes and fix errors, go to the documentation repository, fork it,
edit the file contents and propose your file changes to the OME team using Pull Requests. Alternatively, click on “Edit
on GitHub” in the menu.

CONTENTS 1

https://downloads.openmicroscopy.org/latest/omero5.5/
https://www.openmicroscopy.org/security/advisories/
https://help.openmicroscopy.org/
https://www.youtube.com/channel/UCyySB9ZzNi8aBGYqcxSrauQ
http://qa.openmicroscopy.org.uk/registry/demo_account/
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/
https://downloads.openmicroscopy.org/latest/omero5.5/api/python/
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/
https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome.html
https://docs.openmicroscopy.org/latest/ome-model/
https://github.com/ome/ome-documentation/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

OMERO, Release 5.6.5-SNAPSHOT-1

2 CONTENTS

CHAPTER

ONE

OMERO OVERVIEW AND CLI USER DOCUMENTATION

1.1 Introduction

OME Remote Objects (OMERO) is a modern client-server software platform for visualizing, managing, and annotating
scientific image data. OMERO lets you import and archive your images, annotate and tag them, record your experi-
mental protocols, and export images in a number of formats. It also allows you to collaborate with colleagues anywhere
in the world by creating user groups with different permission levels. OMERO consists of a Java server, several Java
client applications, as well as Python and C++ bindings and a Django-based web application.

The OMERO clients are cross-platform. To run on your computer they require Java 8 or higher to be installed. This
can easily be installed from https://java.com/ if it is not already included in your OS. The OMERO.insight client gets
all of its information from a remote OMERO.server — the location of which is specified at login. Since this connection
utilises a standard network connection, the client can be run anytime the user is connected to the internet.

This documentation is for the OMERO 5 Platform. This version is designed to improve our handling of complex mul-
tidimensional datasets. It allows you to upload your files in their original format, preserving file names and any nested
directory structure in the server repository. For more technical information, please refer to the Developer Documen-
tation. You can read about the development of OMERO in the CHANGELOGS and the latest user-facing changes in
What’s new for OMERO 5.6 for users.

3

https://java.com/

OMERO, Release 5.6.5-SNAPSHOT-1

1.2 OMERO clients

1.2.1 OMERO clients overview

Most laboratories use a number of different imaging platforms and thus require tools to manage, visualize and analyze
heterogeneous sets of image data recorded in a range of file formats. Ideally a single set of applications, running on a
user’s laptop or workstation, could access all sets of data, and provide easy-to-use access to this data.

OMERO ships as a server application called OMERO.server and a series of client applications (known simply as
clients): OMERO.web, OMERO.insight and OMERO.importer. All run on the major operating systems and provide im-
age visualization, management, and annotation to users from remote locations. With a large number of OMERO.server
installations worldwide, OMERO has been shown to be relatively easy to install and get running.

OMERO.insight and OMERO.importer are desktop applications written in Java and require Java 8 (or higher) to be
installed on the user’s computer (this can easily be installed from https://java.com/ if it is not already included in your
OS).

Our user assistance help website provides a series of workflow-based guides to performing common actions in the client
applications, such as importing and viewing data, exporting images and using the measuring tool.

Our partners within the OME consortium are also producing new clients and modules for OMERO, integrating addi-
tional functionality, particularly for more complex image analysis. See the features pages for more details.

Features

Among many features, the noteworthy elements of the two main clients (OMERO.insight and OMERO.web) are:

• DataManager, a traditional tree-based view of the data hierarchies in an OMERO.server. DataManager supports
access to all image metadata, annotations, tags etc.

• ImageViewer, for visualization of 5D images (space, channel, time). The ImageViewer makes use of the
OMERO.server’s Rendering Engine, and provides high-performance viewing of multi-dimensional images on
standard workstations (e.g. scrolling through space and time), without requiring installation of high-powered
graphics cards. Most importantly, image viewing at remote locations is enabled. Image rendering settings are
saved and chosen by user ID

• Working Area, for viewing, annotating, and manipulating large sets of image data

• user and group administration

OMERO.web

OMERO.web is a web-based client for users who wish to access their data in the browser. This offers a similar view
to the OMERO.insight desktop client. Figures OMERO.web user interface and OMERO.web image viewer present the
user interface. Developers can use the OMERO.web framework to build customized views.

OMERO.web features almost all of the functionality of OMERO.insight barring import. A number of apps are available
to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer. See the main website for a list of
released apps.

For more information and guides to using OMERO.web, see our help website.

4 Chapter 1. OMERO Overview and CLI User Documentation

https://java.com/
https://help.openmicroscopy.org/
https://www.openmicroscopy.org/omero/analyze
https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://www.openmicroscopy.org/omero/apps/
https://help.openmicroscopy.org/

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 1: OMERO.web user interface

Fig. 2: OMERO.web image viewer

1.2. OMERO clients 5

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.insight

Note: With the release of OMERO 5.3.0, the OMERO.insight desktop client has entered maintenance mode, meaning
it will only be updated if a major bug is discovered. Instead, the OME team will be focusing on developing and extending
the web clients.

OMERO.insight provides a number of tools for accessing and using data in an OMERO server. Figures OMERO.insight
and OMERO.insight ImageViewer and Measurement Tool present the user interface. To find out more, see the
OMERO.insight user guides.

Fig. 3: OMERO.insight

Fig. 4: OMERO.insight ImageViewer and Measurement Tool

The two main additional features of OMERO.insight which are not available as yet for OMERO.web are:

• Measurement Tool, a sub-application of ImageViewer that enables size and intensity measurements of defined
regions-of-interest (ROIs)

• image import

Our user assistance help website features a number of workflow-based guides to importing, viewing, managing and
exporting your data using OMERO.insight.

6 Chapter 1. OMERO Overview and CLI User Documentation

https://help.openmicroscopy.org/
https://help.openmicroscopy.org/

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.importer

The OMERO.importer is part of the OMERO.insight client, but can also run as a stand-alone application. The
OMERO.importer allows the import of proprietary image data files from a filesystem accessed from the user’s com-
puter to a running OMERO server. This tool uses a standard file browser to select the image files for import into an
OMERO server.

The tool uses Bio-Formats for translation of proprietary file formats in preparation for upload to an OMERO.server.
Visit Supported Formats for a detailed list of supported formats.

Fig. 5: OMERO.importer

OMERO.cli

The CLI (Command Line Interface) is a set of Python-based system administration, deployment and advanced user
tools. Most of commands work remotely so that the CLI can be used as a client against an OMERO server. See
Command Line Interface as an OMERO client for further information.

1.2.2 Command Line Interface as an OMERO client

The CLI is a set of Python based system-administration, deployment and advanced user tools. Most of commands work
remotely so that the CLI can be used as a client against an OMERO server.

Note: The end of Windows support for OMERO.server means that the CLI is unsupported on this platform too.

Installation

Note: The CLI is currently untested on Windows but may be supported in the future.

Since OMERO 5.6, only Python 3 is supported. We assume that you have already installed Python 3.6 or higher. You
can ensure that your python executable is correct with the python --version command.

1.2. OMERO clients 7

https://docs.openmicroscopy.org/bio-formats/6.9.1/supported-formats.html
https://www.python.org

OMERO, Release 5.6.5-SNAPSHOT-1

We recommend installing client library omero-py and the CLI plugins in a Python virtual environment. You can create
one using either venv or conda (preferred). If you opt for Conda, you will need to install it first, see miniconda for
more details.

Note: On Ubuntu 20.09, you may need to install libssl-dev before installing the CLI.

To install omero-py using conda (preferred):

conda create -n myenv -c conda-forge python=3.8 omero-py
conda activate myenv

Alternatively install omero-py using venv with Python 3.7 or higher:

python -m venv myenv
. myenv/bin/activate
pip install omero-py

The omero command is now available in the terminal where the environment has been activated:

omero login

If you install omero-py>=5.8.0 the CLI provides all functionalities except the import functionality.

The import functionality requires a supported version of Java, and some JARs which are automatically downloaded
the first time you do an import.

To install Java, go to OMERO.server installation and select the walkthrough corresponding to your OS.

omero-py < 5.8.0

If you are using an older version of omero-py you must download the JARs manually and place them under the
OMERODIR directory:

1. download the OMERO.server zip from the Downloads page

2. unzip the zip file

3. set $OMERODIR to the unzipped directory:

export OMERODIR=/path/to/OMERO.server-x.x.x-ice36-bxx

The import functionality is now available:

omero import /path/to/image.tiff

8 Chapter 1. OMERO Overview and CLI User Documentation

https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/miniconda.html
https://www.openmicroscopy.org/omero/downloads/

OMERO, Release 5.6.5-SNAPSHOT-1

Overview

Command line help

The CLI is divided into several commands which may themselves contain subcommands. You can investigate the
various commands available using the -h or --help option:

$ omero -h

Again, you can use -h repeatedly to get more details on each of these sub-commands:

$ omero admin -h
$ omero admin start -h

The omero help command can be used to get info on other commands or options:

$ omero help admin # same as omero admin -h

In addition to the CLI commands which can be listed using omero help --list, omero help can be used to retrieve
information about the debug and env options:

$ omero help debug # display help about debugging options
$ omero help env # display help about environment variables

--all

Display the help for all available commands and options

--recursive

Recursively display the help of commands and/or options. This option can be used with either the omero help
command or the omero help --all option:

$ omero help --all --recursive
$ omero help user --recursive

--list

Display a list of all available commands and subcommands

Command line workflow

There are three ways to use the command line tools:

1. By explicitly logging in to the server first i.e. by creating a session using the omero login command, e.g.:

$ omero login username@servername:4064
Password:

During login, a session is created locally on disk and will remain active until you logout or it times out. You can
then call the desired command, e.g. the omero import command:

$ omero import image.tiff

2. By passing the session arguments directly to the desired command. Most commands support the same arguments
as omero login:

1.2. OMERO clients 9

OMERO, Release 5.6.5-SNAPSHOT-1

$ omero -s servername -u username -p 4064 import image.tiff
Password:

The --sudo option is available to all commands accepting connection arguments. For instance to import data
for user username:

$ omero import --sudo root -s servername -u username image.tiff
Password for owner:

3. By calling the desired command without login arguments. You will be asked to login:

$ omero import image.tiff
Server: [servername]
Username: [username]
Password:

Once you are done with your work, you can terminate the current session if you wish using the omero logout com-
mand:

$ omero logout

Visit Manage sessions to get a basic overview of how user sessions are managed.

See also:
Advanced import scenarios

In-place import

OMERO.dropbox

Command Line Interface as an OMERO client

Import images

The CLI import command allows you to import images to an OMERO.server from the command line, and is ideally
suited for anyone wanting to use a shell-scripted or web-based front-end interface for importing. Based upon the same
set of libraries as the standard importer, the command line version supports the same file formats and functions in much
the same way. Visit Supported Formats for a detailed list of supported formats.

Overview

Visit Overview to get a basic overview of the CLI.

Installation

Visit Installation to install the CLI.

10 Chapter 1. OMERO Overview and CLI User Documentation

https://docs.openmicroscopy.org/bio-formats/6.9.1/supported-formats.html

OMERO, Release 5.6.5-SNAPSHOT-1

Import command

To import a file image.tif, use:

$ omero import image.tif

Some of the options available to the import command are:

-h, --help

Examples of options available to the import command,

-s SERVER, -p PORT, -U USERNAME, -g GROUPNAME

To avoid prompts for servername, port, username and group, use:

$ omero import -s SERVER -p PORT -u USER -g GROUP image.tif

-d DATASET_ID, -r SCREEN_ID, -T TARGET, --target TARGET

To import images into a Dataset:

$ omero import image.tif -d 2
$ omero import image.tif -T Dataset:id:2
$ omero import image.tif -T Dataset:name:Sample01

See Import targets for more information on import targets.

–logprefix [LOGPREFIX] Directory or file prefix for –file and –errs –file [FILE] File for storing the standard
output from the Java process –errs [ERRS] File for storing the standard error from the Java process

--file FILE

File for storing the standard output from the Java process

--errs FILE

File for storing the standard error from the Java process

--logprefix DIR

Directory or file prefix for –file and –errs

--output TYPE

Set an alternative output style, for example:

$ omero import --output=yaml ...

Scanning folders prior to Import

-f

Display all the files that would be imported, then exit:

$ omero import -f image.tif
$ omero import -f images_folder

This will output a list of all the files which would be imported in groups separated by “#” comments. Note that
this usage does not require a running server to be available.

1.2. OMERO clients 11

OMERO, Release 5.6.5-SNAPSHOT-1

--depth DEPTH

Set the number of directories to scan down for files (default: 4):

$ omero import --depth 7 images_folder

The above example changes the depth to 7 folders.

Bulk import configuration

--bulk YAML_FILE

To import a number of images with a similar configuration:

$ omero import --bulk bulk.yml

See Bulk imports for more information on bulk imports.

Managing performance of imports

--skip SKIP

Specify optional step to skip during import.

The import of very large datasets like High-Content Screening data or SPIM data can be time and resource
consuming both at the client and at the server level. This option allows the disabling of some non-critical steps
and thus faster import of such datasets. The caveat associated with its usage is that some elements are no longer
generated at import time. Some of these elements, like thumbnails, will be generated at runtime during client
access. Available options that can be skipped are currently:

all Skip all optional steps described below

checksum Skip checksum calculation on image files before and after transfer

This option effectively sets the --checksum_algorithm to use a fast algorithm, File-Size-64, that
considers only file size, not the actual file contents.

minmax Skip calculation of the minima and maxima pixel values

This option will also skip the calculation of the pixels checksum. Recalculating minima and maxima pixel
values post-import is currently not supported. See Calculation of minima and maxima pixel values for more
information.

thumbnails Skip generation of thumbnails

Thumbnails will usually be generated when accessing the images post-import via the OMERO clients.

upgrade Skip upgrade check for Bio-Formats

Example of usage:

$ omero import large_image --skip all
$ omero import large_image --skip minmax

Multiple import steps can be skipped by supplying multiple arguments:

$ omero import large_image --skip checksum --skip minmax

12 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

--parallel-fileset COUNT

Number of fileset candidates to import at the same time.

OMERO groups image files into Filesets. By default each fileset is imported one after another. This option
attempts import of COUNT filesets at once. Even for single-file filesets it typically makes sense to use this option
in conjunction with --parallel-upload so that upload of different filesets’ files may proceed in parallel. For
importing a single fileset containing many files this option will not help.

This is an experimental option. Too high a setting for COUNT may crash the import client or make the OMERO
server unresponsive. Carefully read Parallel import before use.

--parallel-upload COUNT

Number of file upload threads to run at the same time.

By default files are uploaded one after another. Once a fileset’s files are all on the server then it may com-
mence subsequent import steps. It typically makes sense to set this to a value of at least the value for
--parallel-fileset. Even if filesets are not imported in parallel this option can greatly speed the import
of a fileset that consists of many small files.

This is an experimental option. Too high a setting for COUNT may crash the import client or make the OMERO
server unresponsive. Carefully read Parallel import before use.

Checking performance

omero fs importtime finds out how long it took to import an existing fileset. Once the import is complete this
command can estimate the wall-clock time taken for separate phases of the import process. Output is limited to what
could be queried from the server easily. Specify the ID of a fileset to have its import time reported in a human-readable
format.

--cache

Once import time has been determined for the specified fileset, also cache that information by annotating the
fileset using a map annotation in the openmicroscopy.org/omero/import/metrics namespace. The cache
will be used for future reports of that fileset’s import time.

--summary

This report covers multiple filesets so do not provide a fileset ID. All data previously cached by the --cache
option is queried then summarized in machine-readable CSV format.

Troubleshoot and report issues

--debug DEBUG

Set the debug level for the command line import output:

$ omero import images_folder --debug WARN

--report

Report emails to the OME team. This flag is mandatory for the --upload and --logs arguments.

--email EMAIL

Set the contact email to use when reporting errors. This argument should be used in conjunction with the omero
import --report and omero import --upload or omero import --logs arguments.

1.2. OMERO clients 13

OMERO, Release 5.6.5-SNAPSHOT-1

--upload

Upload broken files and log file (if any) with report

The following command would import a broken image and upload it together with the import log if available in
case of failure:

$ omero import broken_image --report --upload --email my.email@domain.com

--logs

Upload log file (if any) with report

The following command would import a broken image and upload only the import log if available in case of
failure:

$ omero import broken_image --report --logs --email my.email@domain.com

Advanced import commands

--java-help

Display the help for the Java options of the import command

Java options can be passed after --

$ omero import image.tif -- --name=test --description=TestDescription

The above command will import the image “image.tif” with the name “test” into OMERO and with the OMERO
description property set to “TestDescription”. Visit Creating containers and annotations to get a basic overview
of how annotations can be created and linked to OMERO objects (object being an image, in this case).

--advanced-help

Display the advanced help for the import command, e.g.

$ omero import -- --advanced-help

Examples of usage,

To upload and remove the raw file from the local file-system after a successful import into OMERO, use:

$ omero import -- --transfer=upload_rm my_file.dv

As an OMERO administrator, to import images for other users, use:

$ omero login --sudo root -s servername -u username -g groupname
$ omero import image.tif

As an OMERO group owner, to import images for others, use:

$ omero login --sudo owner -s servername -u username -g groupname
$ omero import image.tif

Some advanced import options are described in the In-place import section. Visit Manage sessions to get a basic
overview of how user sessions are managed.

14 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Command Line Importer

The CLI import plugin calls the ome.formats.importer.cli.CommandLineImporter Java class. The Linux
OMERO.importer also includes an importer-cli shell script allowing calls to the importer directly from Java. Using
importer-cli might look like this:

./importer-cli -s localhost -u user -w pass image.tif

To use the ome.formats.importer.cli.CommandLineImporter class from java on the command line you will also
need to include a classpath to the required support jars. Please inspect the importer-cli script for an example of how
to do this.

The Command Line Importer tool takes a number of mandatory and optional arguments to run. These options will also
be displayed on the command line by passing no arguments to the importer:

Import any number of files into an OMERO instance.
If "-" is the only path, a list of files or directories
is read from standard in. Directories will be searched for
all valid imports.

Session arguments:
Mandatory arguments for creating a session are 1- either the OMERO server hostname,

username and password or 2- the OMERO server hostname and a valid session key.
-s SERVER OMERO server hostname
-u USER OMERO username
-w PASSWORD OMERO password
-k KEY OMERO session key (UUID of an active session)
-p PORT OMERO server port (default: 4064)

Naming arguments:
All naming arguments are optional
-n NAME Image or plate name to use
-x DESCRIPTION Image or plate description to use
--name NAME Image or plate name to use
--description DESCRIPTION Image or plate description to use

Optional arguments:
-h Display this help and exit
-f Display the used files and exit
-c Continue importing after errors
-l READER_FILE Use the list of readers rather than the default
-d DATASET_ID OMERO dataset ID to import image into
-r SCREEN_ID OMERO screen ID to import plate into
-T TARGET target for imports
--report Report errors to the OME team
--upload Upload broken files and log file (if any) with␣

→˓report. Required --report
--logs Upload log file (if any) with report. Required --

→˓report
--email EMAIL Email for reported errors. Required --

→˓report
--debug LEVEL Turn debug logging on (optional level)
--annotation-ns ANNOTATION_NS Namespace to use for subsequent annotation

(continues on next page)

1.2. OMERO clients 15

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

--annotation-text ANNOTATION_TEXT Content for a text annotation
--annotation-link ANNOTATION_LINK Comment annotation ID to link all images to

Examples:

$ importer-cli -s localhost -u user -w password -d 50 foo.tiff
$ importer-cli -s localhost -u user -w password -d Dataset:50 foo.tiff
$ importer-cli -f foo.tiff
$ importer-cli -s localhost -u username -w password -d 50 --debug ALL foo.tiff

For additional information, see:
https://docs.openmicroscopy.org/latest/omero/users/cli/import.html
Report bugs at https://www.openmicroscopy.org/forums

See also:
Advanced import scenarios

In-place import

OMERO.dropbox

Command Line Interface as an OMERO client

Import targets

The CLI import options -d or -r can be used to specify, respectively, the import target Dataset or Screen by ID. The
-T, --target option adds more ways of specifying the import target.

The general form of the target argument is:

<action or Class>[:<discriminator>]:<pattern>

where the discriminator is optional. Thus a target must contain one or two colons. Any further colons will be read as
part of the pattern. If the discriminator is omitted a default will be used depending on the action or Class. Currently
the following actions and classes are supported: Dataset, Screen and regex.

Importing to a Dataset or Screen

For Dataset and Screen the currently supported discriminators are name and id. If the discriminator is omitted the
default used is id. So:

$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:id:2
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:2
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -d 2

will all have the same effect of importing the image to the Dataset with ID 2.

The name discriminator can be used to select the target by name, and so:

$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:name:Sample01

will import the image to the Dataset with name Sample01. If more than one Dataset exists with the specified name the
most recently created will be used. If no Dataset exists with the specified name a new Dataset will be created for the
import.

16 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

The choice of Dataset can be specified by adding a qualifying character to the discriminator: + to use the most recent,
- to use the oldest, % to only import if there is a unique target or @ to create a new container even if one with the correct
name already exists.

For example:

$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:+name:Samples
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:-name:Samples
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:%name:Samples
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:@name:Samples

The first case is equivalent to the previous example, the most recent Dataset will be used. In the second case the oldest
Dataset will be used. In the third case the import should fail if multiple datasets with that name exist. In the first three
cases a new Dataset will be created if none exists. In the last case a new Dataset should be created even if one or more
already exist.

If the name contains spaces or other characters that cannot be used on the command line the pattern should be enclosed
in quotes:

$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:name:"New Dataset"

To import a plate to a Screen target the same syntax can be used as in all the examples above, for example:

$ omero import ~/images/bd-pathway/2015-12-01_000/ -T Screen:+name:Pathway

Importing to a Dataset inside a specific Project

To import an image into a Dataset contained in a specific Project, use:

$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Project:name:"Proj1"/Dataset:name:
→˓"New Dataset"

The above command will create a new Project Proj1 and link the Dataset New Dataset to it, except in case a Project
named Proj1 already exists. Then, the Dataset named New Dataset will be linked to this existing Project.

Analogically, a new Dataset named New Dataset will be created for the import of the image and linked to the Project
Proj1, except in case a Dataset New Dataset already exists. Then, the existing Dataset will be used for the import of
the image and linked to Project Proj1.

Note that New Dataset could have been linked prior to your import to some other Project (for example ProjP). In
such a case, the New Dataset will be linked both to ProjP and Proj1 after the import.

Importing using regular expressions

The local path of the file to be imported can be used to specify the target Dataset or Screen using a regular expression
using the action regex. For this action the only discriminator is name and if the discriminator is omitted the qualified
form of this +name will be used. The sequence (?<Container1>.*?) is a named-capturing group used to specify the
Dataset or Screen name in the regular expression, the specific name Container1 must be used here. For example:

$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T "regex:^.*images/(?<Container1>.*?)"

would use a Dataset with name being the path following images/, in this case dv.

The name discriminator can be explicitly used and, as in the previous section, also qualified:

1.2. OMERO clients 17

OMERO, Release 5.6.5-SNAPSHOT-1

$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T "regex:+name:^.*images/(?<Container1>.
→˓*?)"
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T "regex:-name:^.*images/(?<Container1>.
→˓*?)"
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T "regex:%name:^.*images/(?<Container1>.
→˓*?)"
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T "regex:@name:^.*images/(?<Container1>.
→˓*?)"

These each work in the same way as the previous Dataset examples.

In some cases the importable files may be in nested directories, this is often the case with plates and some multi-image
formats. A regular expression can be used to pick a higher level directory as the Screen or Dataset name. For example,
if several BD Pathway HCS files are under the following paths:

~/images/bd-pathway/week-1/2015-12-01_000/
~/images/bd-pathway/week-2/2015-12-09_000/
~/images/bd-pathway/week-2/2015-12-11_000/

and the intended Screens for the import are week-1 and week-2 then the following could be used:

$ omero import ~/images/bd-pathway/ -T "regex:+name:^.*bd-pathway/(?<Container1>[^/]*)/.*
→˓"

which would import one Plate into the Screen week-1 and two Plates into the Screen week-2, creating those Screens
if necessary.

A useful way of determining the nested structure to help in constructing regular expressions is the option -f which
displays the used files but does not import them:

$ omero import -f ~/images/bd-pathway/week-1
...
2016-03-30 15:58:56,574 701 [main] INFO ome.formats.importer.
→˓ImportCandidates - 59 file(s) parsed into 1 group(s) with 1 call(s) to setId in 92ms.␣
→˓(99ms total) [0 unknowns]
#======================================
Group: /Users/colin/images/bd-pathway/week-1/2009-05-01_000/Experiment.exp SPW: true␣
→˓Reader: loci.formats.in.BDReader
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/Experiment.exp
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/20X NA 075 Olympus Confocal.geo
...
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/Well D11/DsRed - Confocal - n000000.
→˓tif
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/Well D11/DsRed - Confocal - n000001.
→˓tif
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/Well D11/DsRed - Confocal - n000002.
→˓tif
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/Well D11/Transmitted Light -␣
→˓n000000.tif

which shows that all the files for one particular Plate from the example above are under:

/Users/colin/images/bd-pathway/week-1/2009-05-01_000/

18 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

For more information on the regular expression syntax that can be used in templates see: java.util.regex.Pattern docu-
mentation.

Importing to targets across groups

Currently, in all the above cases the import target must be in the user’s current group for the import to succeed. It is
hoped that this limitation can be removed in a later version of OMERO. This is also pertinent if the target is likely to
be created as it will be created in the current group, which may not be the group intended.

If no group is specified by using the omero login -g option as part of the import, the current group will be dependent
on the user’s login status:

• If the user is currently logged in then their current group will be the one they are logged in to.

• If the user is logged out but has active sessions then the most recent session will be used to connect and that will
determine the current group.

• If the user is logged out and has no active sessions then the current group will be their default group.

If the user knows which group the import target is in, or needs to be created in, then one of the following methods can
be used to ensure the target group is the current group for the import:

• Explicitly log in using the omero login -g option before running the import command:

$ omero login -g group_name
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:2

• Provide the omero login -g option as part of the import command:

$ omero import -g group_name ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:2

• Use omero sessions group to switch group before running the import command:

$ omero sessions group 51
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:2

• Use the omero login -k option to reconnect to an active session for the target group:

$ omero login -k c41a6f78-ba6e-4caf-aba3-a94378d5484c
$ omero import ~/images/dv/SMN10ul03_R3D_D3D.dv -T Dataset:2
or alternatively
$ omero import -k c41a6f78-ba6e-4caf-aba3-a94378d5484c ~/images/dv/SMN10ul03_R3D_
→˓D3D.dv -T Dataset:2

The session ID can be found using the omero sessions list command.

For further information on the commands omero login and omero sessions see Manage sessions.

Note: The omero login -g option requires the group name as its argument, while the omero sessions group
subcommand uses either the group ID or the group name.

See also:
Advanced import scenarios

In-place import

OMERO.dropbox

1.2. OMERO clients 19

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

OMERO, Release 5.6.5-SNAPSHOT-1

Command Line Interface as an OMERO client

Bulk imports

The CLI import option --bulk specifies a configuration file that can be used to perform a batch of imports with the
same or similar options. The file is written in a simple YAML syntax and can be named whatever you would like. It
does not need to be placed in the folder from which the OMERO commands are run.

A minimal YAML file might look like:

path: "my-files.txt"

Assuming that my-files.txt is a list of files such as

fileA
fileB
directoryC

this is equivalent to:

$ omero import -k --transfer=ln_s fileA fileB directoryC

where the files fileA and fileB and all the files of directoryC will be imported.

Bulk-only options

Path

The path key specifies a file from which each individual line will be processed as a separate import. In the simplest
case, a single file is placed per line as above. For more complex usages, path can point to a tab-separated value (TSV)
or a comma-separate value (CSV) file where each field will be interpreted based on columns.

Columns

A fairly regular requirement in importing many files is that for each file a similar but slightly different configuration is
needed. This can be accomplished with the columns key. It specifies how each of the separated fields of the path file
should be interpreted.

For example, a bulk.yml file specifying:

path: "files.tsv"
columns:
- name
- path

along with a files.tsv of the form:

import-1 fileA
import-2 fileB

would match the two calls:

20 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

$ omero import --name import-1 fileA
$ omero import --name import-2 fileB

but in a single call. The same could be achieved with this CSV file:

import-1,fileA
import-2,fileB

Other options like target can also be added as a separate field:

Dataset:name:training-set import-1 fileA
Dataset:name:training-set import-2 fileB
Dataset:name:test-set-001 import-3 fileC

by defining columns in your bulk.yml as:

columns:
- target
- name
- path

which will create the named datasets if they do not exist. See Import targets for more information on import targets
and see below for more examples of options you can use.

Include

The include key specifies another bulk YAML file that should be included in the current processing. For example, if
there is a global configuration file omero-imports.yml that all users should use, such as:

checksum_algorithm: "File-Size-64"
exclude: "clientpath"
transfer: "ln_s"

then users can make use of this configuration by adding the following line to their bulk.yml file:

include: /etc/omero-imports.yml

Dry_run

The dry_run key can either be set to true in which case no import will occur, and only the potential actions will
be shown, or additionally it can be set to a file path of the form my_import_%s.sh where %s will be replaced by an
number and a file with the given name will be written out. Each of these scripts can then be used independently.

1.2. OMERO clients 21

OMERO, Release 5.6.5-SNAPSHOT-1

Other options

Otherwise, all the regular options from the CLI are available for configuration via --bulk:

• checksum_algorithm for faster processing of large files

• continue for processing all files even if one errors

• exclude for skipping files that have already been imported

• parallel_fileset for concurrent imports

• parallel_upload for concurrent uploads

• target for placing imported images into specific containers

• transfer for alternative methods of shipping files to the server

See Import images for more information.

Export images

The CLI export command allows you to export data in XML and OME-TIFF formats from an OMERO.server using
the command line.

Overview

Visit Overview to get a basic overview of the CLI.

Installation

Visit Installation to install the CLI.

Export command

Currently the export command only supports OME-TIFF, respectively XML.

To export an image as OME-TIFF as file image.tif, use:

$ omero export --file image.tif Image:<id>

To export its metadata as file image.xml, use:

$ omero export --file image.xml --type XML Image:<id>

Some of the options available to the export command are:

--iterate Dataset:<id>

Iterate over an object and write individual objects to the directory named by –file (EXPERIMENTAL, the only
supported object is Dataset:<id>)

$ omero export –file output-dir –iterate Dataset:<id>

22 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Manage sessions

The omero sessions plugin manage user sessions stored locally on disk. Several sessions can be active simultane-
ously, but only one will be used for a single invocation of omero:

$ omero sessions -h

Login

The omero login command is a shortcut for the omero sessions login subcommand which creates a connection
to the server. If no argument is specified, the interface will ask for the connection credentials:

$ omero login
Previously logged in to localhost:4064 as root
Server: [localhost:4064]
Username: [root]
Password:

Some of the options available to the omero login command are:

connection

Pass a connection string under the form [USER@]SERVER[:PORT] to instantiate a connection:

$ omero login username@servername
Password:
$ omero login username@servername:14064
Password:

-s SERVER, --server SERVER

Set the name of the server to connect to:

$ omero login -s servername
Username: [username]

-u USER, --user USER

Set the name of the user to connect as:

$ omero login -u username -s servername
Password:

-p PORT, --port PORT

Set the port to use for connection. Default: 4064:

$ omero login -u username -s servername -p 14064
Password:

-g GROUP, --group GROUP

Set the group to use for initalizing a connection:

$ omero login -u username -s servername -g my_group
Password:

1.2. OMERO clients 23

OMERO, Release 5.6.5-SNAPSHOT-1

-k KEY, --key KEY

Use a valid session key to join an existing connection.

This option only requires a server argument:

$ omero login servername -k 22fccb8b-d04c-49ec-9d52-116a163728ca

-w PASSWORD, --password PASSWORD

Set the password to use for the connection. Since 5.4.1, the password can be set using the OMERO_PASSWORD
environment variable. The variable will be ignored if -w or --password is used.

--sudo ADMINUSER|GROUPOWNER

Create a connection as another user.

The sudo functionality is available to administrators as well as group owners

$ omero login --sudo root -s servername -u username -g groupname
Password for root:
$ omero login --sudo owner -s servername -u username -g groupname
Password for owner:

Multiple sessions

Stored sessions can be listed using the omero sessions list command:

$ omero sessions list
Server | User | Group | Session | Active |␣
→˓Started
-----------+------+-----------------+--------------------------------------+-----------+-
→˓-------------------------
localhost | test | read-annotate-2 | 22fccb8b-d04c-49ec-9d52-116a163728ca | Logged in |␣
→˓Fri Nov 23 14:55:25 2012
localhost | root | system | 1f800a16-1dc2-407a-8a85-fb44005306be | True |␣
→˓Fri Nov 23 14:55:18 2012
(2 rows)

Session keys can then be reused to switch between stored sessions using the omero login -k option:

$ omero sessions login -k 22fccb8b-d04c-49ec-9d52-116a163728ca
Server: [localhost]
Joined session 1f800a16-1dc2-407a-8a85-fb44005306be (root@localhost:4064).
$ omero sessions list
Server | User | Group | Session | Active |␣
→˓Started
-----------+------+-----------------+--------------------------------------+-----------+-
→˓-------------------------
localhost | test | read-annotate-2 | 22fccb8b-d04c-49ec-9d52-116a163728ca | True |␣
→˓Fri Nov 23 14:55:25 2012
localhost | root | system | 1f800a16-1dc2-407a-8a85-fb44005306be | Logged in |␣
→˓Fri Nov 23 14:55:18 2012
(2 rows)

24 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Sessions directory

By default sessions are saved locally on disk under the OMERO user directory located at ~/omero/sessions. The
location of the current session file can be retrieved using the omero sessions file command:

$ omero sessions file
/Users/ome/omero/sessions/localhost/root/aec828e1-79bf-41f3-91e6-a4ac76ff1cd5

To customize the OMERO user directory, use the OMERO_USERDIR environment variable:

$ export OMERO_USERDIR=/tmp/omero_dir
$ omero login root@localhost:4064 -w omero
Created session bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd (root@localhost:4064). Idle␣

→˓timeout: 10.0 min. Current group: system
$ omero sessions file

/tmp/omero_dir/omero/sessions/localhost/root/bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd
$ omero logout

If you want to use a custom directory for sessions exclusively, use the OMERO_SESSIONDIR environment variable:

$ export OMERO_SESSIONDIR=/tmp/my_sessions
$ omero login root@localhost:4064 -w omero
Created session bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd (root@localhost:4064). Idle␣
→˓timeout: 10.0 min. Current group: system
$ omero sessions file
/tmp/my_sessions/localhost/root/bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd
$ omero logout

Note: The OMERO_SESSION_DIR environment variable introduced in 5.1.0 to specify a custom sessions directory is
deprecated in 5.1.1 and above in favor of OMERO_SESSIONDIR.

If you have been using OMERO_SESSION_DIR and want to upgrade your custom sessions directory without losing locally
stored sessions:

• either set OMERO_SESSIONDIR to point at the same location as OMERO_SESSION_DIR/omero/sessions

• or move all local sessions stored under the OMERO_SESSION_DIR/omero/sessions directory under the
OMERO_SESSION_DIR directory and replace OMERO_SESSION_DIR by OMERO_SESSIONDIR.

Switching current group

The sessions group command can be used to switch the group of your current session:

$ omero group list # list your groups
$ omero sessions group 2 # switch to group by ID or Name

1.2. OMERO clients 25

OMERO, Release 5.6.5-SNAPSHOT-1

Creating containers and annotations

The omero obj command allows users to create and update OMERO objects. A complete Glossary of all OMERO
Model Objects is available for reference.

This command can be used to create containers, i.e. projects, datasets, screens and folders. It can also be used to
create annotations, and, combined with the omero upload command, file annotations. These annotations can then
be attached to containers or imported images and plates. This page gives a few examples of some simple but fairly
common workflows.

Creating containers

Create a dataset with a name:

$ omero obj new Dataset name=NewDVSet
Dataset:51

And then update that dataset to add a description:

$ omero obj update Dataset:51 description='A dataset for new DV images'
Dataset:51

Create a screen with a name and description:

$ omero obj new Screen name=Screen001 description='A short description'

To create a project/dataset hierarchy a link must be created between the two containers:

$ omero obj new Project name=NewImages
Project:101
$ omero obj new ProjectDatasetLink parent=Project:101 child=Dataset:51
ProjectDatasetLink:221

If you are comfortable using the command line then you can capture the command outputs to feed in to other commands,
for example:

$ dataset=$(omero obj new Dataset name=dataset-1)
$ project=$(omero obj new Project name=project-1)
$ omero obj new ProjectDatasetLink parent=$project child=$dataset
ProjectDatasetLink:222

Creating and attaching annotations

Create a comment annotation and attach it to a dataset:

$ omero obj new CommentAnnotation textValue='Hello World!'
CommentAnnotation:2
$ omero obj new DatasetAnnotationLink parent=Dataset:51 child=CommentAnnotation:2
DatasetAnnotationLink:2

Upload a file and then use it as file annotation on an image:

26 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

$ omero upload analysis.csv
OriginalFile:275
$ omero obj new FileAnnotation file=OriginalFile:275
FileAnnotation:5
$ omero obj new ImageAnnotationLink parent=Image:51 child=FileAnnotation:5
ImageAnnotationLink:2

Manage tags

The omero tag subcommands manage the creation, linking and listing of tag annotations. All subcommands can be
listed using the -h option:

$ omero tag -h

Create tags

To create a new tag annotation, use the omero tag create command:

$ omero tag create
Please enter a name for this tag: my_tag

To create a tag set containing two existing tags of known identifiers 1259 and 1260, use the omero tag createset
command:

$ omero tag createset --tag 1259 1260
Please enter a name for this tag set: my_tag_set

For both tags and tag sets, the name and an optional description can be passed using the --name and --desc options:

$ omero tag create --name my_tag --desc 'description of my_tag'
$ omero tag createset --tag 1259 1260 --name my_tag_set --desc 'description of my_tag_set
→˓'

List tags

To list all the tags owned by the current user, use the omero tag list command:

$ omero tag list
+- 1261:'my_tag_set'
|\
| +- 1259:'my_tag'
| +- 1260:'my_tag_2'
+- 1264:'my_tag_set_2'
|\
| +- 1260:'my_tag_2'
| +- 1263:'my_tag_4'

Orphaned tags:
> 1262:'my_tag_3'

1.2. OMERO clients 27

OMERO, Release 5.6.5-SNAPSHOT-1

To list all the tag sets owned by the current user, use the omero tag listsets command:

$ omero tag listsets
--------|--
→˓-------------------------
ID	Name
→˓-------------------------
1261 |my_tag_set
1264 |my_tag_set_2
--------|--
→˓-------------------------

Link tags

Tags can be linked to objects on the server using the omero tag link command. The object must be specified as
object_type:object_id. To link the tag of identifier 1260 to the Image of identifier 1000, use:

$ omero tag link Image:1000 1260

Delete tags

Tags can be deleted using the omero delete command. The tag or tag set must be specified as
TagAnnotation:tag_id. To delete tag 123 use:

$ omero delete TagAnnotation:123

By default the tags within a tag set will not be deleted with the tag set. To delete any included tags use the omero
delete --include option:

$ omero delete TagAnnotation:123 --include TagAnnotation

See also:
Deleting objects

Deleting objects

The omero delete command deletes objects. Further help is available using the -h option:

$ omero delete -h

This command will remove entire graphs of objects based on the IDs of the topmost objects. The command can be
modified to include the deletion of objects that would, by default, be excluded or exclude objects that would, by default,
be included using the omero delete --include and omero delete --exclude options.

Additionally, objects of the three annotation types, FileAnnotation, TagAnnotation and TermAnnotation are not deleted
by default when the objects to which they are linked are deleted.

It is also possible to delete objects lower in the hierarchy by specifying the type and ID of a topmost object and the type
of the lower object. For instance, deleting all of the images under a given project.

28 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

By default the command confirms the deletion of the target objects but it can also provide a detailed report of all
the deleted objects via an omero delete --report option. An omero delete --dry-run option can be used to
report on what objects would be deleted without actually deleting them.

Examples

Basic delete

$ omero delete OriginalFile:101
$ omero delete Project:51

In the first line, the original file with ID 101 will be deleted. In the second, the project with ID 51 will be deleted
including any datasets inside only that project and any images that are contained within deleted datasets only. Note that
any linked file, tag or term annotations will not be deleted.

Deleting multiple objects

Multiple objects can be specified with each type being followed by an ID or a comma-separated list of IDs. The order
of objects or IDs is not significant, thus all three calls below are identical in deleting project 51 and datasets 53 and 54.

$ omero delete Project:51 Dataset:53,54
$ omero delete Dataset:54,53 Project:51
$ omero delete Dataset:53 Project:51 Dataset:54

To delete a number of objects with sequentially numbered IDs a hyphen can be used to specify an ID range. This form
can also be mixed with comma-separated IDs.

$ omero delete Project:51 Dataset:53-56 --force
$ omero delete Dataset:53-56,65,101-105,201,202 --force

When deleting multiple objects in a single command, if one object cannot be deleted then the whole command will fail
and none of the specified objects will be deleted.

The omero delete --dry-run option can be useful as a check before trying to delete large numbers of objects. If
specifying objects with a range, it is best to pass either omero delete --dry-run or omero delete --force.

Note: If no flag is passed, the command will default to omero delete --dry-run and warn that this behavior is
deprecated. Future versions will default to omero delete --force.

Deleting lower level objects

To delete objects below a specified top-level object the following form of the object specifier is used.

$ omero delete Project/Dataset/Image:51

Here the all of images under the project 51 would be deleted. It is not necessary to specify intermediate objects in the
hierarchy and so:

$ omero delete Project/Image:51

1.2. OMERO clients 29

OMERO, Release 5.6.5-SNAPSHOT-1

would have the same effect as the call above. Links can also be deleted and so:

$ omero delete Project/DatasetImageLink:51 Dataset/DatasetImageLink:53

would effectively orphan all images under project 51 and dataset 53 that are not also under other datasets.

Including and excluding objects

--include

Include linked objects that would not ordinarily be deleted:

$ omero delete Image:51 --include FileAnnotation,TagAnnotation,TermAnnotation

As mentioned above these three annotation types are not deleted by default and so this call overrides that default
by including any of the three annotation types in the delete:

$ omero delete Image:51 --include Annotation

This call would also delete any annotation objects linked to the image.

--exclude

Exclude linked objects that would ordinarily be deleted:

$ omero delete Project:51 --exclude Dataset

This will delete project 51 but not any datasets contained in that project.

The two options can be used together:

$ omero delete Project/Dataset:53 --exclude Image --include FileAnnotation

This will delete any datasets under project 53, that are not otherwise contained elsewhere, excluding any images in
those datasets but including any file annotations linked to the deleted datasets. In this case the images that are not
otherwise contained in datasets will be orphaned.

For an example on deleting tags directly see Delete tags.

Further options

--ordered

Delete the objects in the order specified.

Normally all of the specified objects are grouped into a single delete command. However, each object can be
deleted separately and in the order given. Thus:

$ omero delete Dataset:53 Project:51 Dataset:54 --ordered

would be equivalent to making three separate calls:

$ omero delete Dataset:53
$ omero delete Project:51
$ omero delete Dataset:54

30 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

--report

Provide a detailed report of what is deleted:

$ omero delete Project:502 --report
...
omero.cmd.Delete2 Project 502... ok
Steps: 3
Elapsed time: 0.597 secs.
Flags: []
Deleted objects
Dataset:603
DatasetImageLink:303
Project:503
ProjectDatasetLink:353
Channel:203
Image:503
LogicalChannel:203
OriginalFile:460,459
Pixels:253
Fileset:203
FilesetEntry:253
FilesetJobLink:264,265,262,263,261
IndexingJob:315
JobOriginalFileLink:303
MetadataImportJob:312
PixelDataJob:313
ThumbnailGenerationJob:314
UploadJob:311
StatsInfo:72

--dry-run

Run the command and report success or failure but do not delete the objects. This can be combined with the
omero delete --report to provide a detailed confirmation of what would be deleted before running the delete
itself.

--force

Delete multiple objects in a single command. Both comma-separated lists and ranges of IDs using a hyphen will
work:

$ omero delete Project:51 Dataset:53-56,65,101-105 --force

The command will fail and no objects will be deleted if any of the specified objects cannot be deleted.

Moving objects between groups

Warning: Data does not need to be assigned to a group where the data owner is a member, and administrators may
wish to change the ownership of data or move it between groups in several steps of a larger workflow. However, it
is generally expected that data should end up in a group where the data owner is a member, so that they can view
their data in the OMERO clients.

1.2. OMERO clients 31

OMERO, Release 5.6.5-SNAPSHOT-1

Who may move data

• a full administrator

• a restricted administrator with Chgrp privilege

• the owner of the data if they are a member of the target group

How to move data

• CLI: See below

• OMERO.web and OMERO.insight

The omero chgrp command moves objects between groups. Further help is available using the -h option:

$ omero chgrp -h

This command will move entire graphs of objects based on the IDs of the topmost objects. The command can be
modified to include the movement of objects that would, by default, be excluded or exclude objects that would, by
default, be included using the omero chgrp --include and omero chgrp --exclude options.

It is also possible to move objects lower in the hierarchy by specifying the type and ID of a topmost object and the type
of the lower object. For instance, moving all of the images under a given project.

By default the command confirms the movement of the target objects but it can also provide a detailed report of all the
moved objects via an omero chgrp --report option. An omero chgrp --dry-run option can be used to report
on what objects would be moved without actually moving them.

Examples

Basic move

$ omero chgrp 5 OriginalFile:101
$ omero chgrp Group:5 Project:51
$ omero chgrp ExperimenterGroup:5 Project:51
$ omero chgrp lab_group Project:51

In the first line, the original file with ID 101 will be moved to the group with ID 5. In the second and third, project
51 will be moved to group 5 including any datasets inside only that project and any images that are contained within
moved datasets only. If group 5 is named ‘lab_group’ then the last line will have the same effect as the previous two.
Note that any linked annotations will also be moved.

Moving multiple objects

Multiple objects can be specified with each type being followed by an ID or a comma-separated list of IDs. The order
of objects or IDs is not significant, thus all three calls below are identical in moving project 51 and datasets 53 and 54
to group 5.

$ omero chgrp 5 Project:51 Dataset:53,54
$ omero chgrp 5 Dataset:54,53 Project:51
$ omero chgrp 5 Dataset:53 Project:51 Dataset:54

32 Chapter 1. OMERO Overview and CLI User Documentation

https://help.openmicroscopy.org/sharing-data#moving

OMERO, Release 5.6.5-SNAPSHOT-1

To move a number of objects with sequentially numbered IDs a hyphen can be used to specify an ID range. This form
can also be mixed with comma-separated IDs.

$ omero chgrp 5 Project:51 Dataset:53-56
$ omero chgrp 5 Dataset:53-56,65,101-105,201,202

Note: When moving multiple objects in a single command, if one object cannot be moved then the whole command
will fail and none of the specified objects will be moved. The omero chgrp --dry-run option can be useful as a
check before trying to move large numbers of objects.

Moving lower level objects

To move objects below a specified top-level object the following form of the object specifier is used.

$ omero chgrp 5 Project/Dataset/Image:51

Here the all of images under the project 51 would be moved. It is not necessary to specify intermediate objects in the
hierarchy and so:

$ omero chgrp 5 Project/Image:51

would have the same effect as the call above.

Including and excluding objects

--include

Linked objects that would not ordinarily be moved can be included in the move using the --include option:

$ omero chgrp 5 Image:51 --include Annotation

This call would move any annotation objects linked to the image.

--exclude

Linked objects that would ordinarily be moved can be excluded from the move using the --exclude option:

$ omero chgrp 5 Project:51 --exclude Dataset

This will move project 51 but not any datasets contained in that project.

The two options can be used together:

$ omero chgrp 5 Project/Dataset:53 --exclude Image --include FileAnnotation

This will move any datasets under project 53, that are not otherwise contained elsewhere, excluding any images in those
datasets but including any file annotations linked to the moved datasets. In this case the images that are not otherwise
contained in datasets will be orphaned.

1.2. OMERO clients 33

OMERO, Release 5.6.5-SNAPSHOT-1

Further options

--ordered

Move the objects in the order specified.

Normally all of the specified objects are grouped into a single move command. However, each object can be
moved separately and in the order given. Thus:

$ omero chgrp 5 Dataset:53 Project:51 Dataset:54 --ordered

would be equivalent to making three separate calls:

$ omero chgrp 5 Dataset:53
$ omero chgrp 5 Project:51
$ omero chgrp 5 Dataset:54

--report

Provide a detailed report of what is moved:

$ omero chgrp 5 Project:502 --report

--dry-run

Run the command and report success or failure but does not move the objects. This can be combined with the
omero chgrp --report to provide a detailed confirmation of what would be moved before running the move
itself.

Changing ownership of objects

Warning: Data does not need to be assigned to a group where the data owner is a member, and administrators may
wish to change the ownership of data or move it between groups in several steps of a larger workflow. However, it
is generally expected that data should end up in a group where the data owner is a member, so that they can view
their data in the OMERO clients.

Who may change ownership of data

• a full administrator

• a restricted administrator with Chown privilege

• an owner of the group that the data is in if the target user is a member of the group

How to change ownership of data

The omero chown command transfers objects to the ownership of a different user. Further help is available using the
-h option:

$ omero chown -h

The omero chown command can transfer entire graphs of objects based on the IDs of the topmost objects. The com-
mand can be modified to include the transfer of objects that would, by default, be excluded or exclude objects that
would, by default, be included using the omero chown --include and omero chown --exclude options.

34 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

It is also possible to transfer objects lower in the hierarchy by specifying the type and ID of a topmost object and the
type of the lower object. For instance, transferring all of the images under a given project.

All the data of a given user can be transferred using the omero chown command. This is useful when somebody leaves
a lab to move on to another project or institution and their previous work is to be curated or continued by a colleague.
This feature has to be considered as advanced and might be slow and demanding of CPU resources in cases of complex
data.

By default the command confirms the transfer of the target objects but it can also provide a detailed report of all the
transferred objects via an omero chown --report option. An omero chown --dry-run option can be used to
report on which objects’ ownership would change without actually transfering them.

Examples

Basic transfer of ownership

$ omero chown 5 OriginalFile:101
$ omero chown User:5 Project:51
$ omero chown Experimenter:5 Project:51
$ omero chown jane Project:51

In the first line, the ownership of original file with ID 101 will be transferred to the user with ID 5. In the second and
third, the ownership of project 51 will be transferred including any datasets inside only that project and any images that
are contained within transferred datasets only, as long as all the mentioned objects (project, datasets and images) are
originally owned by one user. If user 5 is named ‘jane’ then the last line will have the same effect as the previous two.
Note that any linked annotations will be transferred depending on the permission level of the group in which the data
and users are in.

Transferring multiple objects

Multiple objects can be specified with each type being followed by an ID or a comma-separated list of IDs. The order
of objects or IDs is not significant, thus all three calls below are identical in transferring ownership of project 51 and
datasets 53 and 54 to user 5.

$ omero chown 5 Project:51 Dataset:53,54
$ omero chown 5 Dataset:54,53 Project:51
$ omero chown 5 Dataset:53 Project:51 Dataset:54

To transfer a number of objects with sequentially numbered IDs a hyphen can be used to specify an ID range. This
form can also be mixed with comma-separated IDs.

$ omero chown 5 Project:51 Dataset:53-56
$ omero chown 5 Dataset:53-56,65,101-105,201,202

Note: When transferring multiple objects in a single command, if one object cannot be transferred then the whole
command will fail and none of the specified objects will be transferred. The omero chown --dry-run option can be
useful as a check before trying to move large numbers of objects.

1.2. OMERO clients 35

OMERO, Release 5.6.5-SNAPSHOT-1

Transferring lower level objects

To transfer objects below a specified top-level object the following form of the object specifier is used.

$ omero chown 5 Project/Dataset/Image:51

Here the all of images under the project 51 would be transferred. It is not necessary to specify intermediate objects in
the hierarchy and so:

$ omero chown 5 Project/Image:51

would have the same effect as the call above.

Transferring all objects belonging to specified users

Note that this feature is advanced and might be potentially slow. To transfer ownership of all objects belonging to a
user or group of users the following form of the user specifier is used.

$ omero chown 10 Experimenter:1,3,7

Here ownership of all the objects belonging to users 1, 3 and 7 would be transferred to user 10.

Including and excluding objects

--include

Linked objects that would not ordinarily be transferred can be included in the transfer using the –include option:

$ omero chown 5 Image:51 --include Annotation

This call would move any annotation objects linked to the image.

--exclude

Linked objects that would ordinarily be transferred can be excluded from the transfer using the –exclude option:

$ omero chown 5 Project:51 --exclude Dataset

This will transfer project 51 but not any datasets contained in that project.

The two options can be used together:

$ omero chown 5 Project/Dataset:53 --exclude Image --include FileAnnotation

This will transfer any datasets under project 53, that are not otherwise contained elsewhere, excluding any images in
those datasets but including any file annotations linked to the moved datasets. In this case the images that are not
otherwise contained in datasets will be orphaned.

36 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Further options

--ordered

Move the objects in the order specified.

Normally all of the specified objects are grouped into a single transfer command. However, each object can be
transferred separately and in the order given. Thus:

$ omero chown 5 Dataset:53 Project:51 Dataset:54 --ordered

would be equivalent to making three separate calls:

$ omero chown 5 Dataset:53
$ omero chown 5 Project:51
$ omero chown 5 Dataset:54

--report

Provide a detailed report of what is transferred:

$ omero chown 5 Project:502 --report

--dry-run

Run the command and report success or failure but does not transfer the objects. This can be combined with the
omero chown --report to provide a detailed confirmation of what would be transferred before running the
move itself.

Note that changing ownership requires elevated privileges and can only be carried out by full administrators, restricted
administrators with the correct privileges, or group owners.

See also:
OMERO.cli as an OMERO admin tool System administrator documentation for the Command Line Interface. This

includes guidance for managing groups and users which can be done by restricted administrators with the
correct privileges.

Command Line Interface as an OMERO development tool Developer documentation for the Command Line Inter-
face

1.3 Additional resources

• OMERO for scientists introduces OMERO for new users, while the feature pages provide an overview of the
platform features by type, including community developed apps and integrations which could help OMERO
meet your research needs more fully.

• You can try out OMERO without committing to installing your own server by applying for an account on our
demo server.

• Workflow-based user assistance guides are provided on our help website.

• The OME YouTube channel features tutorials and presentations.

• As OMERO is an open source project with developers and users in many countries, connecting to the community
can provide you with a wealth of experience to draw on for help and advice.

• Additional OMERO apps add functionality to the OMERO.web or Command-Line clients.

1.3. Additional resources 37

https://www.openmicroscopy.org/omero/scientists
https://www.openmicroscopy.org/omero/new
https://help.openmicroscopy.org/demo-server
https://help.openmicroscopy.org/
https://www.youtube.com/channel/UCyySB9ZzNi8aBGYqcxSrauQ
https://www.openmicroscopy.org/omero/apps/

OMERO, Release 5.6.5-SNAPSHOT-1

1.3.1 Community support

The Open Microscopy Environment provides a number of resources for both our user and developer communities to
assist in use and development of our software. Contributions through our mailing lists and forums are always welcome.

Web

The Open Microscopy Environment website is at https://www.openmicroscopy.org. Bio-Formats can be found at https:
//www.openmicroscopy.org/bio-formats.

Forums

The primary support channel is the forum. The legacy OME forum and the list archives for ome-devel and ome-users
contain historical support topics and remain available as read-only.

1.3.2 What’s new for OMERO 5.6 for users

Updates and new features for OMERO 5.6 include:

• Decoupled OMERO.py and OMERO.web to allow more frequent releases.

• Filter Images by Map Annotations in OMERO.web.

See the User help website for information on how to incorporate these new features into your current workflows.

1.3.3 CHANGELOGS

1.3.4 Links to decoupled repositories

Starting from OMERO 5.5, the following repositories have been decoupled.

omero-build:

• omero-gateway-java CHANGELOG.md

• omero-blitz CHANGELOG.md

• omero-server CHANGELOG.md

• omero-renderer CHANGELOG.md

• omero-romio CHANGELOG.md

• omero-common CHANGELOG.md

• omero-model CHANGELOG.md

38 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org
https://www.openmicroscopy.org
https://www.openmicroscopy.org/bio-formats
https://www.openmicroscopy.org/bio-formats
https://www.openmicroscopy.org/forums
https://www.openmicroscopy.org/community/
http://lists.openmicroscopy.org.uk/pipermail/ome-devel/
http://lists.openmicroscopy.org.uk/pipermail/ome-users/
https://help.openmicroscopy.org/
https://github.com/ome/omero-gateway-java/blob/v5.6.9/CHANGELOG.md
https://github.com/ome/omero-blitz/blob/v5.5.10/CHANGELOG.md
https://github.com/ome/omero-server/blob/v5.6.3/CHANGELOG.md
https://github.com/ome/omero-renderer/blob/v5.5.9/CHANGELOG.md
https://github.com/ome/omero-romio/blob/v5.6.4/CHANGELOG.md
https://github.com/ome/omero-common/blob/v5.5.9/CHANGELOG.md
https://github.com/ome/omero-model/blob/v5.6.5/CHANGELOG.md

OMERO, Release 5.6.5-SNAPSHOT-1

omero clients:

• omero-matlab CHANGELOG.md

• omero-insight CHANGELOG.md

• omero-py CHANGELOG.md

• omero-web CHANGELOG.md

1.3.5 OMERO version history

5.6.4 (April 2022)

This release improves and expands integration testing to handle Django 3.2.x. It also removes obsolete code. More
importantly, it has been tested with:

• omero-blitz 5.5.10

• omero-gateway-java 5.6.9

• omero-py 5.11.1

• omero-web 5.14.0

• omero-dropbox 5.6.2

• omero-scripts 5.6.2

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

5.6.3 (October 2020)

This release improves and expands integration testing and removes obsolete code. More importantly, it has been tested
with:

• omero-blitz 5.5.8

• omero-gateway-java 5.6.5

• omero-py 5.8.1

• omero-web 5.8.1

• omero-dropbox 5.6.2

5.6.2 (July 2020)

This release adds installation documentation for server and web on CentOS 8 and Ubuntu 20.04. We have dropped
support for Ubuntu 16.04 and removed the corresponding installation instructions.

This version has been tested with:

• omero-blitz 5.5.7

• omero-gateway-java 5.6.4

• omero-py 5.7.1

• omero-web 5.7.0

1.3. Additional resources 39

https://github.com/ome/omero-matlab/blob/v5.5.4/CHANGELOG.md
https://github.com/ome/omero-insight/blob/master/CHANGELOG.md
https://github.com/ome/omero-py/blob/v5.11.2/CHANGELOG.md
https://github.com/ome/omero-web/blob/v5.14.0/CHANGELOG.md

OMERO, Release 5.6.5-SNAPSHOT-1

• omero-dropbox 5.6.2

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

5.6.1 (March 2020)

Security release focused on fixing vulnerabilities 2019-SV1 through 2019-SV6. This version has been tested with:

• omero-blitz 5.5.6

• omero-gateway-java 5.6.3

• omero-py 5.6.2

• omero-web 5.6.3

• omero-dropbox 5.6.1

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

5.6.0 (January 2020)

First release of OMERO with support for Python 3. All Python code has been removed from the distributed ZIP file
and will need to be installed from PyPI. This version has been tested with:

• omero-blitz 5.5.5

• omero-gateway-java 5.6.2

• omero-py 5.6.0

• omero-web 5.6.1

• omero-dropbox 5.6.1

5.5.1 (July 2019)

Bug fix release focusing on installation issues that were seen with 5.5.0 as well as an upgrade of Bio-Formats to 6.1.1.

• web:
– Allow the customization of the web logo

– Allow overriding server configuration

– Dynamically look up client download links

– Fix description in new Project, Dataset etc.

– Fix layout of the user account form

• Java gateway:
– New methods added to allow change group of objects

– New methods added to load objects (datasets, etc.) by name

– New methods added to get original and repository paths of images

– Minor fixes in createDataset and getPixelSize methods

• import:

40 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org/security/advisories/

OMERO, Release 5.6.5-SNAPSHOT-1

– Add import target support for creating Projects

• scripts:
– Enable annotating Projects and Datasets with the Populate Metadata script

• server:
– Fix SSL cipher issue to allow Insight to be used from Fedora 30

– Fix issue with loading Hibernate’s DTD when offline

– Properly close OMERO.tables which kept sessions alive

Note: Due to the stricter closing of OMERO.tables, it may be necessary to update plugins like omero-metadata which
previously were leaking files.

5.5.0 (June 2019)

This version does not require a database upgrade.

For more information about the aim of the 5.5 series and future plan, please read our blog post.

This release focuses on dropping support for Java 7, Python 2.6 and Ice 3.5, adding support for Java 11 and PostgreSQL
10, and on decoupling the Java components to new, separate repositories, each with a new Gradle build system:

• https://github.com/ome/omero-dsl-plugin

• https://github.com/ome/omero-model

• https://github.com/ome/omero-common

• https://github.com/ome/omero-romio

• https://github.com/ome/omero-renderer

• https://github.com/ome/omero-server

• https://github.com/ome/omero-blitz

• https://github.com/ome/omero-gateway-java

• https://github.com/ome/omero-blitz-plugin

• https://github.com/ome/omero-insight

• https://github.com/ome/omero-matlab

• https://github.com/ome/omero-javapackager-plugin

• https://github.com/ome/omero-api-plugin

This has the goal of enabling more fine-grained releases.

A new restriction is that the names of server configuration properties may include only letters, numbers and the symbols
“.”, “_”, “-“.

New plugins like omero-artifact-plugin allow reducing the boilerplate code in the build scripts of the decoupled repos-
itories. Though initially disruptive, we hope this modernization and modularization will ease participation in the
development of OMERO.

Additionally, this release improves the Web interface when OMERO is opened to the public and contains some useful
CLI improvements.

• build:
– Remove the generation of Ivy dependencies.html files

1.3. Additional resources 41

https://blog.openmicroscopy.org/
https://gradle.org
https://github.com/ome/omero-dsl-plugin
https://github.com/ome/omero-model
https://github.com/ome/omero-common
https://github.com/ome/omero-romio
https://github.com/ome/omero-renderer
https://github.com/ome/omero-server
https://github.com/ome/omero-blitz
https://github.com/ome/omero-gateway-java
https://github.com/ome/omero-blitz-plugin
https://github.com/ome/omero-insight
https://github.com/ome/omero-matlab
https://github.com/ome/omero-javapackager-plugin
https://github.com/ome/omero-api-plugin

OMERO, Release 5.6.5-SNAPSHOT-1

• web:
– Introduce Advanced Search to allow and/or search options

– Fix description in new Project, Dataset etc.

– Allow user to create new Map Annotations for multiple selected objects at once

– Fix date display

– Remove / from 3rdparty in ome.viewportImage.js

– Remove usage of deprecated calls

– Remove apache config

– Do not break display of Tag dialog when large font size is configured in browser

– Disable refresh button while existing refresh in progress

– Improve public user support

– Add ability to customize incorrect login text

• cli:
– Disable foreground indexing

– Improve logging of error when importing data via cli command

– Clearly indicate empty log files when running a diagnostic

– Fix bug when running config load passing a directory instead of a file

– Add option to delete keys from map annotations

– Add error code discovery

– Deprecate the CLI upload module and plugin

5.4.10 (January 2019)

This release addresses a login issue for Java clients such as OMERO.insight. New releases of Java include a change to
the java.security file that disables anonymous cipher suites. This change causes SSLHandshakeException when
the client attempts to authenticate to OMERO.blitz. The OMERO 5.4.10 release has some clients check the security
property jdk.tls.disabledAlgorithms for the value “anon” and remove it if present thus allowing authentication
to proceed.

5.4.9 (October 2018)

This release addresses a critical import issue where files can be silently skipped.

Import improvements include:

• ImportCandidates returns filesets even when files are shared between several filesets independently of the
scanning order

• insight: bug fixes for the lightweight importer UI

Other improvements include:

• BlitzGateway: new API to read OriginalFile as file-like objects

• server: add code to dispose of Graphics objects in the server

• Javadoc: add links to developer documentation for graph operations

42 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

5.4.8 (September 2018)

This release focuses on a number of import performance improvements while including several other fixes as well as
an upgrade of Bio-Formats.

Import improvements include:

• cli: new experimental –parallel-upload and –parallel-fileset flags to the import command

• cli: new fs importtime cli command

• cli: add support for –skip, –parallel-upload, –parallel-fileset and –readers options in bulk import configuration
files

• insight: new options for skipping various import steps to speed up the process (match cli’s –skip option)

• insight: supporting imports with thousands of files by providing a lightweight UI

• insight: new loading placeholder when browsing data to show when an image is busy being processed and not
ready to generate a thumbnail

• insight: added error placeholder when browsing data to indicate a failed import

• server: preventing recalculation of checksums for upload

• server: providing better performance logging, accessible to users via fs logfile

• as well as preservation of Bio-Formats’ knowledge of channel colors where provided.

Other client changes include:

• web: better handling of large numbers of channels

• web: fixed socket leakage on unclosed web sessions

• web: fixed issue with bulk annotation table handling

• cli: deprecating admin sessionlist and config list

Sysadmin improvements include:

• new %thread% option for omero.fs.repo.path as well as fix a few bugs for dealing with parallel imports

• new omero.threads.background_threads property to limit the number of simultaneous imports

This release also upgrades the version of Bio-Formats which OMERO uses to 5.9.2.

5.4.7 (July 2018)

This is a security release which also includes a number of bug fixes. It is highly recommended that you upgrade
your server.

See the security advisories page for details on 2018-SV1, 2018-SV2 and 2018-SV3.

Impacts of the security vulnerability fixes include:

• omero.security.password_required=false no longer applies for administrators: their correct password is always
required

• administrators can no longer change the password of other administrators who are more privileged in any way

• administrators can no longer reset their password and receive the new one by e-mail: they must instead have
another administrator who is at least as privileged set a new password manually

• cli: the session UUID has been removed from the standard output when logging in but can still be retrieved using
bin/omero sessions key

1.3. Additional resources 43

https://www.openmicroscopy.org/security/advisories/

OMERO, Release 5.6.5-SNAPSHOT-1

Improvements include:

• web: fix loss of privileges when editing full admins

• web: fix exceptions on invalid connections

• web: fix CSS in group/user search element

• web: fix error when public user is disabled

• web: gray out user role when editing root user

• insight: permit open_with on original files

• read-only: reduce error logging for scripts and pixel data

• scripts: improve error messages for invalid MATLAB

• as well as various documentation improvements

Sysadmin improvements include:

• log locale and time zone information on startup

Developer updates include:

• cli: clean up “communicator not destroyed” logging

• cli: don’t hang when incorrect password passed in a script

• java: add a map annotation example

• java: throw a clear exception when -1 is used for all groups

• web: fix @render_response when extending base templates

• matlab: contributions from Kouichi Nakamura for working with annotations

This release also upgrades the version of Bio-Formats which OMERO uses to 5.9.0. Note: this is a significant upgrade
and will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further information.

5.4.6 (May 2018)

This introduces a significant new subsystem for read-only operation with which servers can be configured not to make
changes to the database, the filesystem, or both. The goal is to permit horizontal scaling of OMERO by running multiple
servers in parallel to increase the throughput of data and metadata for large-scale analysis or publishing. Additionally,
a read-only copy of an existing OMERO can be opened safely to the public for experimentation. For example, this
infrastructure supports the public OMERO web and the Jupyter environment of the Image Data Resource. Information
on how to configure a read-only server is available at Clustering.

Further improvements include:

• enabled big image support in ImageJ/Fiji

• reduced the number of threads used by OMERO.web

• fixed other bugs in OMERO.web including:

– broken History tab

– handling of script params

– pagination calculations

– public user login

– browsing to user’s data in IE

44 Chapter 1. OMERO Overview and CLI User Documentation

https://idr.openmicroscopy.org/

OMERO, Release 5.6.5-SNAPSHOT-1

• fixed the chosen login ports for OMERO.cli

Developer updates include:

• a new command to set custom physical pixel size using OMERO.cli

• deprecated Repository::pixels, TinyImportFixture and OMEROImportFixture

• improved test infrastructure

• reduced background events in the center panel plugin when not displaying Thumbnails

• added extra controls when specifying map and gamma in the rendering engine

This release also upgrades the version of Bio-Formats which OMERO uses to 5.8.2. Note: this is a significant upgrade
and will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further information.

5.4.5 (March 2018)

This is a bug-fix release reactivating the thumbnail cache inadvertently disabled in 5.4.4 while fixing a pyramid issue.

Improvements include:

• reactivated thumbnail caching

• improved removepyramids help

• fixed display of thumbnails when searching for images by ID

• increased OMERO.web log size

• fixed CLI config list subcommand

• fixed leaking services in OMERO.py

• improved rendering of non-tile large images using OMERO.py and webgateway

This release does not upgrade the version of Bio-Formats which OMERO uses, which remains at 5.7.3.

5.4.4 (March 2018)

This is a bug-fix release which also introduces some new functionality.

It includes a security fix for 2017-SV6. It is highly recommended that you upgrade your server.

Improvements include:

• images can now be filtered by Tag in the center panel of OMERO.web

• enabled search by “File” and “Tag” annotations separately in OMERO.web, as opposed to only being able to
search by All annotations

• fixed switching between grid display and thumbnail display in OMERO.web

• fixed the image preview and disabled projection in OMERO.insight when trying to project an image with all the
channels turned off

• fixed parsing of polygons and polyline ROIs so they can be opened in ImageJ

• fixed creation of OMERO pyramids for little-endian files

• improved error message when login fails for OMERO.insight

• improved handling of idle connections in OMERO.insight

• improved loading speed of LUT

1.3. Additional resources 45

https://www.openmicroscopy.org/security/advisories/2017-SV6-job-file-link

OMERO, Release 5.6.5-SNAPSHOT-1

• OMERO.insight and OMERO.importer are now compatible with Java 9

Sysadmin improvements include:

• improved installation documentation for OMERO.web, and OMERO.server on Debian 9, Ubuntu 16.04 and
CentOS 7

• added an admin command and script to allow deletion of corrupted pyramids created by a bug introduced with
OMERO 5.2 (new uncorrupted pyramids can then be generated - see OMERO.server upgrade for details)

• allowed enforcement of a secure connection when importing data

• added commands to the CLI sessions plugin to enable the creation and removal of user sessions

Developer updates include:

• improved test infrastructure and coverage

• allowed filtering by namespace (ns) in webclient, API and annotations

• added support for more rendering parameters to the API

• added the option to respect a specific tile size

• added a method to load planes using JavaGateway

• added an example to the documentation for using “sudo” to create sessions for others with the JavaGateway

• documentation is now compatible with Sphinx 1.7

This release does not upgrade the version of Bio-Formats which OMERO uses, which remains at 5.7.3.

5.4.3 (January 2018)

This is a bug fix release for a resource leak in omero.gateway.BlitzGateway introduced with 5.4.2 that caused long-
running processes to hang. No other changes are included.

5.4.2 (January 2018)

This is a bug-fix release.

Improvements include:

• added documentation on a complete workflow for publishing data from OMERO.server

• added references to the new OMERO pyramid format documentation (within the OME Data Model and File
Formats documentation)

• faster loading of thumbnails for large Plates after a recent regression

• made projecting images belonging to another user only possible for users with the required permissions to save
the new images

• improved the public user experience for password-less access

• updated SwingX library version used by OMERO.insight to stop insight-ij plugin crashing in Fiji

• CLI updates:

– import --target into a container without the necessary permissions now fails before file upload starts
and more transparently

– admin mail timeout is now configurable via --wait

– added admin log command for inserting statements to the server log

46 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Sysadmin changes include:

• added warning about the need to regenerate your NGINX config for every upgrade

• fixed documentation bug affecting OMERO-version-specific guidance

• improved OMERO.tables startup stability

• server performance improvements and reduction in ERROR logging

Developer updates include:

• extended Python and Java examples to include Map Annotations and histograms

• added methods for updating OMERO.tables

• Java Gateway fixes for sessions and rendering

• fixed retrieval of Plate thumbnail URLs

• improved ‘Editing OMERO.web’ documentation

• improved Slice documentation for API deprecations

• added instructions to Extensions on how to create CLI plugins that are pip installable

• substantial effort to make third-party repositories easily testable; see omero-test-infra for more information

This release also upgrades the version of Bio-Formats that OMERO uses to 5.7.3.

5.4.1 (November 2017)

This is a bug-fix release.

Improvements include:

• labeled zoom slider bars in the UI to differentiate from horizontal scrollbars and make clear thumbnails can be
zoomed (including Plate and Well thumbnails)

• fixes for installation walkthrough documentation - installation of script dependencies and gunicorn, and clarifi-
cation of which user account to use for pip install actions

• fixed checking of “guest” user

• update to fetch third-party artifacts over https to allow OMERO to build even without a local Maven cache already
populated

• added javax.activation dependency to allow OMERO.insight to work with Java 9

• import of files reporting extreme pixel sizes now fail rather than hanging

• pyramid-making now aborts when a tile fails

• various test fixes

• CLI fixes:

– improved help output for graphs commands to make it clearer that --include and --exclude expect class
names not object IDs

– allowed setting the OMERO_PASSWORD environment variable instead of using the -w command-line option

– made passwords hidden by default when running omero config get

– fixed the CLI metadata tablestest plugin to not use an empty list of Columns

This release also upgrades the version of Bio-Formats that OMERO uses to 5.7.2.

1.3. Additional resources 47

https://github.com/ome/omero-test-infra

OMERO, Release 5.6.5-SNAPSHOT-1

5.4.0 (October 2017)

A full, production-ready release of OMERO 5.4.0; featuring a new configurable user role “Restricted Administrators”;
further improvements to OMERO.web; additions to OMERO.cli; and many fixes and performance improvements:

• added Administrators with restricted privileges to allow sysadmins to delegate management tasks to facility man-
agers without granting them full system admin privileges, or to allow trusted users such as image analysts to carry
out tasks on behalf of all other users

• fixed color conversion to RGBA

• added support for exporting images in a plate as OME-TIFF

• improved creation of rendering settings for images without any stats e.g. 32bit images

• improved performance for moving large Plates

• fixed projection of images if the range of timepoints specified is not the full range

• added support for transfering ownership of all the data of a given user using CLI

• renamed “Reverse Intensity” command to “Invert” in image viewers

• added support for ImageColumn with Screen and Plate targets in the populate_metadata script

• OMERO.web UI fixes:

– improved display of Plates and Wells

– fixed label position for Wells

– added the ability to display Image and Well metadata in the Tables section for the same Plate

– improved copy/paste of rendering settings workflow

– improved layout of left-hand panel including the position of the search panel

– added support for administrators with restricted privileges to create Project/Dataset for other users

– rolled back the display of tables in the viewer

– fixed forgotten password functionality

Sysadmin changes include:

• added support for the creation of administrators with restricted privileges in OMERO.web admin panel

• added method to create administrators with restricted privileges specifying a password

• added specific installation instructions for Debian 9

• added configuration to limit queries that public users can do in OMERO.web

• created minimal NGINX configuration file that can be included in a fixed file to allow custom NGINX options
to be defined only once (e.g. SSL options)

• installed django-redis by default

• CLI improvements and fixes:

– fixed admin plugin so “cleanse” can handle larger directories

– added to chown plugin ability to target all of given users’ data

– adjusted handling of standard input

– added infrastructure to load external CLI plugins

– dropped support for command admin ports

48 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Developer updates include:

• added method to JavaGateway to manipulate admin privileges

• fixed issue with JSONP decorator

• removed SciPy dependency

• adjusted OMERO.blitz API to allow some query results to be cached

• added support to the rendering engine to update a series of settings in one call

• added method to OMERO.py to manipulate advanced rendering settings

• allowed the Maven repository to be overridden

• removed unused 3rd party libraries in OMERO.web

• added support for PyTables version 3.4+

• deprecated Path Object in OMERO Model

• updated the documentation for server installation on Mac OS to no longer use the homebrew formulae from
https://github.com/ome/homebrew-alt (these are not working and will not be fixed)

Further changes to the Python BlitzGateway are described in What’s new for OMERO 5.6 for developers.

This release also upgrades the version of Bio-Formats which OMERO uses to 5.7.1.

5.3.5 (October 2017)

This is a security release - see the security advisory for further details.

It is highly recommended that you upgrade your server.

5.3.4 (September 2017)

This is a security release - see the security advisory for further details.

This release also upgrades the version of Bio-Formats which OMERO uses to 5.5.3.

It is highly recommended that you upgrade your server.

5.3.3 (June 2017)

This is a bug-fix release.

Improvements include:

• support for two new lookup tables from Janelia

• fixed loading of Well in right-panel when browsing Well under Tag tree or from search results

• fixed rotation of labels in figure scripts

Sysadmin changes include:

• clarified the upgrade of the “Open With” option

• allowed installation of OMERO.web with ice 3.5

• fixed recursive loading of feedback in OMERO.web

1.3. Additional resources 49

https://github.com/ome/homebrew-alt
https://www.openmicroscopy.org/2017/09/20/bio-formats-5-7-1.html
https://www.openmicroscopy.org/security/advisories/2017-SV4-guest-user
https://www.openmicroscopy.org/security/advisories/2017-SV5-filename-2
https://www.openmicroscopy.org/2017/07/05/bio-formats-5-5-3.html
https://www.janelia.org/

OMERO, Release 5.6.5-SNAPSHOT-1

• provided patch for OMERO.server installation on OS using OpenSSL 1.1.0 e.g. Debian 9 see Troubleshooting
OMERO

Developer updates include:

• added an example of how to retrieve shapes from a ROI using batch querying for scalability

• improved logging of errors during deletion

• added new methods to Java Gateway

• improved login options in Java Gateway

• specified an image’s dataset in its URL to give more context to OMERO.web apps

This release also upgrades the version of Bio-Formats which OMERO uses to 5.5.2.

5.3.2 (May 2017)

This is a bug-fix release.

Improvements include:

• improved populate_metadata plugin

• fixed deletion of a range of objects from CLI

• textual annotations without a namespace can now be added at import using the CLI

• improved thumbnails retrieval in OMERO.web

• added “Open With” option to the right-hand panel in OMERO.web

• private group owners are now not offered the ability to annotate other people’s data in OMERO.web UI, an action
which was not permitted by the server anyway

• preview of wells now available in the right-hand panel

Sysadmin changes include:

• made the Django middleware classes configurable using a new property

• added property to allow connections from specified origins (CORS)

• administrators can now use the CLI to move data between groups without belonging to those groups

• for OMERO.web apps to be available via “Open With” option, administrators need to use the
“omero.web.open_with” configuration option

Developer updates include:

• exposed more enumerations from ome-model

• added ROIs support to the Web API

This release also upgrades the version of Bio-Formats which OMERO uses to 5.5.0.

50 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org/2017/06/15/bio-formats-5-5-2.html
https://www.openmicroscopy.org/2017/05/08/bio-formats-5-5-0.html

OMERO, Release 5.6.5-SNAPSHOT-1

5.3.1 (April 2017)

This is a bug-fix release focusing on shares.

Improvements include:

• enabled viewing images in share

• enabled importing hidden image files (Windows client issue)

• clarified installation of OMERO.web

• saved polygon and polyline as defined in the OME model

• fixed viewing of images without pixels size

• added support for large image export as jpeg/png from OMERO.insight

This release also upgrades the version of Bio-Formats which OMERO uses to 5.4.1.

5.3.0 (March 2017)

A full, production-ready release of OMERO 5.3.0; featuring a major reworking of OMERO.web and web apps; dropping
support for Windows for the server and for deploying OMERO.web using Apache; and introducing new user features
and many fixes and performance improvements:

• improved support for many file formats via Bio-Formats 5.4.0

• introduced ROI Folders

• new UI for displaying Screen Plate Well data in OMERO.web and OMERO.insight

• support for lookup tables and reverse intensity rendering

• color mapping for multiple channels without set colors has been improved to use RGBRGB rather than RGBBB
(i.e. to loop through red, green, blue rather than setting all later channels to blue)

• support for histograms in the clients and server

• ability to filter by ratings in OMERO.web

• added ‘Open With. . . ’ functionality to OMERO.web

• color of shapes is now handled according to the data model, using RGBA rather than ARGB format (an sql script
is available to upgrade existing shapes; this will not happen automatically as part of the OMERO upgrade)

• improved performance for moving and deleting data

• Wells can now be annotated and searched by annotations

• enabled downloading/exporting of plate data

• improved reading of tables data

• script improvements including ability to create tiled images from big ROIs, fixes for creating standard images
from ROIs, and to stop the Combine_Images script from ignoring pixel sizes set on the target images

• names for plates and images set in the metadata read by Bio-Formats are now imported into OMERO and the
filename (which was previously used) is only used where an alternative has not been set

• many bug fixes

Sysadmin changes include:

• added support for Ice 3.6.3

• official OMERO.web apps are now all installable from PyPI

1.3. Additional resources 51

https://www.openmicroscopy.org/2017/04/13/bio-formats-5-4-1.html

OMERO, Release 5.6.5-SNAPSHOT-1

• OMERO.web has been decoupled from the server and can now be deployed separately

• dropped support for Windows for OMERO.server

• OMERO.web deployment via Apache is no longer supported

• OMERO.web also now requires Python 2.7

• CLI improvements including updates to the import output to make it more usable by scripts etc.

• options added for customizing the tree in OMERO.web

• introduced hide-password option in CLI

• new options added to omero config

• removed deprecated client menu properties

Developer updates include:

• performed major code cleanup

• major Web API rework

• adjustment to support the upcoming Java 1.9

• made python testing package public so it can be used by external clients

• improved build system integration with local Maven

• made Scripts repository and official OMERO.web apps pep8 and flake8 compatible

• removed restriction on name length

• added support for enumeration changes

• utils script classes deprecated

• deprecated shares

• deprecated search bridges

• disabled jquery cache

Further details on breaking changes are available on What’s new for OMERO 5.3 for developers. Work on the Web
API is ongoing and will include moving away from the use of JSONP and introducing Django CORS.

5.2.8 (March 2017)

This is a security release including three security vulnerability fixes.

2017-SV1-filename prevents users from accessing and manipulating other people’s data by creating an original file and
changing its path to point to another user’s file on the underlying filesystem.

2017-SV2-edit-rw prevents users in read-write groups from editing official scripts.

2017-SV3-delete-script prevents the deletion of official scripts by users without the correct permissions to do so.

It is highly recommended that you upgrade your server.

52 Chapter 1. OMERO Overview and CLI User Documentation

https://docs.openmicroscopy.org/omero/5.3.0/developers/whatsnew.html
https://www.openmicroscopy.org/security/advisories/2017-SV1-filename
https://www.openmicroscopy.org/security/advisories/2017-SV2-edit-rw
https://www.openmicroscopy.org/security/advisories/2017-SV3-delete-script

OMERO, Release 5.6.5-SNAPSHOT-1

5.2.7 (December 2016)

This is a release aimed at system administrators or developers wanting to build OMERO with Ice 3.6.3.

This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.10.

All scripts handling Regions of Interest (ROIs) now support ROI not linked to any plane as defined by the OME Model.

5.2.6 (October 2016)

This is a bug-fix release focusing on services closure and a DB upgrade fix. Improvements include:

• fixed closure of session in Java when using Ice 3.5

• fixed memory leak where services were not correctly closed

• added a DB upgrade patch to fix errors only affecting DBs that have been upgraded from OMERO 4.4

• fixed a MATLAB regression introduced in 5.2.2, casting error.

• fixed error in logs on getProjectedThumbnail

Support for OMERO.web deployment using Apache has also been deprecated and is likely to be removed during the
5.3.x line.

5.2.5 (August 2016)

This is a security release to fix the access privileges of the share function, which were potentially allowing users to
access private data belonging to other users via the API.

See 2016-SV2-share for details. Shares will now respect user privileges as set by the group permission level. Note that
Shares now only support images even when used via the API.

It is highly recommended that you upgrade your server. For those not in a position to do so as a matter of urgency, a
workaround is provided which deletes all shares and disables their creation.

5.2.4 (May 2016)

This is a security release to fix the cleanse.py script used by the “bin/omero admin cleanse” command, which was not
properly respecting user permissions and may lead to data loss.

See 2016-SV1-cleanse for details. The script and command have now been made admin-only.

It is highly suggested that you upgrade your server or apply the patch available from the security page.

5.2.3 (May 2016)

A bug-fix release. Improvements include:

• fixed problem with float images

• all scripts currently exposed to users via our website have been reviewed and fixed where necessary so they are
all now 5.2.x compatible, and a new omero-install workflow has been developed to ensure these are reviewed
regularly going forward

• better support for metadata annotations in clients including tag/tagset support and performance issues

• fixes in OMERO.web for deleting MIFs

• improvements to the navigation of large datasets and display of plates in OMERO.web

1.3. Additional resources 53

https://www.openmicroscopy.org/2016/05/09/bio-formats-5-1-10.html
https://www.openmicroscopy.org/security/advisories/2016-SV2-share
https://www.openmicroscopy.org/security/advisories/2016-SV1-cleanse

OMERO, Release 5.6.5-SNAPSHOT-1

• other OMERO.web bug fixes

• OMERO.insight and CLI import improvements

• other OMERO.insight bug fixes, including for downloading data

Developer updates include:

• Java gateway improvements

System administrator updates include:

• Ice 3.6.2 support for UNIX-like systems, including specific installation walkthroughs

• redis support for websessions caching

• a fix to allow OMERO.web to be run in a Docker container

• improved OMERO.web configuration

• warnings added regarding the end of Windows support in the 5.3.0 release (note that we will be preparing a guide
for migrating from Windows for existing servers and adding it to the documentation as soon as we can)

This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.9.

5.2.2 (February 2016)

A bug-fix release which also introduces some new client features. Improvements include:

• display of ROI masks in OMERO.web image viewer

• display of OMERO.tables data for Wells in the OMERO.web right hand panel

• ‘Populate Metadata’ script to enable generation of OMERO.tables for Wells is now usable from both
OMERO.web and OMERO.insight (note this is still in development and has some limitations)

• measurement tool fixes

• fixed pixel size metadata and scalebar in OMERO.web image viewer for images with pixel size units other than
micrometer

• fixed OMERO.web handling of turning off interpolation of pixels

• previous and next buttons fixed in OMERO.web image viewer

• delete and change group performance improvements

• better handling of dates in search

• client support for map annotations in OME-TIFF

• disabled orphaned container feature

• OMERO.web clean-up to remove obsolete volume viewer

Developer updates include:

• Python API examples for creating Polygon and Mask shapes

• Python API example for “Populate Metadata” to create OMERO.tables for Wells

• OMERO.tables documentation extended

• updated ‘What’s New for developers’ to clarify that pojos has been renamed as omero.gateway.model

• dynamic scripts functionality documented

• dynamic loading of omero.client server settings into HTTP sessions

54 Chapter 1. OMERO Overview and CLI User Documentation

https://blog.openmicroscopy.org/tech-issues/future-plans/deployment/2016/03/22/windows-support/
https://www.openmicroscopy.org/2016/04/18/bio-formats-5-1-9.html

OMERO, Release 5.6.5-SNAPSHOT-1

System administrator updates include:

• clarification of OMERO.web documentation for nginx deployment, including an experimental solution to resolve
download issues

• documentation of hard-linking issues for in-place import on linux systems

Note that the OMERO Virtual Appliance has been discontinued and will not be updated for version 5.2.2 or any later
releases.

This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.8.

5.2.1 (December 2015)

A bug-fix release focusing on improving installation documentation and workflows. Other improvements include:

• bug fix for missing hierarchy when viewing High Content Screening data

• improvements to the right-hand panel in OMERO.insight

• measurement tool fixes

• OMERO.web fix for displaying size units

System administrator updates include:

• improved installation documentation, including detailed walkthroughs for specific OS

• OMERO.web deployment fixes

Developer updates include:

• OMERO Javadocs now link to the relevant version of Bio-Formats Javadocs for inherited methods

• clean-up of server dependencies

• jstree clean-up

• CLI graph operation improvements for deleting

• minimal-omero-client and pom-omero-client clean-up

This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.7.

5.2.0 (November 2015)

A full, production-ready release of OMERO 5.2.0; dropping support for Java 1.6; featuring major upgrading of
OMERO.web; re-working of the Java Gateway; and introducing new user features and many fixes and performance
improvements:

• improved support for many file formats via Bio-Formats 5.1.5

• faster import for images with a large number of ROIs

• performance improvements for OMERO.web including faster data tree loading

• Java Web Start has been dropped, it is no longer possible to launch the desktop clients from the web

• reworked display of metadata and annotations in both UI clients

• many bugs fixed

Developer and system administrator updates include:

• the OMERO web framework no longer bundles a copy of the Django package, this dependency must be installed
manually

1.3. Additional resources 55

https://www.openmicroscopy.org/2016/02/15/bio-formats-5-1-8.html
https://www.openmicroscopy.org/2015/12/07/bio-formats-5-1-7.html

OMERO, Release 5.6.5-SNAPSHOT-1

• updated jstree to 3.08 and now using json for all tree loading to substantially improve performance

• removed FastCGI support, OMERO.web can be deployed using WSGI

• configuration property omero.graphs.wrap which allowed switching back to the old server code for moving
and deleting data has now been removed. You should migrate to using the new graph request operations before
5.3 when the old request operations will be removed

• introduced new Java Gateway to facilitate the development of Java applications

• aligned OMERO Rect with OME-XML schema for ROI. Clients using the OMERO.blitz server API to work
with ROIs will need to be updated

5.1.4 (September 2015)

A bug-fix release covering all components. Improvements include:

• channel buttons fixed in OMERO.web

• improved UI experience when moving annotated data between groups in OMERO.web

• improved performance for loading annotations in the right-hand panel of OMERO.web

• much better handling of ROIs covering large planes in OMERO.insight

• rendering setting fixes for copy and paste actions in OMERO.insight

• rendering fixes for floating point data

• Admins can now configure whether the clients interpolate images by default

• better formatting of Delta-T and exposure times in the clients

• directories are now preserved when downloading multiple original files

• various improvements to the OMERO-ImageJ handling of ROIs and measurements, including the ability to name
measurement tables

• current session key can now be returned via the CLI

• other CLI improvements including usability of ‘chmod’ for downgrading group permissions, and listing empty
tagsets

• added support for groups in OMERO.matlab methods

Developer updates include:

• improvements to web logging to log full request and status code

• fixed joda-time version mismatch

• cleanup of old insight code to remove remaining references to OMERO.editor

Support for deployment of OMERO.web using FastCGI has also been deprecated in this release and is scheduled to
be removed in 5.2.0. Sysadmins should move to using WSGI instead. We are also intending to stop distributing
Java Webstart for launching OMERO.insight from your browser, as security concerns mean browsers are increasingly
moving away from supporting this type of application. You can read further information regarding this decision on our
Web Start blog post.

56 Chapter 1. OMERO Overview and CLI User Documentation

https://blog.openmicroscopy.org/tech-issues/future-plans/2015/09/23/java-web-start/

OMERO, Release 5.6.5-SNAPSHOT-1

5.1.3 (July 2015)

A bug-fix release which also introduces some new functionality. Improvements include:

• tagging actions extended; you can now use tag sets to tag images on import

• tagging ome-tiff images at import has also been fixed

• greatly improved workflow and bug fixes for the Share functionality in OMERO.web which enables you to share
images with users outside of your group (including removal of part of the UI)

• group admins and owners can now change ownership of data via the CLI

• better reporting for the ‘delete’ and ‘chgrp’ functionality in the CLI

• fixed display of images in plates with multiple acquisitions

• fixed export of results as .xls files from OMERO.insight

• improved workflow for ImageJ and OMERO interactions

• support for WSGI OMERO.web deployment

• fixed OMERO.mail service for web errors

• fixes for ROI display in OMERO.web (thanks to Luca Lianas of CRS4)

• fixes and workflow improvements for running scripts and script dialogs

Developer updates include:

• OMERO.web clean-up (removal of ‘-locked’)

• reorganization of the server bundle to move various licenses and dependencies under a new ‘share’ folder

• refactoring of ‘Chown2’, ‘Chmod2’, ‘Chgrp2’ and ‘Delete2’

• addition of dynamic scripts

• the ‘rstring’ implementation is now more lenient and should better handle unicode

• Bio-Formats submodule removed from OMERO; decoupling effort means OMERO now consumes the Bio-
Formats release build from the artifactory

This release also includes the fix for the Java security issue, as discussed in the recent blog post. Testing suggests
this fix should not have any performance implications. You should upgrade your Java version to take advantage of the
security fix.

5.1.2 (May 2015)

A bug-fix release which also introduces some new functionality. Improvements include:

• support for Read-Write groups

• the LDAP plugin can now set users as group owners whether on creation or via the improved sync_on_login
option

• users logged into the webclient can now automatically log in via webstart

• results tables from ImageJ/Fiji can be attached to images in OMERO and the ImageJ/Fiji workflow has been
improved

• better delete functionality and warnings in the UI

• improved graph operations like ‘delete’ and ‘chgrp’, as well as the new ‘chmod’ operation (for changing group
permissions), are now used across the clients including the CLI

1.3. Additional resources 57

https://blog.openmicroscopy.org/tech-issues/2015/07/21/java-issue/

OMERO, Release 5.6.5-SNAPSHOT-1

• an API for setting and querying session timeouts is now available via the CLI

• magnification now reflects microscopy values (e.g. 40x) rather than a percentage in both clients

• more readable truncation of file names in the OMERO.insight data tree

• OMERO.web fixes and improvements including:

– interpolation

– optimization of plate grid and right-hand panel

– option to download single original files

– significant speed-up in loading large datasets

• deployment fixes include:

– new default permissions on the var/ directory

– better checks of the DropBox directory permissions

– new and some deprecated environment variables

– a startup check for lock files on NFS

– use /var/run for omero.fcgi

Critical bugs which were fixed include:

• the in-place import file handle leak (which was a regression in 5.1.1)

• various unicode and unit failures were corrected

5.1.1 (April 2015)

A bug-fix release focusing on user-facing issues and cleaning resources for developers. Improvements include:

For OMERO.web:

• significant review of the web share functionality

• correction of thumbnail refreshing

• fixes to the user administration panel

• fix for embedding of the Javascript image viewer

For OMERO.insight:

• improved open actions

• tidying of the menu structure

• correction of the mouse zoom behavior

• fix for the Drag-n-Drop functionality

Other updates include:

• overhaul of the CLI session log-in logic

• cleaning and testing of all code examples

• further removal of the use of deprecated methods

58 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

5.1.0 (April 2015)

A full, production-ready release of OMERO 5.1.0; updating the Data Model to the January 2015 schema, including
support for units and new more flexible user-added metadata; and introducing new user features, new supported formats
and many fixes and performance improvements:

• support for units throughout the Data Model allowing for example, pixel sizes for electron microscopy to be
stored in nanometers rather than being set as micrometers

• new, searchable key-value pairs annotations for adding experimental metadata (replacing OMERO.editor, which
has been removed)

• improved workflow for rendering settings in the UI and parity between the clients

• import images to OMERO from ImageJ and save ROIs and overlays from ImageJ to OMERO

• importing as another user, previously only available for administrators, is now usable by group owners as well,
allowing you to import data that will then be owned by the user you import it for

• improved performance for moving and deleting data

• removed the auto-levels calculation for initial rendering settings to substantially speed up performance, by using
the min/max pixel intensities, or defaulting to full pixel range where min/max is unavailable

• import times are much improved for large datasets such as HCS and SPIM data

• improved performance for many file formats and new supported formats via Bio-Formats (now over 140)

• new OMERO.mail feature lets admins configure the server to email users

• support for configuring the server download policy to control access to original file download for public-facing
OMERO.web deployments

• many developer updates such as removal of deprecated methods, and updates to OMERO.web and the C++
implementation (see the 5.1.0-m1 to 5.1.0-m5 developer preview release details below and the ‘What’s New’ for
developers page)

5.1.0-m5 (March 2015)

Developer preview release - only intended as a developer preview for updating code before the full public release
of 5.1.0. Use at your own risk.

Changes include:

• implementation of OMERO.mail for emailing users via the server

• performance improvements for importing large datasets

• support for limiting the download of original files

• various fixes for searching and filtering map annotations and converting between units

• deprecation of IUpdate.deleteObject API method

• versioning of all JavaScript files to fix browser refresh problems

• clarifying usage of OMERO.web views and templates including RequestContext

1.3. Additional resources 59

OMERO, Release 5.6.5-SNAPSHOT-1

5.1.0-m4 (February 2015)

Developer preview release - only intended as a developer preview for updating code before the full public release
of 5.1.0. Use at your own risk.

Changes include:

• final Database changes - image.series is now exposed in Hibernate

• improved deletion performance

• client bundle clean-up

• other clean-up work including pep8 and removal of deprecated methods and components

• new Map annotations are now included in the UI and search functionality

• ImageJ plugin updates which allow

– importing of images and saving ROIs to OMERO from within the plugin

– viewing images stored in OMERO and their ROIs generated within OMERO from within the plugin

– updating ROIs on OMERO-stored images within the plugin and saving these back to OMERO without
needing to re-import the image

• OMERO.matlab updates re: annotations

• OMERO.tables internal HDF5 format has changed

With thanks to Paul Van Schayck and Luca Lianas for their contributions.

5.0.8 (February 2015)

This is a bug-fix release for one specific issue causing OMERO.insight to crash when trying to open the Projection tab
for an image with multiple z-stacks.

5.0.7 (February 2015)

This is a bug-fix release covering a number of issues:

• rendering improvements including 32-bit and float support

• vast improvements in Mac launching (separate clients for your Java version)

• faster import of complex plates

• OMERO.dropbox improvements

• ROI and measurement tool fixes

• OMERO.matlab updates

60 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

5.1.0-m3 (December 2014)

Developer preview release - 3 of 4 development milestones being released in the lead up to 5.1.0. Only intended as a
developer preview for updating code before the full public release of 5.1.0. Use at your own risk.

Changes affecting developers include:

• implementation of units in the OMERO clients

• conversions between units

• OMERO.web updates

• server-side Graph work to improve speed for moving and deleting

• OMERO.insight bug-fixes especially for ROIs

5.1.0-m2 (November 2014)

Developer preview release - 2 of 3 development milestones being released in the lead up to 5.1.0. Only intended as a
developer preview for updating code before the full public release of 5.1.0. Use at your own risk.

Model changes include:

• units support, meaning units now have real enums

• minor fixes for model changes introduced in m1

The units changes mean that the following fields have changed:

• Plane.PositionX, Y, Z; Plane.DeltaT; Plane.ExposureTime

• Shape.StrokeWidth; Shape.FontSize

• DetectorSettings.Voltage; DetectorSettings.ReadOutRate

• ImagingEnvironment.Temperature; ImagingEnvironment.AirPressure

• LightSourceSettings.Wavelength

• Plate.WellOriginX, Y

• Objective.WorkingDistance

• Pixels.PhysicalSizeX, Y, Z; Pixels.TimeIncrement

• StageLabel.X, Y, Z

• LightSource.Power

• Detector.Voltage

• WellSample.PositionX, Y

• Channel.EmissionWavelength; Channel.PinholeSize; Channel.ExcitationWavelength

• TransmittanceRange.CutOutTolerance; TransmittanceRange.CutInTolerance; TransmittanceRange.CutOut;
TransmittanceRange.CutIn

• Laser.RepetitionRate; Laser.Wavelength

Other changes that may affect developers include:

• ongoing C++ implementation improvements

• ongoing work to add unit support in OMERO.insight

• further flake8 work

1.3. Additional resources 61

OMERO, Release 5.6.5-SNAPSHOT-1

• removal of webtest app from OMERO.web to a separate repository

• removal of deprecated methods in IContainer and RenderingEngine

• removal of deprecated services IDelete and Gateway

• Blitz gateway fixes

• CLI fixes

• ROI and tables work

5.0.6 (November 2014)

This is a critical security fix for two vulnerabilities:

• 2014-SV3-csrf

• 2014-SV4-poodle

It is strongly suggested that you upgrade your server and follow the steps outlined on the security vulnerability pages.

Additionally, a couple of bug fixes for system administrators are included in this release.

5.1.0-m1 (October 2014)

Developer preview release - 1 of 3 development milestones being released in the lead up to 5.1.0. Only intended as a
developer preview for updating code before the full public release of 5.1.0. Use at your own risk.

Model changes include:

• channel value has changed from an int to a float

• acquisitionDate on Image is now optional

• Pixels and WellSample types are no longer annotatable

• the following types are now annotatable: Detector, Dichroic, Filter, Instrument, LightSource, Objective, Shape

• introduction of a “Map” type which permits storing key-value pairs, and a Map annotation type which allows
linking a Map on any annotatable object

Other changes that may affect developers include:

• strict flake8’ing of all Python code

• C++ build is now based on CMake and is hopefully much more user-friendly

• new APIs: SendEmail and DiskUsage

• the password table now has a “changed” field

62 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org/security/advisories/2014-SV3-csrf
https://www.openmicroscopy.org/security/advisories/2014-SV4-poodle

OMERO, Release 5.6.5-SNAPSHOT-1

5.0.5 / 4.4.12 (September 2014)

This is a critical security fix for two vulnerabilities:

• 2014-SV1-unicode-passwords

• 2014-SV2-empty-passwords

It is highly suggested that you upgrade your server and follow the steps outlined on the security vulnerability pages.

5.0.4 (September 2014)

This is a bug-fix release for the Java 8 issues. It also features a fix for uploading masks in OMERO.matlab.

You need to upgrade your OMERO server if you want to take advantage of further improvements in Bio-Formats support
for ND2 files.

5.0.3 (August 2014)

This is a bug-fix release addressing a number of issues including:

• improved metadata saving in MATLAB

• many bug fixes for ND2 files

• several other bug fixes to formats including LZW, CZI, ScanR, DICOM, InCell 6000

• support for NDPI and Zeiss LSM files larger than 4GB

• export of RGB images in ImageJ

• search improvements

• group owner enhancements

• Webclient updates including multi-file download

To take advantage of improvements in Bio-Formats support for ND2 files, you need to upgrade your OMERO.server
as well as your clients.

5.0.2 (May 2014)

This is a bug-fix release addressing a number of issues across all components, including:

• import improvements for large image datasets

• shared rendering settings

• better tagging workflows

• disk space usage reporting for OMERO.web admins

• OMERO.matlab annotation handling

• custom Web Start intro page templates

• searching by image ID

To take advantage of improvements in Bio-Formats support for .czi files, you need to upgrade your OMERO.server as
well as your clients.

1.3. Additional resources 63

https://www.openmicroscopy.org/security/advisories/2014-SV1-unicode-passwords
https://www.openmicroscopy.org/security/advisories/2014-SV2-empty-passwords

OMERO, Release 5.6.5-SNAPSHOT-1

4.4.11 (April 2014)

This is a bug-fix release for the Java Web Start issue. You only need to upgrade if this is a blocker for you and you
cannot upgrade to 5.0.x as yet. Also note that the OMERO.insight-ij plugin version 4.4.x no longer works for Fiji, we
are working on a fix for this. Plugin version 5.0.x is unaffected.

5.0.1 (April 2014)

This is a bug-fix release addressing a number of issues across all components, including:

• code signing to fix the Java Web Start issues

• stability improvements to search

• MATLAB fixes

• improvements to groups, user menus, file name settings etc

• new import scenario documentation covering ‘in-place’ importing.

5.0.0 (February 2014)

This represents a major change in how the OMERO server handles files at import compared with all previous versions
of OMERO. Referred to as ‘OMERO.fs’, this change means that OMERO uses Bio-Formats to read your files directly
from the filesystem in their original format, rather than converting them and duplicating the pixel data for storage. In
addition, it continues our effort to support new multidimensional images. The changes are especially important for
sites working with large multi-GB datasets, e.g. long time lapse, HCS and digital pathology data.

4.4.10 (January 2014)

This is a bug-fix release addressing a number of issues across all components, including:

• improved tile-loading

• better network-disconnect handling

• more flexible

• webapp deployment

• Ice 3.5.1 support (except Windows)

• improved modification of metadata, users and groups

4.4.9 (October 2013)

This is a bug-fix release addressing a number of issues across all components, also including:

• Ice compatibility issues

• new scripting sharing service

• new user help website

• new partner project pages.

The minimum system requirement is Java 1.6 (Java 1.5 is no longer supported).

A security vulnerability was identified and resolved, meaning that we strongly recommend all users upgrade their
OMERO clients and servers.

64 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

4.4.8p1 (July 2013)

This is a patch release addressing a network connection problem in the clients introduced by a new version of Java.

4.4.8 (May 2013)

This is bug-fix release addressing two specific issues: a problem with the OMERO.insight client for Linux, and image
thumbnails not loading for Screens/Plates in Private/Read-Only groups in OMERO.web. You only need to upgrade if
you are an OMERO.insight user on Linux or you are using OMERO.web to view HCS data in Private or Read-Only
groups.

4.4.7 (April 2013)

This is a point release including several new features and fixes across all components. This includes improvements
in viewing of ‘Big’ tiled images, new permission features, new OMERO.web features, and several utility functions in
OMERO.matlab.

4.4.6 (February 2013)

This is bug-fix release addressing a number of issues across all components. This includes a major fix to repair the
C++ binding support for Ice 3.4. There has also been a potentially breaking update to the CLI.

4.4.5 (November 2012)

This is bug-fix release focusing on improvements to the OMERO clients. OMERO.web now supports “batch de-
annotation”, filtering of images by name and improved export to OME-TIFF and JPEG. OMERO.insight has fixes to
thumbnail selection and image importing and exporting.

4.4.4 (September 2012)

This is a bug-fix release addressing a number of issues across all components.

• OMERO.insight fixes include connection and configuration options and tagging on import.

• OMERO.web improvements include big image and ROI viewer fixes, improved admin and group functionality
and rendering/zooming fixes.

• OMERO.server now has improved LDAP support and VM and homebrew deployments as well as fixes for file
downloads above 2GB, permissions, memory leaks and JDK5.

4.4.3 (August 2012)

This is a critical security fix for:

• 2012-SV1-ldap-authentication

Anyone using OMERO 4.4.2 or earlier with LDAP authentication should immediately upgrade to 4.4.3.

1.3. Additional resources 65

https://www.openmicroscopy.org/security/advisories/2012-SV1-ldap-authentication

OMERO, Release 5.6.5-SNAPSHOT-1

4.4.2 (August 2012)

This release is a major bug fix for archiving files larger than 2 GB. If you do not archive files larger than 2 GB, you do
not need to upgrade your clients or your server. There is also a minor fix for an OMERO.imagej plugin security issue,
but it is only necessary to update the version of Bio-Formats that is installed in ImageJ.

4.4.1 (July 2012)

This is a minor release which fixes two import issues. See #9372 and #9377. If you are not using BigTIFF or
PerkinElmer .flex files, then you do not need to upgrade.

4.4.0 (July 2012)

This is a major release, which focuses on providing new functionality for controlling access to data, as well as significant
improvements in our client applications.

The major theme of 4.4.0 is what we refer to as “Permissions”, the system by which users control access to their data.
It is now possible to move data between groups, and much, much more.

We also added a few more things for users in 4.4.0, like:

• OMERO.insight webstart

• Importing from OMERO.insight is now complete

• Better integration of OMERO.insight with ImageJ

• A bottom-to-top reworking of the OMERO.web design

For developers and sysadmins, there are a few things as well:

• Support for Ice 3.4

• Removed support for PostgreSQL 8.3

Beta 4.3.4 (January 2012)

This is a point release is a security update to address an LDAP vulnerability.

Beta 4.3.3 (October 2011)

This point release is a short follow on to 4.3.2 to handle various issues found by users.

Beta 4.3.2 (September 2011)

This is a point release, focusing on fixes for OMERO.web, export, and documentation. A couple of LDAP fixes were
also added, following requests from the community. We also included something many of you have asked for some
time, OMERO on virtual machines.

66 Chapter 1. OMERO Overview and CLI User Documentation

https://trac.openmicroscopy.org/ome/ticket/9372
https://trac.openmicroscopy.org/ome/ticket/9377

OMERO, Release 5.6.5-SNAPSHOT-1

Beta 4.3.1 (July 2011)

This point release focuses on fixes for Big Images, OMERO.web and others.

Beta 4.3.0 (June 2011)

This is a major release, focusing on new functionality for large, tiled images, and significant improvements in our client
applications.

The major theme of 4.3.0 is what we refer to as “Big Images”, namely images with X,Y images larger that 4k x 4k. With
this release, OMERO’s server and Java and web clients support tiling and image pyramids. This means we have the
functionality you have probably seen in online map tools, ready for use in any image file format supported by OMERO
(and obviously Bio-Formats). This is especially important for digital pathology, and other uses of stitched imaging.

While the major focus of 4.3.0 was Big Images, there are a number of other new updates. For users, we have worked
hard to synchronise functionality and appearance across the OMERO clients. This includes viewing of ROIs in
OMERO.web. We are not done, but we have made a lot of progress. Moreover, data import is now MUCH faster
and available from within OMERO.insight.

Beta 4.2.2 (December 2010)

Fixes blocker reported using 4.2.1. Starting with this milestone, all tickets for the insight client are managed on Trac.

Beta 4.2.1 (November 2010)

This is a point release, focusing on fixes for delete functionality, and significant improvements in the way OMERO.web
production server is deployed.

Beta 4.2.0 (July 2010)

This release is a major step for OMERO, enabling a number of critical features for a fully functional data management
system:

• User and Group Permissions and data visibility between users

• updates to the OME SPW Model and improvements in HCS data visualisation

• SSL connection between OMERO clients and server;

• full scripting system, accessible from command line and within OMERO.insight, including Figure Export and
FLIM Analysis

• ROIs generated in OMERO.insight stored on server

• extended use of OMERO.Tables for analysis results

• performance improvements for import and server-side import histories

• revamped, fully functional OMERO.web web browser interface

• upgrade of Backend libraries in OMERO.server

1.3. Additional resources 67

OMERO, Release 5.6.5-SNAPSHOT-1

Beta 4.1.1 (December 2009)

This release fixes a series of small bugs in our previous Beta 4.1 release.

Beta 4.1 (October 2009)

Improved support for metadata, especially for confocal microscopy; OMERO supports all of the file formats enabled
by Bio-Formats. Export to OME-TIFF and QuickTime/AVI/MPEG from OMERO. Various improvements to OMERO
clients to improve workflow and use.

This release introduces OMERO.qa - a feedback mechanism, to allow us to communicate more effectively with our
community. OMERO.qa supports uploading of problematic files, and tracking of responses to any user queries. More-
over, OMERO.qa includes a demo feature: in collaboration with Urban Liebel at Karlsruhe Institute of Technology, we
are providing demo accounts for OMERO. Use the Demo link at qa to contact us if you are interested in this.

For users who have had problems with memory-based crashes in OMERO.insight, the new OpenGL-based ImageViewer
may be of interest. Also, we are now taking advantage of our modeling of HCS data, and releasing our first clients
that support Flex, MIAS, and InCell 1000 file formats. OMERO.dropbox has been substantially extended, and now
supports all the file formats supported by OMERO.

Beta 4.0.1 (April 2009)

A quick patch release that fixes some bugs and adds some new functionality:

• Fixed Windows installation and updated docs.

• Bug fixes (scriptingEngine, importer).

• Fix .lif import, add Li-Cor 2D (OMERO does gels!).

• API .dv and OME .ome.tiff now supported by OMERO.fs.

• Support negative pixel values in Rendering Engine.

• Archived images are now fully supported in OMERO.

• OMERO.web merged with OmeroPy in distribution.

Beta 4.0 (March 2009)

This release consists of a major change in the remoting infrastructure, complete migration of existing OMERO clients
to the ICE framework, two new OMERO clients, and integration of OMERO.editor into OMERO.insight.

OMERO.server updates:

• remove JBOSS, and switch all remoting to ICE

• improve session management, supporting creation of many thousands of session

• addition of an import service for server-side importing

• DB upgrades to support the metadata completion facilities

• substantial improvement to the interaction between the indexing engine and the rest of server.

OMERO.importer updates:

• migration to Blitz interface, giving much faster performance

• more efficient importing, complete metadata support for Zeiss LSM510, Leica LIF, Zeiss ZVI, Applied Precision
DV, and MetaMorph STK

68 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

• addition of command line importer for batch import

OMERO.insight updates:

• migration to Blitz interface, giving much faster performance

• updates to metadata display, include complete support for OME Data Model

• much expanded integration of protocol management via OMERO.editor, within OMERO.insight

• support for image delete

• refinement of Projection Interface

OMERO.web: all new browser-based client for OMERO. Enables sharing of images with colleagues with an account
on server.

OMERO.editor: a management tool for experimental protocols, now fully integrated with OMERO.insight, so that
protocols and experimental descriptions can be saved along with images and datasets. Includes a new parameters
function, so that protocols in traditional documents can be easily imported into OMERO. Supports, tables and .xls
files. Also runs as a standalone application.

OMERO.fs: a new OMERO client, that monitors a specific directory and enables automatic imports. In its first incar-
nation, has quite limited functionality, supporting automatic import of LSM510 files only.

Beta 3.2 (November 2008)

The final update in the Beta3.x series. A number of fixes:

• faster thumbnailing and better support for large numbers of thumbnails

• improved handling of Leica .lei and Zeiss .zvi files

• extended support for reading OMERO.editor files in OMERO.insight

• measurement tool fixes in OMERO.insight

• fixed memory problem in OMERO.insight on Windows

• fixed thumbnailing and session bugs on OMERO.server

• fixed DB upgrades for older PostgreSQL versions

Beta 3.0 (June 2008)

This release of OMERO is a major update of functionality. In OMERO.server, we have added support for StructuredAn-
notations a flexible data management facility that allows essentially any kind of accessory data to be linked to images
and experiments stored in OMERO. Alongside this, we provide an indexing engine, that provides a flexible searching
facility for essentially any text stored in an installation of OMERO.server. Finally, we are releasing our first examples
of clients that use the OMERO.blitz server, a flexible, distributed interface that supports a range of client environments.
One very exciting addition is OMERO matlab, a gateway that can be used to access OMERO from MATLAB®.

OMERO Beta3.0 includes a substantial reworking of our clients as well. OMERO.insight has been substantially up-
dated, with an updated interface to provide a more natural workflow and support for many different types of annota-
tions, through the StructuredAnnotations facility. The new search facilities are supported with smart user interfaces,
with auto-complete, etc. New file formats have been added to OMERO.importer, including support for OME-XML,
and an improved import history facility is now available. Finally, Beta3.0 includes the first release of our experimental
electronic notebook tool, OMERO.editor. This represents our recent efforts to capture as much metadata around an
experiment as possible.

1.3. Additional resources 69

OMERO, Release 5.6.5-SNAPSHOT-1

Beta 2.3.3 insight (April 2008)

A new Beta 2.3.3 OMERO.insight has been released, this adds rotation to ellipse figure, and new format for saving
intensity values.

Note: this version saves the ROIs in a format which is incompatible with previous saved ROIs.

Beta 2.3.1 importer (February 2008)

A new Beta 2.3.1 OMERO.importer has been released which includes a number of new formats: Zeiss AxioVision ZVI
(Zeiss Vision Image), Nikon NIS-Elements .ND2 , Olympus FluoView FV1000, ICS (Image Cytometry Standard),
PerkinElmer UltraView, and Jpeg2000.

The OMERO downloads for Beta 2.3 include a number of new options: a new import history feature, a Windows server
installation, and a new tagging feature for OMERO.insight.

Note: milestone:3.0-Beta2.3 and prior Mac OS X installers for OMERO.server do not work on Mac OS X Leopard
(10.5). Please follow the UNIX-based platform manual install instructions. Mac OS X installers for OMERO.insight
and OMERO.importer work just fine under Leopard and can be used.

Beta 2.3 (December 2007)

This is a patch release for OMERO.server to fix a memory problem. In OMERO.insight, updating of the tagging facility,
viewing of others’ rendering settings and support for server-side compression of images before transport to client.

Beta 2.2 (November 2007)

In this release we have updated OMERO.server to run a newer version of JBOSS and provided support for copying
display settings across a range of images. More new file formats. OMERO.insight has been updated to support copying
display settings across many images. Image Viewer has been substantially updated.

Beta 2.1 (August 2007)

This is a client-only release. OMERO.insight now supports basic ROI measurements and a series of new file formats
have been added. The OMERO downloads for Beta 2.0 have been simplified. OMERO.insight and OMERO.importer
have been combined into a single download file called ‘OMERO.clients’ and the user documentation is now included
inside of the server and client downloads.

Beta 2.0 (June 2007)

Note: this version will still work with the Beta 1 server release.

This major update provided our first support for multiple platforms via OMERO.Blitz. OMERO.insight now supports
viewing work of multiple users. Beta 2 is our first release of the Web2.0-like ‘tag’ system developed in collaboration
with Usable Image from Dundee University Computing department. This version addresses issues with using our tools
under Java 1.6

70 Chapter 1. OMERO Overview and CLI User Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Beta 1.1 (March 2007)

Patch release to fix time-out issues.

Beta 1 (January 2007)

The first public OMERO release, providing simple data management. Limited file format support (DV, STK, TIFF).
Simple data visualization and management.

Milestone M3 (November 2006)

Rendering and compression API and client-side import. Access control and permissions system. Importer based on
Bio-Formats.

Milestone M2 (July 2006)

The stateful rendering service is functional and all rendering code moved from Shoola Java client to the server. Also,
the stateless services (IQuery,IUpdate,IPojos) are frozen and testing and documentation is checked and solidified.

Milestone M1 (April 2006)

Contains minimal functionality needed to run Shoola Java client without Perl server to demonstrate acceleration of
metadata access. Application deployed on JBoss (https://www.jboss.org). No ACLs or permissions.

1.3. Additional resources 71

https://www.jboss.org

OMERO, Release 5.6.5-SNAPSHOT-1

72 Chapter 1. OMERO Overview and CLI User Documentation

CHAPTER

TWO

SYSTEM ADMINISTRATOR DOCUMENTATION

This documentation begins with information aimed at OS-level administrators and moves on to day-to-day management
of OMERO for facility managers (who may find it useful to read the Facility Managers help guide for an overview first).

2.1 Getting started

The OMERO server system provides storage and processing of image data which conforms to the OME Specification.
It can be run on commodity hardware to provide your own storage needs, or run site-wide to provide a large-scale
collaborative environment.

Although getting started with the server is relatively straightforward, it does require installing several software systems,
and more advanced usage including backups and integrated logins, needs a knowledgeable system administrator.

2.1.1 Usage

You may find the OMERO clients overview user guide useful before working through the installation and maintenance
guides provided in this section of the documentation.

2.1.2 Components

The server system is composed of several components, each of which runs in a separate process but is co-ordinated
centrally.

• OMERO.blitz - the data server provides access to metadata stored in a relational database as well as the binary
image data on disk.

• OMERO.dropbox - a filesystem watcher which notifies the server of newly uploaded or modified files and runs
a fully automatic import (designed as the first implementation of OMERO.fs referred to in the architecture dia-
gram).

• OMERO.processor - a process-launcher for running user-defined scripts.

• OMERO.tables - provide a way to efficiently store large, tabular results.

• OMERO.indexer - keeps a full-text search index up-to-date for searching.

If you are interested in building components for the server, modifying an existing component, or just looking for more
background information, there is a section about the server within the Developer Documentation; the best starting point
is the OMERO.server overview for developers.

73

https://help.openmicroscopy.org/facility-manager.html
https://docs.openmicroscopy.org/latest/ome-model/specifications/

OMERO, Release 5.6.5-SNAPSHOT-1

2.1.3 Background reading

What’s new for OMERO 5.6 for sysadmins

• Version requirements has been updated to reflect changes in version support for 5.6.0 and tentative plans for 6.0.0.
The biggest change is of course the removal of support for Python 2.

• Installation walkthroughs now all suggest use of a virtualenv for installing Python packages. The upgrade guides
will help with the migration. See Migration to Python 3 for more information.

• See the previous What’s new page for more details.

For a full list of bug fixes and other improvements, see the CHANGELOGS.

Version requirements

Summary of changes for OMERO 5.6 and provisional changes for 6.0

We aim to support OMERO on the environments specified below, based on the availability of support by upstream
developers and operating system distributions. This applies over the lifetime of the 5.6 release and includes security
support. Support is limited to those environments on which OMERO is routinely tested.

This page details the minimum version requirements for the current (5.6) release and also possible changes for the next
release.

It is intended to provide a roadmap in order that sysadmins may plan ahead and ensure that prerequisites are in place
for future upgrades.

Level Meaning

unsupported/new

supported/suboptimal

supported/optimal

supported/deprecated

unsupported/old

unsupported/broken

unsupported/misc

Please check the full support levels table for more info on each support level.

74 Chapter 2. System Administrator Documentation

https://docs.openmicroscopy.org/omero/5.5/sysadmins/whatsnew.html

OMERO, Release 5.6.5-SNAPSHOT-1

Bitness

Rationale: OMERO is tested on 64-bit systems only.

Bitness OMERO 5.4 OMERO 5.5 OMERO 5.6 OMERO 6.0

32-bit for Ice and native code [client]

64-bit

NGINX

nginx OMERO 5.4 OMERO 5.5 OMERO 5.6

1.8

1.10

1.12

1.14

1.16

Operating system support

The following subsections detail the versions of each operating system which are supported by both its upstream de-
velopers (for security and general updates) and by OME for OMERO building and server deployment.

UNIX (FreeBSD)

It only really makes sense to support the base toolchain for major releases and the Ports tree (which is continually
updated); these will be covered in the dependencies, below.

Linux (CentOS and RHEL)

General overview for RHEL and CentOS

2.1. Getting started 75

https://access.redhat.com/articles/3078
https://wiki.centos.org/About/Product

OMERO, Release 5.6.5-SNAPSHOT-1

Ver-
sion

Release
date

Supported
until

OMERO
5.4

OMERO
5.5

OMERO
5.6

OMERO
6.0

Details

6 Nov 2010 Nov 2020 Refer-
ence

7 June 2014 June 2024 Refer-
ence

8 May 2019 May 2029 Refer-
ence

RHEL/CentOS 7 is supported at present. Given the long life of enterprise releases, we intend to support only the latest
release at any given time or else it ties us into very old dependencies.

Linux (Ubuntu)

General overview

Version Release date Supported until OMERO 5.4 OMERO 5.5 OMERO 5.6 OMERO 6.0

14.04 LTS Apr 2014 Apr 2019

16.04 LTS Apr 2016 Apr 2021

18.04 LTS Apr 2018 Apr 2028

20.04 LTS Apr 2020 Apr 2030

Only the LTS releases are supported due to resource limitations upon CI and testing. Only the last two LTS releases
are supported (being a bit more frequent than CentOS/RHEL). There is currently no CI testing for any version.

Microsoft Windows

Client support only. See blog post explanation

MacOS X

MacOS X is typically suited only to client use, not serious server deployment, although the server can be expected to
run on versions with current security support for testing purposes.

76 Chapter 2. System Administrator Documentation

https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product
https://wiki.ubuntu.com/Releases
https://blog.openmicroscopy.org/tech-issues/future-plans/deployment/2016/03/22/windows-support/

OMERO, Release 5.6.5-SNAPSHOT-1

Dependencies

The following subsections detail the versions of each dependency needed by OMERO which are supported by both
its upstream developers (for security and general updates) and by OME for OMERO building and server and client
deployment.

Note: Versions in brackets are in development distributions and may change without notice.

Package lists

Operating system Details
CentOS 6 / RHEL 6 EOL
CentOS 7 / RHEL 7 Reference
Ubuntu Reference
Homebrew Reference
FreeBSD Ports Reference

PostgreSQL

General overview

OMERO support policies

Version Release date Supported until OMERO 5.4 OMERO 5.5 OMERO 5.6 OMERO 6.0

9.3 Sep 2013 Sep 2018

9.4 Dec 2014 Dec 2019

9.5 Jan 2016 Jan 2021

9.6 Sep 2016 Sep 2021

10 Oct 2017 Nov 2022

11 Oct 2018 Nov 2023

12 Oct 2019 Nov 2024

2.1. Getting started 77

http://mirror.centos.org/centos/7/os/x86_64/Packages/
https://packages.ubuntu.com/search?keywords=foo&searchon=names&suite=all§ion=all
https://github.com/Homebrew/homebrew-core/tree/master/Formula
https://svnweb.freebsd.org/ports/head/
https://www.postgresql.org/support/versioning/

OMERO, Release 5.6.5-SNAPSHOT-1

Version provided by distribution

If no version is provided, a suitable repository is indicated.

Ver-
sion

CentOS/RHEL Ubuntu Home-
brew

FreeBSD
Ports

10 6 (postgresql), 7 (postgresql), 8 (post-
gresql)

14.04, 16.04, 18.04 (post-
gresql)

Yes Yes

11 6 (postgresql), 7 (postgresql), 8 (post-
gresql)

16.04, 18.04, 20.04 (post-
gresql)

Yes Yes

12 6 (postgresql), 7 (postgresql), 8 (post-
gresql)

16.04, 18.04, 20.04 (post-
gresql)

Yes Yes

Details Reference

The PostgreSQL project provides packages for supported platforms therefore distribution support is not necessary.

Python

OMERO support policies

Ver-
sion

Release
date

Supported
until

OMERO
5.4

OMERO
5.5

OMERO
5.6

OMERO
6.0

Details

2.6 Oct 2008 Oct 2013 1 2 PEP
361

2.7 Jul 2010 Jan 2020 PEP
373

3.2 Feb 2011 Feb 2016 PEP
392

3.3 Sep 2012 Sep 2017 PEP
398

3.4 Mar 2014 Mar 2019 PEP
429

3.5 Sep 2015 Sep 2020 PEP
478

3.6 Dec 2016 Dec 2021 PEP
494

3.7 Jun 2018 Jun 2023 PEP
537

1 For OMERO.web, Python 2.7 is the minimum supported version.
2 For OMERO.py and OMERO.server 5.4, Python 2.6 is the minimum supported version.

78 Chapter 2. System Administrator Documentation

https://yum.postgresql.org/10/redhat/rhel-6-x86_64/
https://yum.postgresql.org/10/redhat/rhel-7-x86_64/
https://yum.postgresql.org/10/redhat/rhel-8-x86_64/
https://yum.postgresql.org/10/redhat/rhel-8-x86_64/
https://apt.postgresql.org/pub/repos/apt/
https://apt.postgresql.org/pub/repos/apt/
https://yum.postgresql.org/11/redhat/rhel-6-x86_64/
https://yum.postgresql.org/11/redhat/rhel-7-x86_64/
https://yum.postgresql.org/11/redhat/rhel-8-x86_64/
https://yum.postgresql.org/11/redhat/rhel-8-x86_64/
https://apt.postgresql.org/pub/repos/apt/
https://apt.postgresql.org/pub/repos/apt/
https://yum.postgresql.org/12/redhat/rhel-6-x86_64/
https://yum.postgresql.org/12/redhat/rhel-7-x86_64/
https://yum.postgresql.org/12/redhat/rhel-8-x86_64/
https://yum.postgresql.org/12/redhat/rhel-8-x86_64/
https://apt.postgresql.org/pub/repos/apt/
https://apt.postgresql.org/pub/repos/apt/
https://packages.ubuntu.com/search?keywords=postgresql&searchon=names&suite=all§ion=all
https://www.postgresql.org/download/
https://www.python.org/dev/peps/pep-0361/
https://www.python.org/dev/peps/pep-0361/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0392/
https://www.python.org/dev/peps/pep-0392/
https://www.python.org/dev/peps/pep-0398/
https://www.python.org/dev/peps/pep-0398/
https://www.python.org/dev/peps/pep-0429/
https://www.python.org/dev/peps/pep-0429/
https://www.python.org/dev/peps/pep-0478/
https://www.python.org/dev/peps/pep-0478/
https://www.python.org/dev/peps/pep-0494/
https://www.python.org/dev/peps/pep-0494/
https://www.python.org/dev/peps/pep-0537/
https://www.python.org/dev/peps/pep-0537/

OMERO, Release 5.6.5-SNAPSHOT-1

Version provided by distribution

Version CentOS/RHEL Ubuntu Homebrew FreeBSD Ports
2.6 6 10.04 N/A Yes
2.7 7 14.04, 16.04, 18.04 Yes Yes
3.2 N/A N/A N/A Yes
3.3 N/A N/A N/A Yes
3.4 7 (EPEL) 14.04 N/A Yes
3.5 N/A 16.04 N/A Yes
3.6 7 (EPEL) 18.04 Yes Yes
Details Python 2 Python 3

Python 2.7 support ends in 2020;

The Django version used by OMERO.web (1.11.26) is supported on Python 3.5, 3.6 and 3.7

Ice

General overview

OMERO support policies

Ver-
sion

Release
date

Sup-
ported
until

OMERO
5.4

OMERO
5.5

OMERO
5.6

OMERO
6.0

Details

3.5 Mar 2013 Oct 2013 3.5.0, 3.5.1

3.6 June
2015

TBA 3.6.0 (3.6.1), 3.6.2,
3.6.3, 3.6.4, 3.6.5.

3.7 July 2017 TBA 3.7.0, 3.7.1, 3.7.2, 3.7.3.

Version provided by distribution

If no version is provided, a suitable repository is indicated.

Version CentOS/RHEL Ubuntu Homebrew FreeBSD Ports
3.5 6, 7 (zeroc) 14.04, 16.04 N/A N/A
3.6 6, 7 (zeroc) 14.04, 16.04 (zeroc) Yes Yes
3.7 7 (zeroc) 16.04, 18.04 (zeroc) Yes Yes
Details Reference

2.1. Getting started 79

https://dl.fedoraproject.org/pub/epel/7/x86_64/
https://dl.fedoraproject.org/pub/epel/7/x86_64/
https://packages.ubuntu.com/search?keywords=python2&searchon=names&suite=all§ion=all
https://packages.ubuntu.com/search?keywords=python3&searchon=names&suite=all§ion=all
https://zeroc.com/download.html
https://forums.zeroc.com/discussion/6093/ice-3-5-0-released
https://forums.zeroc.com/discussion/6283/ice-3-5-1-released
https://forums.zeroc.com/discussion/6631/ice-3-6-0-and-ice-touch-3-6-0-released
https://forums.zeroc.com/discussion/45941/ice-3-6-0-and-ice-touch-3-6-1-released
https://forums.zeroc.com/discussion/46347/ice-ice-e-and-ice-touch-3-6-2-released
https://forums.zeroc.com/discussion/46475/ice-ice-e-and-ice-touch-3-6-3-released
https://forums.zeroc.com/discussion/46550/ice-ice-e-and-ice-touch-3-6-4-released
https://forums.zeroc.com/discussion/46700/ice-3-6-5-released
https://forums.zeroc.com/discussion/46530/ice-3-7-0-and-ice-touch-3-7-0-released
https://forums.zeroc.com/discussion/46620/ice-3-7-1-released
https://forums.zeroc.com/discussion/46670/ice-3-7-2-released
https://forums.zeroc.com/discussion/46704/ice-3-7-3-released
https://zeroc.com/distributions/ice/3.5/
https://zeroc.com/distributions/ice/3.6/
https://zeroc.com/distributions/ice/3.6/
https://zeroc.com/distributions/ice/3.7/
https://zeroc.com/distributions/ice/3.7/
https://packages.ubuntu.com/search?keywords=ice&searchon=names&suite=all§ion=all

OMERO, Release 5.6.5-SNAPSHOT-1

Java

General overview

OMERO support policies

Ver-
sion

Release
date

Supported
until

OMERO
5.4

OMERO
5.5

OMERO
5.6

OMERO
6.0

Details

7 Jul 2011 Apr 2015 Refer-
ence

8 Mar 2014 Jun 2023 Refer-
ence

11 Sep 2018 Oct 2024 Refer-
ence

12 Sep 2018 Oct 2024

13 Sep 2018 Oct 2024

Version provided by distribution

Version CentOS/RHEL Ubuntu Homebrew FreeBSD Ports
7 6, 7 14.04 N/A Yes
8 6, 7 16.04, 18.04 N/A N/A
11 7 18.04 N/A Yes
Details Reference

Note that all distributions provide OpenJDK due to distribution restrictions by Oracle. Oracle Java may be used if
downloaded separately.

NGINX

General overview and roadmap

80 Chapter 2. System Administrator Documentation

https://www.oracle.com/technetwork/java/eol-135779.html
https://www.oracle.com/technetwork/java/eol-135779.html
https://www.oracle.com/technetwork/java/eol-135779.html
https://access.redhat.com/articles/1299013
https://access.redhat.com/articles/1299013
https://access.redhat.com/articles/1299013
https://access.redhat.com/articles/1299013
https://packages.ubuntu.com/search?keywords=jdk&searchon=names&suite=all§ion=all
https://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
https://nginx.org/en/download.html
https://trac.nginx.org/nginx/roadmap

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO support policies

Version Release date Supported until OMERO 5.4 OMERO 5.5 OMERO 5.6 OMERO 6.0

1.6 Apr 2014 Apr 2015

1.8 Apr 2015 Jan 2016

1.10 Apr 2016 Apr 2017

1.12 Apr 2017 Apr 2018

1.14 Apr 2018 Apr 2019

1.16 Apr 2019 TBA

Version provided by distribution

If no version is provided, a suitable repository is indicated.

Version CentOS/RHEL Ubuntu Homebrew FreeBSD Ports
1.12 7 (EPEL) 14.04 (nginx) N/A Yes
1.14 N/A 16.04, 18.04 (nginx) Yes Yes
Details Reference

Support levels

The following table defines the symbols used throughout this page to describe the support status of a given component,
as it progresses from being new and not supported, to supported and tested on a routine basis, and to finally being old
and no longer supported nor tested.

Level Meaning Description

unsup-
ported/new

New version not yet regularly tested and not officially supported; may or may not work (use
at own risk)

sup-
ported/suboptimal

Version which is tested, confirmed to work correctly, but may not offer optimal perfor-
mance/experience

sup-
ported/optimal

Version which is regularly tested, confirmed to work correctly, recommended for optimal per-
formance/experience

sup-
ported/deprecated

Version which is less tested, expected to work correctly, but may not offer optimal perfor-
mance/experience; official support may be dropped in the next major OMERO release

unsup-
ported/old

Old version no longer tested and no longer officially supported; may or may not work (use at
own risk)

unsup-
ported/broken

Known to not work

unsup-
ported/misc

Not supported for some reason other than the above

2.1. Getting started 81

https://dl.fedoraproject.org/pub/epel/7/x86_64/
https://launchpad.net/~nginx/+archive/ubuntu/stable
https://launchpad.net/~nginx/+archive/ubuntu/stable
https://packages.ubuntu.com/search?keywords=nginx&searchon=names&suite=all§ion=all

OMERO, Release 5.6.5-SNAPSHOT-1

System requirements

Hardware

OMERO.server

The system requirements for OMERO.server vary greatly depending on image size and number of users. The minimum
requirements should be easily exceeded by any recently bought hardware.

An OMERO.server specification for between 25-50 users might be:

• Quad core 1.33GHz Intel or AMD CPU

• 8GB RAM

• 500MB hard drive space for OMERO.server distribution

• Hard drive space proportional to the image sizes expected (likely between 10 and 100TB)

A specification for a server future-proofed for 3-4 years might be:

• dual Intel Xeon Processor E5-2637 v3 4C 3.5GHz 15MB 2133MHz 135W

• 256GB RAM

• 2 x 200GB SSD RAID1 for OS

• 2 x 400GB SSD RAID1 for PostgreSQL DB

• 2 x 1.2 TB SAS RAID1 for scratch, log files, etc.

• 10 GbE connectivity to a separate fileshare for the OMERO binary repository

Storage

Hard drive space should be proportional to the image sizes expected. The drive space should permit proper locking,
which is often not the case with remotely mounted shares. See the binary repository section for more information.

RAM

RAM is not going to scale linearly, particularly with the way the JVM works. You are probably going to hit a hard
ceiling between 4 and 6GB for JVM size (there is really not much point in having it larger anyway). With a large
database and aggressive PostgreSQL caching your RAM usage could be larger. Still, even for a large deployment,
it is not cost effective to use more than a few GBs of RAM for this purpose. Performance and monitoring provides
information about fine-tuning the server processes’ memory usage. In summary, depending on hardware layout 16, 24
or 32GB of RAM would be ideal for your OMERO server. If you have a separate database server more than 16GB of
RAM may not be of much benefit to you at all.

82 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

CPU

CPU is not something that an OMERO system is usually ever limited by. However, when it is limited, it is almost always
limited by GHz and not by the CPU count. Depending on hardware layout 2 × 4, 2 × 6 system core count should be
more than enough. You are not going to get a huge OMERO performance increase by, for example, throwing 24 cores
at the problem; a specification with a focus on higher clock speed is going to give you better performance.

Further examples

Example production server set-ups provides details on some production set-ups in use by OMERO admins, along with
how many users and the amount of data they support, which you may find helpful.

OMERO.insight and OMERO.importer

The recommended client specification is:

• Single core 1.33GHz Intel or AMD CPU

• 2GB RAM

• 200MB hard drive space for OMERO.clients distribution

Large imports may require 4GB RAM.

Client configuration

When performing some operations the clients make use of temporary file storage and log directories. The table below
indicates the default values for each directory and the environment variables for overriding their locations:

Client directory Environment variable Default location (UNIX) Default location (Windows)
OMERO user directory OMERO_USERDIR $HOME/omero %HOMEPATH%\omero
Temporary files OMERO_TMPDIR $HOME/omero/tmp %HOMEPATH%\omero\tmp
Local sessions OMERO_SESSIONDIR $HOME/omero/

sessions
%HOMEPATH%\omero\
sessions

Log files $HOME/omero/log %HOMEPATH%\omero\log

Note that setting OMERO_USERDIR will also change the default location for the temporary files and the local sessions.

If your home directory is stored on a network, possibly NFS mounted (or similar), then these temporary files are being
written and read over the network. This can slow access down.

See also:
Troubleshooting performance issues with the clients Troubleshooting section about client performance issues on

NFS

2.1. Getting started 83

OMERO, Release 5.6.5-SNAPSHOT-1

Software

Each component of the OMERO platform has a separate set of prerequisites. Where possible, we provide tips on getting
started with each of these technologies, but we can only provide free support within limits.

Package OMERO.server Java Python Ice PostgreSQL
OMERO.importer Required Required
OMERO.insight Required Required
OMERO.server Required Required Required Required
OMERO.web Required Required Required
OMERO.py Required for some functionality Required Required
OMERO.cpp Required for some functionality Required

For full details on which versions of these are supported for OMERO 5.6 and how we intend to update these going
forward, see the Version requirements section.

Example production server set-ups

CellNanOs (Center of Cellular Nanoanalytics), University of Osnabrück

The OMERO server at CellNanOS serves a community of 75-100 users and 17 microscope stations (13 different sys-
tems), producing 180-1360 GB of data per day. It is hosted on RedHat 7.3 with data stored on an IBM GPFS file
system.

Hardware

• Dell R630 running RedHat 7.3, 32 cores, 128 GB RAM

• IBM GPFS storage, 6 TB SSDs, 178 TB SATA

Network infrastructure

1-10 GBit connection between microscope workstations and OMERO

Backup/archive

• IBM TSM 1.4 PB

• daily migration of new data to tape, archive on tape

84 Chapter 2. System Administrator Documentation

https://www.cellnanos.uni-osnabrueck.de/en/startpage.html

OMERO, Release 5.6.5-SNAPSHOT-1

Micron, Oxford

The OMERO server at Micron, Oxford houses two OMERO instances, the databases for both these instances, and a
single OMERO.web instance which serves them both. The second OMERO instance (Raff OMERO) originated from
another group’s private OMERO server, which is now managed by Micron, but there was no way to merge this data into
the main server. The main OMERO instance is configured to interface to a departmental LDAP server to authenticate
users and get initial authorization details.

OMERO Data1 in the diagram is a large filestore server which hosts all the image data. This is made available to the
OMERO server itself via a Samba mount. This server has 36 TiB of space of which OMERO is using 16 TiB and Raff
OMERO is using 600 GiB. This is backed up to a tape robot.

OMERO Processor1 consists of a 32 core, 128GiB RAM processing machine for doing image analysis. This is con-
nected on a completely private network to the OMERO server (to avoid issues with configuring OMERO.grid to be
secure) and runs scripts using OMERO.grid.

Stats

• 90 users

• 40 groups

• 36 TiB of data storage space, of which 16.6 TiB is currently in use

• Performance statistics to come

2.1. Getting started 85

https://micronoxford.com/

OMERO, Release 5.6.5-SNAPSHOT-1

IMCF, Biozentrum, University of Basel

The OMERO server at the IMCF / Biozentrum has around 650 users and uses more than 200 TB of data storage space,
with an average monthly increase of 10 TB (as of mid-2021). It is run on CentOS 7 with data hosted on a native-mounted
GPFS file system.

Hardware

Remote storage consists of:

• native-mounted GPFS volume

Local storage consists of:

• 2 x 240 GB SATA SSD, RAID 1, OS and OMERO software

• 2 x 400 GB SATA SSD, RAID 1, Postgres DB

Computational resources:

• Lenovo System x3650 M5

• 12 Cores (2 x Intel Xeon E5-2643v3 3.4GHz)

• 256 GB RAM

Network infrastructure

• 40 Gbit/s Infiniband connection to GPFS storage

• 10 Gbit/s Ethernet connection to the client network

GReD Research Center, Clermont-Ferrand, France

The Genetics, Reproduction and Development Research Center has 65 users and currently uses 3 TB of storage, with
an average monthly increase of 90 GB. It is run on Debian Squeeze.

Hardware

• 11 TB of storage spread over 8 local hard drives (2 TB), RAID 5

Computational resources:

• 1 Intel Xeon E5506 (4 physical cores)

• 8 GB of memory

86 Chapter 2. System Administrator Documentation

https://www.biozentrum.unibas.ch/imcf
https://www.gred-clermont.fr

OMERO, Release 5.6.5-SNAPSHOT-1

Network infrastructure

The server is hosted inside the faculty of medicine where the network works at 100 Mbit/s. There are are 4 Gbit/s ports
on the server but only one is currently in use.

Image Data Resource

The Image Data Resource is an OMERO repository maintained by OME and deployed on the EMBL-EBI Embassy
Cloud which publishes reference imaging datasets. See the IDR deployment page for more information about the
architecture and the IDR studies page for the most up-to-date metrics.

Known limitations

Time zone

We do not recommend changing the time zone on your server. The server is currently set to use local time and changing
time zones will result in a mismatch between the original data import times stored in the server and the way the clients
report them.

Too many open file descriptors

Starting with OMERO 5, the server works directly from original files. At times, this requires a significant number of
open file handles. If you are having problems with large or frequent imports, are seeing “Too many open file descriptors”
or similar, you may need to increase the maximum number of open files per process. On Linux, this may be done by
setting the nofile limit in /etc/security/limits.conf, for example:

omero soft nofile 10000
omero hard nofile 12000

This permits the omero user to have 10000 open files per process, which may be increased up to a maximum of 12000
by the user. The username and limits will need adjusting for the specifics of your installation and usage requirements.
Note that these settings take effect only for new logins, so the server and the shell or environment the server is started
from will require restarting. Run ulimit -a as the user running OMERO to verify that the changes have taken effect.

Changing group permissions

If a group contains a projection made by one member from data owned by another user, you cannot make the group
into a private group.

File format support

Large images

When you import an image over a certain size, OMERO will generate a pyramid of lower resolution images if it
doesn’t already exist in the file. The threshold size is configurable using omero.pixeldata.max_plane_height and
omero.pixeldata.max_plane_width but set to 3192x3192 pixels by default. However, this process can be very
resource-intensive, depending on the size of the image as well as the image format and any data compression used, for
example see PixelData threads and pyramid generation issues.

2.1. Getting started 87

https://idr.openmicroscopy.org
https://idr.openmicroscopy.org/about/deployment
https://idr.openmicroscopy.org/about/studies
https://forum.image.sc/t/pixeldata-threads-and-pyramid-generation-issues/49794

OMERO, Release 5.6.5-SNAPSHOT-1

The OMERO pyramid generation process should be considered as deprecated and instead it is recommended that users
avoid these issues by converting their data to pyramidal OME-TIFF files before importing into OMERO. A number of
suitable tools are available such as bioformats2raw & raw2ometiff, bfconvert, Kheops, tifffile, aicsimageio, libvips and
QuPath.

Large images with floating-point pixel data

Pyramids of image tiles are currently not generated for images with floating-point pixel data, meaning the imported
image will be scrambled if it is over the size threshold mentioned above. This primarily affects the following file
formats:

• Gatan DM3

• MRC

• TIFF

This issue can be avoided by pre-generating pyramidal OME-TIFF images as described above.

Calculation of minima and maxima pixel values

If images are imported with one of the omero import --skip options skipping calculation of the global minima and
maxima pixel values, OMERO clients will use the extrema of the pixel type range by default. Users can adjust the
minima/maxima via the rendering settings. Recalculating minima and maxima pixel values after import is currently
not supported.

Flex data in OMERO.tables

If you are using the advanced configuration setting FlexReaderServerMaps for importing Flex data split between
multiple directories for use with OMERO.tables, you should not upgrade beyond 5.0.x. Neither the 5.1 line nor OMERO
5.2 support this functionality.

LDAP

Enabling synchronization of LDAP on user login may override admin actions carried out in the clients, see Synchro-
nizing LDAP on user login for details.

2.2 Installation

This section provides guidance on how to install and set up OMERO.server and OMERO.web on any of the sup-
ported UNIX and UNIX-like platforms. Following the installation links below you will find specific walkthroughs
provided for several systems, with detailed step-by-step instructions. Reading through the OMERO.server installation
and OMERO.web installation and maintenance pages first is recommended as this explains the entire process rather
than just being a series of commands.

88 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/2018/11/29/ometiffpyramid.html
https://www.glencoesoftware.com/blog/2019/12/09/converting-whole-slide-images-to-OME-TIFF.html
https://docs.openmicroscopy.org/latest/bio-formats/users/comlinetools/conversion.html
https://github.com/BIOP/ijp-kheops
https://pypi.org/project/tifffile/
https://github.com/AllenCellModeling/aicsimageio
https://github.com/libvips/libvips
https://qupath.github.io/
https://docs.openmicroscopy.org/latest/ome-model/omero-pyramid/
https://docs.openmicroscopy.org/bio-formats/6.9.1/formats/gatan-digital-micrograph.html
https://docs.openmicroscopy.org/bio-formats/6.9.1/formats/mrc.html
https://docs.openmicroscopy.org/bio-formats/6.9.1/formats/tiff.html

OMERO, Release 5.6.5-SNAPSHOT-1

2.2.1 OMERO.server installation

This section covers the installation of OMERO.server on UNIX and UNIX-like platforms. This includes all BSD, Linux
and Mac OS X systems. Depending upon which platform you are using, you may find a more specific walk-through
listed below but we recommend you read through this page first as it explains the entire process rather than just being
a series of commands. The walk-throughs describs how to install the recommended versions, not all the supported
versions. This should be read in conjunction with Version requirements.

Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process.

Recommended:
OMERO.server installation on CentOS 7 Instructions for installing OMERO.server from scratch on CentOS 7 with

Ice 3.6 and Python 3.6.

OMERO.server installation on Debian 10 Instructions for installing OMERO.server from scratch on Debian 10 with
Ice 3.6 and Python 3.7.

OMERO.server installation on Ubuntu 18.04 Instructions for installing OMERO.server from scratch on Ubuntu
18.04 with Ice 3.6 and Python 3.6.

Upcoming:
OMERO.server installation on Ubuntu 20.04 Instructions for installing OMERO.server from scratch on Ubuntu

20.04 with Ice 3.6 and Python 3.8.

Development:
OMERO.server installation on OS X with Homebrew Instructions for installing and building OMERO.server on Mac

OS X with dependencies installed using Homebrew. It is aimed at developers since typically MacOS X is not
suited for serious server deployment.

OMERO.server installation on CentOS 7

This is an example walkthrough for installing OMERO on CentOS 7, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.6. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web instal-
lation on CentOS 7 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough, we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/OMERO

(continues on next page)

2.2. Installation 89

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR

export PGPASSWORD="$OMERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 11:

To install Java 11 and other dependencies:

yum -y install epel-release

yum -y install unzip wget bc

install Java
yum -y install java-11-openjdk

install dependencies

yum -y install python3
yum -y install openssl

To install Ice 3.6.5:

curl -sL https://zeroc.com/download/Ice/3.6/el7/zeroc-ice3.6.repo > \
/etc/yum.repos.d/zeroc-ice3.6.repo

yum -y install glacier2 \
icebox \
icegrid \
icepatch2 \
libfreeze3.6-c++ \
libice3.6-c++ \
libicestorm3.6

To install PostgreSQL 11:

yum -y install https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-
→˓redhat-repo-latest.noarch.rpm
yum -y install postgresql11-server postgresql11

(continues on next page)

90 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

PGSETUP_INITDB_OPTIONS=--encoding=UTF8 /usr/pgsql-11/bin/postgresql-11-setup initdb

sed -i.bak -re 's/^(host.*)ident/\1md5/' /var/lib/pgsql/11/data/pg_hba.conf
systemctl start postgresql-11.service

systemctl enable postgresql-11.service

Note: if you are installing PostgreSQL in a Docker container, some of the commands above will not work. For more
details check step01_centos7_pg_deps.sh

Create a local omero-server system user, and a directory for the OMERO repository:

useradd -mr omero-server
Give a password to the omero user
e.g. passwd omero-server
chmod a+X ~omero-server

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psql -P pager=off -h localhost -U "$OMERO_DB_USER" -l

Installing OMERO.server

The following step is run as root.
We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip
$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-py-centos7/releases/
→˓download/0.2.1/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server[default]

2.2. Installation 91

https://github.com/ome/omero-install/blob/develop/linux/step01_centos7_pg_deps.sh

OMERO, Release 5.6.5-SNAPSHOT-1

Install omero-py:

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -q $SERVER -O OMERO.server-ice36.zip
unzip -q OMERO.server*

Change the ownership of the OMERO.server directory and create a symlink:

change ownership of the folder
chown -R omero-server OMERO.server-*
ln -s OMERO.server-*/ OMERO.server

Configuring OMERO.server

The following steps are run as the omero-server system user. (su - omero-server)

The variable OMERODIR set in settings.env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO.server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"
omero config set omero.db.name "$OMERO_DB_NAME"
omero config set omero.db.user "$OMERO_DB_USER"
omero config set omero.db.pass "$OMERO_DB_PASS"
omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"
psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop
client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

omero certificates

See also Client Server SSL verification.

Running OMERO.server

The following steps are run as the omero-server system user. (su - omero-server)

OMERO should now be set up. To start the server run:

omero admin start

Should you wish to start OMERO automatically, a systemd service file could be created. An example
omero-server-systemd.service is available.

Copy the systemd.service file and configure the service:

92 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-certificates

OMERO, Release 5.6.5-SNAPSHOT-1

cp omero-server-systemd.service /etc/systemd/system/omero-server.service

systemctl daemon-reload

systemctl enable omero-server.service

You can then start up the service.

Securing OMERO

The following steps are run as root.
If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on Ubuntu 18.04

This is an example walkthrough for installing OMERO on Ubuntu 18.04, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.6. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web installa-
tion on Ubuntu 18.04 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/OMERO

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR

export PGPASSWORD="$OMERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

(continues on next page)

2.2. Installation 93

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 11:

To install Java 11 and other dependencies:

apt-get update

apt-get -y install unzip wget bc

to be installed if daily cron tasks are configured
apt-get -y install cron

install Java
apt-get update -q
apt-get install -y openjdk-11-jre

install dependencies

start-add-dependencies
apt-get update
apt-get -y install \

unzip \
wget \
python3 \
python3-venv

end-add-dependencies

To install Ice 3.6.5:

apt-get update && \
apt-get install -y -q \
build-essential \
db5.3-util \
libbz2-dev \
libdb++-dev \
libdb-dev \
libexpat-dev \
libmcpp-dev \
libssl-dev \
mcpp \
zlib1g-dev

cd /tmp
(continues on next page)

94 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

wget -q https://github.com/ome/zeroc-ice-ubuntu1804/releases/download/0.3.0/ice-3.6.5-0.
→˓3.0-ubuntu1804-amd64.tar.gz
tar xf ice-3.6.5-0.3.0-ubuntu1804-amd64.tar.gz
mv ice-3.6.5-0.3.0 ice-3.6.5
mv ice-3.6.5 /opt
echo /opt/ice-3.6.5/lib/x86_64-linux-gnu > /etc/ld.so.conf.d/ice-x86_64.conf
ldconfig

To make Ice available to all users and activate the virtual environment, set the following in /etc/profile:

Environment file for OMERO

export ICE_HOME=/opt/ice-3.6.5
export PATH="$ICE_HOME/bin:$PATH"
#Remove commented out export below if Ice is not set globally accessible
#export LD_LIBRARY_PATH="$ICE_HOME/lib64:$ICE_HOME/lib:$LD_LIBRARY_PATH"
export SLICEPATH="$ICE_HOME/slice"

and add the virtual environment to PATH:

VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

To install PostgreSQL 11:

apt-get install -y gnupg
echo "deb http://apt.postgresql.org/pub/repos/apt/ bionic-pgdg main" > /etc/apt/sources.
→˓list.d/pgdg.list
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | apt-key add -
apt-get update
apt-get -y install postgresql-11
service postgresql start

Create a local omero-server system user, and a directory for the OMERO repository:

useradd -mr omero-server
Give a password to the omero user
e.g. passwd omero-server
chmod a+X ~omero-server

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psql -P pager=off -h localhost -U "$OMERO_DB_USER" -l

2.2. Installation 95

OMERO, Release 5.6.5-SNAPSHOT-1

Installing OMERO.server

The following step is run as root.
We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip
$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-ubuntu1804/releases/
→˓download/0.3.0/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server[default]

Install omero-py:

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -q $SERVER -O OMERO.server-ice36.zip
unzip -q OMERO.server*

Change the ownership of the OMERO.server directory and create a symlink:

change ownership of the folder
chown -R omero-server OMERO.server-*
ln -s OMERO.server-*/ OMERO.server

See also Client Server SSL verification.

Configuring OMERO.server

The following steps are run as the omero-server system user. (su - omero-server)

The variable OMERODIR set in settings.env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO.server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"
omero config set omero.db.name "$OMERO_DB_NAME"
omero config set omero.db.user "$OMERO_DB_USER"
omero config set omero.db.pass "$OMERO_DB_PASS"
omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"
psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

96 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop
client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

omero certificates

Running OMERO.server

The following steps are run as the omero-server system user. (su - omero-server)

OMERO should now be set up. To start the server run:

omero admin start

Should you wish to start OMERO automatically, a init.d file could be created. An example omero-server-init.d is
available.

Copy the init.d file and configure the service:

cp omero-server-init.d /etc/init.d/omero-server
chmod a+x /etc/init.d/omero-server

update-rc.d -f omero-server remove
update-rc.d -f omero-server defaults 98 02

You can then start up the service by running:

service omero-server start

Securing OMERO

The following steps are run as root.
If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on Ubuntu 20.04

This is an example walkthrough for installing OMERO on Ubuntu 20.04, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.8. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

2.2. Installation 97

https://github.com/ome/omero-certificates

OMERO, Release 5.6.5-SNAPSHOT-1

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web installa-
tion on Ubuntu 20.04 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/OMERO

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR

export PGPASSWORD="$OMERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 12:

To install Java 11 and other dependencies:

apt-get update

apt-get -y install unzip wget bc

to be installed if daily cron tasks are configured
apt-get -y install cron

install Java
apt-get -y install software-properties-common
add-apt-repository ppa:openjdk-r/ppa
apt-get update -q
apt-get install -y openjdk-11-jre

install dependencies

start-add-dependencies
apt-get update

(continues on next page)

98 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

apt-get -y install \
unzip \
wget \
python3 \
python3-venv

end-add-dependencies

To install Ice 3.6.5:

apt-get update && \
apt-get install -y -q \
build-essential \
db5.3-util \
libbz2-dev \
libdb++-dev \
libdb-dev \
libexpat-dev \
libmcpp-dev \
libssl-dev \
mcpp \
zlib1g-dev

cd /tmp
wget -q https://github.com/ome/zeroc-ice-ubuntu2004/releases/download/0.2.0/ice-3.6.5-0.
→˓2.0-ubuntu2004-amd64.tar.gz
tar xf ice-3.6.5-0.2.0-ubuntu2004-amd64.tar.gz
mv ice-3.6.5-0.2.0 ice-3.6.5
mv ice-3.6.5 /opt
echo /opt/ice-3.6.5/lib64 > /etc/ld.so.conf.d/ice-x86_64.conf
ldconfig

To make Ice available to all users and activate the virtual environment, set the following in /etc/profile:

Environment file for OMERO

export ICE_HOME=/opt/ice-3.6.5
export PATH="$ICE_HOME/bin:$PATH"
#Remove commented out export below if Ice is not set globally accessible
#export LD_LIBRARY_PATH="$ICE_HOME/lib64:$ICE_HOME/lib:$LD_LIBRARY_PATH"
export SLICEPATH="$ICE_HOME/slice"

and add the virtual environment to PATH:

VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

To install PostgreSQL 12:

apt-get update
apt-get -y install postgresql
service postgresql start

Create a local omero-server system user, and a directory for the OMERO repository:

2.2. Installation 99

OMERO, Release 5.6.5-SNAPSHOT-1

useradd -mr omero-server
Give a password to the omero user
e.g. passwd omero-server
chmod a+X ~omero-server

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psql -P pager=off -h localhost -U "$OMERO_DB_USER" -l

Installing OMERO.server

The following step is run as root.
We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip
$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-ubuntu2004/releases/
→˓download/0.2.0/zeroc_ice-3.6.5-cp38-cp38-linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server[default]

Install omero-py:

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -q $SERVER -O OMERO.server-ice36.zip
unzip -q OMERO.server*

Change the ownership of the OMERO.server directory and create a symlink:

change ownership of the folder
chown -R omero-server OMERO.server-*
ln -s OMERO.server-*/ OMERO.server

100 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Configuring OMERO.server

The following steps are run as the omero-server system user. (su - omero-server)

The variable OMERODIR set in settings.env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO.server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"
omero config set omero.db.name "$OMERO_DB_NAME"
omero config set omero.db.user "$OMERO_DB_USER"
omero config set omero.db.pass "$OMERO_DB_PASS"
omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"
psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop
client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

omero certificates

See also Client Server SSL verification.

Running OMERO.server

The following steps are run as the omero-server system user. (su - omero-server)

OMERO should now be set up. To start the server run:

omero admin start

Should you wish to start OMERO automatically, a init.d file could be created. An example omero-server-init.d is
available.

Copy the init.d file and configure the service:

cp omero-server-init.d /etc/init.d/omero-server
chmod a+x /etc/init.d/omero-server

update-rc.d -f omero-server remove
update-rc.d -f omero-server defaults 98 02

You can then start up the service by running:

service omero-server start

2.2. Installation 101

https://github.com/ome/omero-certificates

OMERO, Release 5.6.5-SNAPSHOT-1

Securing OMERO

The following steps are run as root.
If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on Debian 10

This is an example walkthrough for installing OMERO on Debian 10, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.7. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web installa-
tion on Debian 10 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/OMERO

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR

export PGPASSWORD="$OMERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

102 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 11:

To install Java 11 and other dependencies:

apt-get update

apt-get -y install unzip wget bc

to be installed if daily cron tasks are configured
apt-get -y install cron

install Java
apt-get -y install default-jre

install dependencies

apt-get -y install\
python3 \
python3-venv

To install Ice 3.6.5:

apt-get update && \
apt-get install -y -q \
build-essential \
db5.3-util \
libbz2-dev \
libdb++-dev \
libdb-dev \
libexpat-dev \
libmcpp-dev \
libssl-dev \
mcpp \
zlib1g-dev

cd /tmp
wget -q https://github.com/ome/zeroc-ice-debian10/releases/download/0.1.0/ice-3.6.5-0.1.
→˓0-debian10-amd64.tar.gz
tar xf ice-3.6.5-0.1.0-debian10-amd64.tar.gz
mv ice-3.6.5-0.1.0 ice-3.6.5
mv ice-3.6.5 /opt
echo /opt/ice-3.6.5/lib/x86_64-linux-gnu > /etc/ld.so.conf.d/ice-x86_64.conf
ldconfig

To make Ice available to all users, set the environment using omero-ice36.env:

cat omero-ice36.env >> /etc/profile

To install PostgreSQL 11:

2.2. Installation 103

OMERO, Release 5.6.5-SNAPSHOT-1

apt-get install -y postgresql-11
service postgresql start

Create a local omero-server system user, and a directory for the OMERO repository:

useradd -mr omero-server
Give a password to the omero user
e.g. passwd omero-server
chmod a+X ~omero-server

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psql -P pager=off -h localhost -U "$OMERO_DB_USER" -l

Installing OMERO.server

The following step is run as root.
We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip
$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-debian10/releases/download/
→˓0.1.0/zeroc_ice-3.6.5-cp37-cp37m-linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server[default]

Install omero-py:

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -q $SERVER -O OMERO.server-ice36.zip
unzip -q OMERO.server*

Change the ownership of the OMERO.server directory and create a symlink:

104 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

change ownership of the folder
chown -R omero-server OMERO.server-*
ln -s OMERO.server-*/ OMERO.server

Configuring OMERO.server

The following steps are run as the omero-server system user.
The variable OMERODIR set in settings.env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO.server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"
omero config set omero.db.name "$OMERO_DB_NAME"
omero config set omero.db.user "$OMERO_DB_USER"
omero config set omero.db.pass "$OMERO_DB_PASS"
omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"
psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop
client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

omero certificates

See also Client Server SSL verification.

Running OMERO.server

The following steps are run as the omero-server system user.
OMERO should now be set up. To start the server run:

omero admin start

Should you wish to start OMERO automatically, a init.d file could be created. An example omero-server-init.d is
available.

Copy the init.d file and configure the service:

cp omero-server-init.d /etc/init.d/omero-server
chmod a+x /etc/init.d/omero-server

update-rc.d -f omero-server remove
update-rc.d -f omero-server defaults 98 02

You can then start up the service by running:

2.2. Installation 105

https://github.com/ome/omero-certificates

OMERO, Release 5.6.5-SNAPSHOT-1

service omero-server start

Securing OMERO

The following steps are run as root.
If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on OS X with Homebrew

Overview

This walkthrough demonstrates how to install OMERO on a clean Mac OS X system (10.9 or later). Dependencies
are installed with Homebrew. The OMERO.server can be downloaded as a pre-built zip, or built from the source
code. It is aimed at developers since typically MacOS X is not suited for serious server deployment.

Prerequisites

Xcode

Homebrew requires the latest version of Xcode. Install Xcode and the Command Line Tools for Xcode from the App
Store. If you have already installed it, make sure all the latest updates are installed.

Homebrew

Homebrew will install all packages under /usr/local. See also: Installation instructions on the Homebrew wiki.

Install Homebrew using the following command in terminal:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
→˓install)"

106 Chapter 2. System Administrator Documentation

https://github.com/Homebrew/brew/blob/master/docs/Installation.md

OMERO, Release 5.6.5-SNAPSHOT-1

Java

Java may be installed using OpenJDK from AdoptOpenJDK. See Version requirements for supported versions.

After installing JDK, check your installation works by running:

$ java --version
openjdk 11.0.5 2019-10-15
OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.5+10)
OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.5+10, mixed mode)

$ javac -version
javac 11.0.5

OS X Basics

In order to develop on OMERO, we recommend you ensure you have your Mac setup for development. The first step
to achieving this is to create a .bash_profile file in the root directory of your user folder.

To create a .bash_profile from terminal, if one does not already exist:

$ touch ~/.bash_profile

To open your .bash_profile in a text editor, such as the built-in TextEdit app, use:

$ open -a TextEdit.app ~/.bash_profile

Note: If you want changes to your .bash_profile to take effect without restarting OS X, run:

$ source ~/.bash_profile

Requirements

1. Open a command-line terminal and install git if not already present:

$ brew install git

2. Install PostgreSQL database server:

$ brew install postgresql

To ensure PostgreSQL uses UTF-8 encoding, open your bash profile and add the following environment variables:

export LANG=en_US.UTF-8
export LANGUAGE=en_US:en

3. Install NGINX:

$ brew install nginx

2.2. Installation 107

https://adoptopenjdk.net/

OMERO, Release 5.6.5-SNAPSHOT-1

4. OMERO depends on Ice 3.6 and unfortunately does not run with the Ice version 3.7 or higher. To obtain Ice 3.6,
we need to add a tap to Homebrew:

$ brew tap zeroc-ice/tap
$ brew install zeroc-ice/tap/ice36

Note: If you already have a version of Ice that is not 3.6 installed, you can instruct Homebrew to unlink it
using `$ brew unlink ice`. You can then instruct Homebrew to link to Ice 3.6 using `$ brew link
ice@36`

Python

For developing with OMERO, or Python in general, we recommend the use of Virtualenv. Virtualenv allows develop-
ment of Python applications without having to worry about clashing third-party packages for different Python projects.

We will create 2 virtual environments below, ome for omero-py and another for omero-web (which also includes
omero-py). This allows more flexibility, but you can use just the omero-web virtual environment for everything if you
wish.

You can create virtual environments using either conda (preferred) OR venv.

Using conda (preferred)

1. Install Conda. See miniconda for more details.

2. Create virtual environments named omeropy:

$ conda create -n omeropy -c conda-forge python=3.8 zeroc-ice omero-py

3. Create virtual environments named omeroweb, activate it and install dependencies:

$ conda create -n omeroweb -c conda-forge python=3.8 zeroc-ice omero-py
$ conda activate omeroweb
$ pip install "omero-web>=\ |version_web|"

4. Activate the virtual environments:

$ conda activate omeropy

5. You can now use the omero command. You will also need to ensure you are in the appropriate environment
when you install additional modules:

$ omero -h

Additional modules. For example:
$ pip install omero-metadata

Now go to the OMERO installation section below.

108 Chapter 2. System Administrator Documentation

https://docs.conda.io/en/latest/miniconda.html

OMERO, Release 5.6.5-SNAPSHOT-1

OR using venv

1. install Python provided by Homebrew:

$ brew install python

Follow the instructions from the brew Python install and set your system to use the Homebrew version of Python
rather than the Python shipped with OS X. Typically:

$ brew link python

2. Check that Python is working and is version 3.7.x:

$ which python3
/usr/local/bin/python3

$ python3 --version
Python 3.7.4

3. Create a virtual environments for omero-py and/or omero-web using Python 3:

$ python3 -mvenv ~/Virtual/omeropy
$ python3 -mvenv ~/Virtual/omeroweb

4. Activate the Virtualenv environment(s) and install modules:

$ source ~/Virtual/omeropy/bin/activate
$ pip install "omero-py>=\ |version_py|"

In a different terminal:
$ source ~/Virtual/omeroweb/bin/activate
$ pip install "omero-web>=\ |version_web|"

5. You can now use the omero command in either virtual environment. You will also need to ensure you are in the
appropriate environment when you install additional modules:

$ omero -h

Additional modules. For example:
$ pip install omero-metadata

OMERO installation

Pre-built server

1. Using the command-line terminal, prepare a place for your OMERO server to be downloaded to.

2. Find the current OMERO.server zip from the downloads page.

3. Download and extract the OMERO.server-x.x.x-ice36-bxx.zip.

2.2. Installation 109

https://downloads.openmicroscopy.org/latest/omero/artifacts/

OMERO, Release 5.6.5-SNAPSHOT-1

Locally built server

1. Clone the source code from the project’s GitHub account to build locally:

$ git clone --recursive https://github.com/ome/openmicroscopy

2. Navigate terminal into the openmicroscopy that was just created by performing the previous step:

$ cd openmicroscopy

3. Execute the build script (this will take a few minutes, depending on how fast your Mac is)

$./build.py

4. Once the build completes, the OMERO server build output will be located in openmicroscopy/dist.

See also:
Installing OMERO from source Developer documentation page on how to check out to source code

Build System Developer documentation page on how to build the OMERO.server

OMERO configuration

1. Open your .bash_profile in a text editor, such as the built-in TextEdit app:

$ open -a TextEdit.app ~/.bash_profile

2. Add an environment variable OMERODIR to the .bash_profile which points to the location of the OMERO
executable:

Pre-built server...
export OMERODIR=/path/to/OMERO.server-x.x.x-ice36-bxx
...OR locally built server
export OMERODIR=/path/to/openmicroscopy/dist

3. Using the command-line terminal, reload your .bash_profile using:

$ source ~/.bash_profile

Database

1. From a fresh command-line terminal, start the database server:

$ pg_ctl -D /usr/local/var/postgres -l /usr/local/var/postgres/server.log -w start

2. To use OMERO, we need to first set up PostgreSQL. Open a command-line terminal and run the following
commands to create a user called db_user and a database called omero_database:

$ createuser -w -D -R -S db_user
$ createdb -E UTF8 -O db_user omero_database

3. Activate the omeropy env:

110 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

$ conda activate omeropy
OR
$ source ~/Virtual/omeropy/bin/activate

4. Now set the OMERO configuration:

$ omero config set omero.db.name omero_database
$ omero config set omero.db.user db_user
$ omero config set omero.db.pass db_password

5. Create and run script to initialize the OMERO database:

$ omero db script --password omero -f - | psql -h localhost -U db_user omero_
→˓database

Note: (Optional) To make life easier, you can add an `alias` to your .bash_profile to start and stop the Postgres
service:

alias startPg='pg_ctl -D /usr/local/var/postgres -l /usr/local/var/postgres/server.log -
→˓w start'
alias stopPg='pg_ctl -D /usr/local/var/postgres -l /usr/local/var/postgres/server.log -w␣
→˓stop'

Reload :file:`.bash_profile` in OS X::

$ source ~/.bash_profile

Binary Repository

1. Create directory for OMERO to store its data:

$ mkdir /OMERO
$ omero config set omero.data.dir /OMERO

OMERO.web

1. Activate the omeroweb env:

$ conda activate omeroweb
OR
$ source ~/Virtual/omeroweb/bin/activate

2. Basic setup for OMERO using NGINX:

$ mv /usr/local/etc/nginx/nginx.conf /usr/local/etc/nginx/nginx.conf.orig
$ omero web config nginx-development > /usr/local/etc/nginx/nginx.conf
$ nginx -t
$ nginx

2.2. Installation 111

OMERO, Release 5.6.5-SNAPSHOT-1

Note: The internal Django webserver can be used for evaluation and development. In this case please follow the
instructions under OMERO.web installation for developers.

Startup and shutdown

Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. The variable OMERODIR must point to the location where OMERO.server is installed. e.g. OMERODIR=/
path_to_omero_server/OMERO.server.

If necessary start PostgreSQL database server:

$ pg_ctl -D /usr/local/var/postgres -l /usr/local/var/postgres/server.log -w start

Activate the omeropy env and start OMERO:

$ conda activate omeropy
OR
$ source ~/Virtual/omeropy/bin/activate

$ omero admin start

Activate the omeroweb env and start OMERO.web:

$ conda activate omeroweb
OR
$ source ~/Virtual/omeroweb/bin/activate
$ omero web start

Now connect to your OMERO.server using OMERO.insight or OMERO.web with the following credentials:

U: root
P: omero

Activate the omeroweb env as above, and stop OMERO.web:

$ omero web stop

Activate the omeropy env as above and stop OMERO:

$ omero admin stop

Web configuration and maintenance

For more configuration options and maintenance advice for OMERO.web see OMERO.web installation and mainte-
nance.

112 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Common issues

General considerations

If you run into problems with Homebrew, you can always run:

$ brew update
$ brew doctor

Also, please check the Homebrew Bug Fixing Checklist.

Below is a non-exhaustive list of errors/warnings specific to the OMERO installation. Some if not all of them could
possibly be avoided by removing any previous OMERO installation artifacts from your system.

Database

Check to make sure the database has been created and ‘UTF8’ encoding is used

$ psql -h localhost -U db_user -l

This command should give similar output to the following:

List of databases

Name | Owner | Encoding | Collation | Ctype | Access privileges
----------------+---------+----------+-------------+-------------+-------------------
omero_database | db_user | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
postgres | ome | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
template0 | ome | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/ome +

| | | | | ome=CTc/ome
template1 | ome | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/ome +

| | | | | ome=CTc/ome
(4 rows)

PostgreSQL

If you encounter this error during installation of PostgreSQL:

Error: You must ``brew link ossp-uuid' before postgresql can be installed

try:

$ brew cleanup
$ brew link ossp-uuid

For recent versions of OS X (10.10 and above) some directories may be missing, preventing PostgreSQL from starting
up. In that case, it should be sufficient to reinitialize a PostgreSQL database cluster as:

$ rm -rf /usr/local/var/postgres
$ initdb -E UTF8 /usr/local/var/postgres

2.2. Installation 113

https://github.com/mxcl/homebrew/wiki/Bug-Fixing-Checklist

OMERO, Release 5.6.5-SNAPSHOT-1

See also:
https://stackoverflow.com/questions/25970132/pg-tblspc-missing-after-installation-of-latest-version-of-os-x-yosemite-or-el

szip

If you encounter an MD5 mismatch error similar to this:

==> Installing hdf5 dependency: szip
==> Downloading http://www.hdfgroup.org/ftp/lib-external/szip/2.1/src/szip-2.1.tar.gz
Already downloaded: /Library/Caches/Homebrew/szip-2.1.tar.gz
Error: MD5 mismatch
Expected: 902f831bcefb69c6b635374424acbead
Got: 0d6a55bb7787f9ff8b9d608f23ef5be0
Archive: /Library/Caches/Homebrew/szip-2.1.tar.gz
(To retry an incomplete download, remove the file above.)

then manually remove the archived version located under /Library/Caches/Homebrew, since the maintainer may
have updated the file.

numexpr (and other Python packages)

If you encounter an issue related to numexpr complaining about NumPy having too low a version number, verify that
you have not previously installed any Python packages using pip. In the case where pip has been installed before
Homebrew, uninstall it:

$ sudo pip uninstall pip

and then try running python_deps.sh again. That should install pip via Homebrew and put the Python packages in
correct locations.

Prerequisites

Installation will require:

• a clean, minimal operating system installation

• a “root” level account for which you know the password

Note: If you are unsure of what it means to have a “root” level account, or if you are generally having issues with the
various users/passwords described in this install guide, please see Which user account and password do I use where?.

The installation and configuration of the prerequisite applications are mostly outside the scope of this document. For
Linux distributions, use of the default package manager is recommended. For MacOS X, Homebrew is recommended.
This guide provides the package names to install for a number of contemporary systems. However, the names and
versions provided vary between releases. Please do check for similar packages if the one documented here is not
available for your system as it may be provided under an alternative name. “Debian” refers to Debian and derivative
distributions such as Ubuntu. “RedHat” refers to RedHat and related distributions such as CentOS, Fedora and Scientific
Linux.

• For Ubuntu you need to enable the universe repository. This should be enabled by default. If not enabled, it
may be enabled by editing /etc/apt/sources.list directly, in which case the entries may already exist but

114 Chapter 2. System Administrator Documentation

https://stackoverflow.com/questions/25970132/pg-tblspc-missing-after-installation-of-latest-version-of-os-x-yosemite-or-el

OMERO, Release 5.6.5-SNAPSHOT-1

are commented out, or by using Synaptic (10.04 and 10.10) or Ubuntu Software Center (11.04 onwards). Update
your package lists to ensure that you get the latest packages:

$ sudo apt-get update

Install packages by running:

$ sudo apt-get install package

where package is the package name to install.

The following subsections cover the details for each package, in the order recommended for installation.

Java SE Runtime Environment (JRE)

If possible, install one of the following packages:

System Package
Debian openjdk-11-jre
Homebrew N/A (install Oracle Java)
RedHat java-11-openjdk

OMERO works with the OpenJDK JRE provided by most systems, or with Oracle Java. Version 8 or later is required.
Version 11 is recommended.

Your system may already provide a suitable JRE, in which case no extra steps are necessary. Linux distributions usually
provide OpenJDK, and older MacOS X versions have Java installed by default. Oracle Java is no longer provided by
BSD or Linux distributions for licensing reasons. If your system does not have Java available, for example on newer
MacOS X versions, or the provided version is too old, Oracle Java may be downloaded from the Oracle website.

Warning: Security
Installing Oracle Java outside the system’s package manager will leave your system without regular distribution-
supplied security updates, and so is not recommended.

To check which version of Java is currently available:

$ which java
/usr/bin/java
$ java -version
openjdk version "11.0.5" 2019-10-15
OpenJDK Runtime Environment (build 11.0.5+10-post-Ubuntu-0ubuntu1.118.04)
OpenJDK 64-Bit Server VM (build 11.0.5+10-post-Ubuntu-0ubuntu1.118.04, mixed mode,␣
→˓sharing)

2.2. Installation 115

https://www.oracle.com/technetwork/java/javase/downloads/index.html

OMERO, Release 5.6.5-SNAPSHOT-1

Python 3

Check you have Python (and check its version) by running:

$ python3 --version
Python 3.6.4

If possible, install the following packages:

System Package
Debian python3
Homebrew python3
RedHat python3

Ice

The Ice version may vary, depending upon the distribution version you are using. The Ice versions in currently supported
versions of Debian and Ubuntu are shown in the Ice of the Version requirements page.

Using version 3.6 of Ice is required. If your package manager provides Ice packages, using these is recommended
where possible. Distribution-provided packages often have additional bugfixes which are not present in the upstream
releases.

If needed, source and binary packages are available from ZeroC. The latest release is available from the ZeroC website.

Note: ZeroC Ice can always be built from source code for specific platforms if a binary package is not available.

Note: With Ice 3.6, the Python bindings are provided separately. If your package manager does not provide Ice python
packages, run pip install zeroc-ice to install the Ice Python bindings. See Using the Python Distribution for
further details.

OMERO.scripts

If you wish to run the “Movie Maker” script, please install mencoder.

System Package
Debian mencoder
Homebrew mplayer
RedHat mencoder

116 Chapter 2. System Administrator Documentation

https://wiki.ubuntu.com/Releases
https://zeroc.com
https://zeroc.com/download.html
https://zeroc.com
https://doc.zeroc.com/display/Ice36/Using+the+Python+Distribution

OMERO, Release 5.6.5-SNAPSHOT-1

Installation

Once the above prerequisites have been downloaded, installed and configured appropriately, the OMERO server itself
may be installed. You may wish to create a user account solely for the purpose of running the server, and switch to this
user for the next steps.

Server directory

Firstly, a directory needs to be created to contain the server. In this case ~/omero is used as an example:

$ mkdir -p ~/omero

Next, change into this directory:

$ cd ~/omero

OMERO.server

The release OMERO.server.zip is available from the OMERO downloads page. Download the version matching the
version of Ice installed on your system before continuing.

Installing a development version from source is also possible. See the Installing OMERO from source section for further
details. This is not recommended unless you have a specific reason not to use a release version.

Once you have obtained the OMERO.server zip archive matching the version of Ice installed, unpack it:

$ unzip OMERO.server-5.6.4-ice36-byy.zip

If your system does not provide an unzip command by default, install one of the following:

System Package
Debian unzip
Homebrew unzip
RedHat unzip

Optionally, give your OMERO software install a short name to save some typing later, to reflect what you set
OMERO_PREFIX to in the Environment variables section, below:

$ ln -s OMERO.server-5.6.4-ice36-byy OMERO.server

This will also ease installation of newer versions of the server at a later date, by simply updating the link.

Note: Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1
have been dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the
Java Desktop client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates
after installing the omero-certificates package.

2.2. Installation 117

https://downloads.openmicroscopy.org/latest/omero5.5/
https://github.com/ome/omero-certificates

OMERO, Release 5.6.5-SNAPSHOT-1

Environment variables

If using distribution-provided packages such as Debian or RPM packages, or via the homebrew or macports package
manager, it should not be necessary to set any environment variables. However, if using third-party packages for any
required components, several variables may require setting in order for them to function correctly.

Please note that the precise details of these environment variables can change as new versions of software are released.

There are several methods for setting environment variables; which is most appropriate will depend upon how the
OMERO server is started. Options include:

/etc/security/pam_env.conf Global environment set at login by PAM

/etc/profile or /etc/profile.d/omero Global Bourne shell defaults (also used by derived shells such as bash
and zsh)

~/.profile User’s Bourne shell defaults (also used by derived shells)

/etc/bash.bashrc Global bash defaults

~/.bashrc, ~/.bash_profile or ~/.bash_login User’s bash configuration.

If OMERO is started as a service using an init script, a global setting should be preferred. If being started by hand
using a particular user, a user-specific configuration file may be more appropriate.

The following environment variables may be configured:

LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (MacOS X) The Ice and PostgreSQL libraries must be on the
library search path. If using the packages provided by your distribution, this will already be the case. If using
third-party binary distributions the lib (or lib64 if present and using a 64-bit system) directory for each will
require adding to the library search path.

OMERO_PREFIX This is not strictly required, but may be set for convenience to point to the OMERO server installation,
and is used in this documentation as a shorthand for the installation path.

OMERO_TMPDIR Directory used for temporary files. If the home directory of the user running the OMERO server is
located on a slow filesystem, such as NFS, this may be used to store the temporary files on fast local storage.

PATH The search path must include the programs java, python, icegridnode and PostgreSQL commands such as
psql. If using the packages provided by your distribution, this will already be the case. If using third-party
binary distributions such as the ZeroC Ice package, Oracle Java, or PostgreSQL, the bin directory for each must
be added to the path. The OMERO bin directory may also be added to the search path ($OMERO_PREFIX/bin
if OMERO_PREFIX has been set).

PYTHONPATH The Ice python directory must be made available to python. If using the Ice packages provided by your
distribution, this will already be the case. If using the ZeroC ice package, add the python directory to the python
path. For Ice 3.6, this should never be required.

OMERODIR The path to the OMERO.server. This is a requirement for all CLI plugins using the Java server components
(admin, import, config, db. . .).

After making any needed changes, either source the corresponding file or log back in for them to take effect. Run env
to check them.

118 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Creating a database

On most systems, a “postgres” user will be created which has admin privileges, while the UNIX root user itself does
not have admin privileges. Therefore it is necessary to either become the postgres user, or use sudo as shown below.

For the purposes of this guide, the following dummy data is used:

Username: db_user
Password: db_password
Database: omero_database

Warning: Security
These dummy values are examples only and should not be used. For a live or public server install these values should
be altered to reflect your security requirements—i.e. use your own choice of username and password instead. These
should not be the same username and/or password as your Linux/Mac root user!

You should also consider restricting access to your server machine, but that is outside the scope of this document.

• Create a non-superuser database user and record the name and password used. You will need to configure
OMERO to use this username and password later on.:

$ sudo -u postgres createuser -P -D -R -S db_user
Enter password for new role: # db_password
Enter it again: # db_password

• Create a database for OMERO to reside in:

$ sudo -u postgres createdb -E UTF8 -O db_user omero_database

• Check to make sure the database has been created, you have PostgreSQL client authentication correctly set up
and the database is owned by the db_user user.

$ psql -h localhost -U db_user -l
Password for user db_user:

List of databases
Name | Owner | Encoding

----------------+----------+-----------
omero_database | db_user | UTF8
postgres | postgres | UTF8
template0 | postgres | UTF8
template1 | postgres | UTF8
(4 rows)

If you have problems, especially with the last step, take a look at OMERO.server and PostgreSQL since the authenti-
cation mechanism is probably not properly configured.

2.2. Installation 119

OMERO, Release 5.6.5-SNAPSHOT-1

Location for the your OMERO binary repository

• Create a directory for the OMERO binary data repository. /OMERO is the default location and should be used
unless you explicitly have a reason not to and know what you are doing.

• This is not where you want the OMERO application to be installed, it is a separate directory which the
OMERO.server will use to store binary data.

• You can read more about the OMERO binary repository.

$ sudo mkdir /OMERO

• Change the ownership of the directory. /OMEROmust either be owned by the user starting the server (it is currently
owned by the system root) or that user must have permission to write to the directory. You can find out your
username and edit the correct permissions as follows:

$ whoami
omero
$ sudo chown -R omero /OMERO

Configuration

• You can view a parsed version of the configuration properties under Configuration properties glossary or parse
it yourself with omero config parse.

• Change any settings that are necessary using omero config, including the name and/or password for the
‘db_user’ database user you chose above or the database name if it is not “omero_database”. (Quotes are only
necessary if the value could be misinterpreted by the shell. See Forum post)

$ omero config set omero.db.name 'omero_database'
$ omero config set omero.db.user 'db_user'
$ omero config set omero.db.pass 'db_password'

You can also check the values that have been set using:

$ omero config get

• If you have chosen a non-standard OMERO binary repository location above, be sure to configure the omero.
data.dir property. For example, to use /srv/omero:

$ omero config set omero.data.dir /srv/omero

• Create the OMERO database initialization script. You will need to provide a password for the newly created
OMERO root user, either by using the --password argument or by entering it when prompted. Note that this
password is for the root user of the OMERO.server, and is not related to the root system user or a PostgreSQL
user role.

$ omero db script --password omero_root_password

Using OMERO5.4 for version
Using 0 for patch
Using password from commandline
Saving to /home/omero/OMERO5.4__0.sql

120 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=360#p922

OMERO, Release 5.6.5-SNAPSHOT-1

Warning: Security
For illustrative purposes, the default password for the OMERO root user is shown as
omero_root_password. However, you should not use this default values for your installation, but
use your own choice of password instead. This should not be the same password as your Linux/Mac
root user or the database user!

• Initialize your database with the script.

$ psql -h localhost -U db_user omero_database < OMERO5.4__0.sql

At this point you should see some output from PostgreSQL as it installs the schema for new OMERO database.

• Before starting the OMERO.server, run the OMERO diagnostics script to check that all of the settings are correct,
e.g.

$ omero admin diagnostics

• You can now start the server using:

$ omero admin start
Creating var/master
Initializing var/log
Creating var/registry
No descriptor given. Using etc/grid/default.xml

• If multiple users have access to the system running OMERO you should restrict access to the OMERO.server/
etc and OMERO.server/var directories, for example by changing the permissions on them:

$ chmod 700 ~/omero/OMERO.server/etc ~/omero/OMERO.server/var

You should also consider restricting access to the OMERO data repository. The required permissions will depend
on whether you are using Advanced import scenarios.

• Test that you can log in as “root”, either with the OMERO.insight client or on the command-line:

$ omero login
Server: [localhost]
Username: [root]
Password: # omero_root_password

You will be prompted for an OMERO username and password. Use the username and password set when running
omero db script.

• If your users are going to be importing many files in one go, for example multiple plates, you should make sure
you set the maximum number of open files to a sensible level (i.e. at least 8K for production systems, 16K for
bigger machines). See Too many open files for more information.

2.2. Installation 121

OMERO, Release 5.6.5-SNAPSHOT-1

JVM memory settings

The OMERO server starts a number of Java services. Memory settings for these are calculated on a system-by-system
basis. An attempt has been made to have usable settings out of the box, but if you can afford to provide OMERO with
more memory, it will certainly improve your overall performance. See Memory configuration on how to tune the JVM.

Enabling movie creation from OMERO

OMERO has a facility to create AVI/MPEG Movies from images. The page OMERO.movie details how to enable it.

Post-installation items

Backup

One of your first steps after putting your OMERO server into production should be deciding on when and how you are
going to backup your database and binary data. Please do not omit this step.

Security

It is also now recommended that you read the Server security and firewalls page to get a good idea as to what you need
to do to get OMERO clients speaking to your newly installed OMERO.server in accordance with your institution or
company’s security policy.

Advanced configuration

Once you have the base server running, you may want to try enabling some of the advanced features such as
OMERO.dropbox or LDAP authentication. If you have Flex data, you may want to watch the HCS configuration
screencast. See Configuration properties glossary on how to get the most out of your server.

Troubleshooting

My OMERO install doesn’t work! What do I do now? Examine the Troubleshooting OMERO page and if all else fails
post a message to the forum mentioned on the Community support page. Especially the Server fails to start and Remote
clients cannot connect to OMERO installation sections are a good starting point.

OMERO diagnostics

If you want help with your server installation, please include the output of the diagnostics command:

$ omero admin diagnostics

==
OMERO Diagnostics 5.6.4
==

Commands: java -version 11.0.5 (/usr/bin/java)
Commands: python -V 3.6.9 (/opt/omero/server/venv3/bin/python)
Commands: icegridnode --version 3.6.5 (/usr/bin/icegridnode)
Commands: icegridadmin --version 3.6.5 (/usr/bin/icegridadmin)

122 Chapter 2. System Administrator Documentation

http://cvs.openmicroscopy.org.uk/snapshots/movies/omero-4-1/mov/FlexPreview4.1-configuration.mov
http://cvs.openmicroscopy.org.uk/snapshots/movies/omero-4-1/mov/FlexPreview4.1-configuration.mov
https://www.openmicroscopy.org/forums

OMERO, Release 5.6.5-SNAPSHOT-1

Commands: psql --version 11.6 (/usr/bin/psql)
Commands: openssl version 1.1.111 (/usr/bin/openssl)

Server: icegridnode running
Server: Blitz-0 active (pid = 30324, enabled)
Server: DropBox active (pid = 30343, enabled)
Server: FileServer active (pid = 30345, enabled)
Server: Indexer-0 active (pid = 30348, enabled)
Server: MonitorServer active (pid = 30351, enabled)
Server: OMERO.Glacier2 active (pid = 30353, enabled)
Server: OMERO.IceStorm active (pid = 30376, enabled)
Server: PixelData-0 active (pid = 30393, enabled)
Server: Processor-0 active (pid = 30394, enabled)
Server: Tables-0 inactive (disabled)
Server: TestDropBox inactive (enabled)

OMERO: SSL port 4064
OMERO: TCP port 4063

Log dir: /opt/omero/server/OMERO.server/var/log exists

Log files: Blitz-0.log 22.8 KB errors=0 warnings=9
Log files: DropBox.log 1.3 KB errors=0 warnings=1
Log files: FileServer.log 114 B
Log files: Indexer-0.log 1.3 KB errors=0 warnings=5
Log files: MonitorServer.log 882 B
Log files: PixelData-0.log 1.8 KB errors=0 warnings=4
Log files: Processor-0.log 592 B errors=0 warnings=1
Log files: Tables-0.log 841 B
Log files: TestDropBox.log n/a
Log files: master.err 34.4 KB errors=2 warnings=0
Log files: master.out empty
Log files: Total size 0.06 MB

Environment:OMERODIR=/opt/omero/server/OMERO.server
Environment:OMERO_HOME=(unset)
Environment:OMERO_NODE=(unset)
Environment:OMERO_MASTER=(unset)
Environment:OMERO_TEMPDIR=(unset)
Environment:PATH=/opt/omero/server/venv3/bin:/usr/local/bin:/usr/bin:/bin
Environment:ICE_HOME=(unset)
Environment:LD_LIBRARY_PATH=(unset)
Environment:DYLD_LIBRARY_PATH=(unset)

OMERO SSL port:4064
OMERO TCP port:4063
OMERO data dir: '/OMERO' Exists? True Is writable? True
OMERO temp dir: '/home/omero-server/tmp' Exists? True Is writable? True ␣
→˓(Size: 0)

JVM settings: Blitz-${index} -Xmx621m -XX:MaxPermSize=512m␣
→˓-XX:+IgnoreUnrecognizedVMOptions
JVM settings: Indexer-${index} -Xmx414m -XX:MaxPermSize=512m␣
→˓-XX:+IgnoreUnrecognizedVMOptions

2.2. Installation 123

OMERO, Release 5.6.5-SNAPSHOT-1

JVM settings: PixelData-${index} -Xmx621m -XX:MaxPermSize=512m␣
→˓-XX:+IgnoreUnrecognizedVMOptions
JVM settings: Repository-${index} -Xmx414m -XX:MaxPermSize=512m␣
→˓-XX:+IgnoreUnrecognizedVMOptions

Update notification

Your OMERO.server installation will check for updates each time it is started from the Open Microscopy Environment
update server. If you wish to disable this functionality you should do so now as outlined on the OMERO upgrade checks
page.

2.2.2 OMERO.web installation and maintenance

OMERO.web is a Python 3 client of the OMERO platform that provides a web-based UI and JSON API. This sec-
tion provides links to detailed step-by-step walkthroughs describing how to install, customize, maintain and run
OMERO.web for several systems. OMERO.web is installed separately from the OMERO.server.

OMERO.web can be deployed with:

• WSGI using a WSGI capable web server such as NGINX and Gunicorn

• the built-in Django lightweight development server. This type of deployment should only be used for testing
purpose only; see the OMERO.web installation for developers page.

If you need help configuring your firewall rules, see Server security and firewalls for more details.

Depending upon which platform you are using, you may find a more specific walkthrough listed below. The guides
use the example of deploying OMERO.web with NGINX and Gunicorn. OMERO can automatically generate a con-
figuration file for your webserver. The location of the file will depend on your system, please refer to your webserver’s
manual. See in the section Customizing your OMERO.web installation in the various walkthroughs for more options.

Configuration

You will find in the various guides how to create the NGINX OMERO configuration file and the configuration steps
for the NGINX and Gunicorn. Advanced Gunicorn setups are also described to enable the download of binary data
and to handle multiple clients on a single worker thread switching context as necessary while streaming binary data
from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed
limits on your server to avoid blocking resources.

Walkthroughs

Recommended:
OMERO.web installation on CentOS 7 and IcePy 3.6 Instructions for installing OMERO.web from scratch on Cen-

tOS 7 with Ice 3.6.

OMERO.web installation on Debian 10 and IcePy 3.6 Instructions for installing OMERO.web from scratch on De-
bian 10 with Ice 3.6.

OMERO.web installation on Ubuntu 18.04 and IcePy 3.6 Instructions for installing OMERO.web from scratch on
Ubuntu 18.04 with Ice 3.6.

Upcoming:
OMERO.web installation on Ubuntu 20.04 and IcePy 3.6 Instructions for installing OMERO.web from scratch on

Ubuntu 20.04 with Ice 3.6.

124 Chapter 2. System Administrator Documentation

https://wsgi.readthedocs.org
https://nginx.org/
https://docs.gunicorn.org/
https://nginx.org/
https://docs.gunicorn.org/

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.web installation on CentOS 7 and IcePy 3.6

Please first read OMERO.server installation on CentOS 7.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.
If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.
Install dependencies:

yum -y install epel-release

yum -y install unzip

yum -y install python3

yum -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

yum -y install redis

systemctl enable redis.service

systemctl start redis.service

Creating a virtual environment

The following steps are run as root.
Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-py-centos7/
→˓releases/download/0.2.1/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

2.2. Installation 125

OMERO, Release 5.6.5-SNAPSHOT-1

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.
For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
→˓web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.
→˓cache

126 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/

OMERO, Release 5.6.5-SNAPSHOT-1

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.
Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example
to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.
Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of OMERO.web. See the django-cors-headers page for more details on the settings.

Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.
Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

2.2. Installation 127

https://docs.gunicorn.org/en/stable/settings.html
https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers

OMERO, Release 5.6.5-SNAPSHOT-1

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.
→˓CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.
Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
if [-f /etc/nginx/conf.d/default.conf]; then

mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.disabled
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

systemctl enable nginx

systemctl start nginx

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
→˓include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

Running OMERO.web

The following steps are run as root.
Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0'

The following steps are run as the omero-web system user.
Optional: Configure the cache:

128 Chapter 2. System Administrator Documentation

https://nginx.org/en/docs/http/configuring_https_servers.html
http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO, Release 5.6.5-SNAPSHOT-1

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
→˓","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.
Should you wish to run OMERO.web automatically, a systemd.service file could be created. See below an example file
omero-web-systemd.service:

[Unit]
Description=OMERO.web
Not mandatory, NGINX may be running on a different server
Requires=nginx.service
After=network.service

[Service]
User=omero-web
Type=forking
PIDFile=/opt/omero/web/omero-web/var/django.pid
Restart=no
RestartSec=10
Environment="PATH=/opt/omero/web/venv3/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/
→˓usr/sbin"
Environment="OMERODIR=/opt/omero/web/omero-web"
ExecStart=/opt/omero/web/venv3/bin/omero web start
ExecStop=/opt/omero/web/venv3/bin/omero web stop

[Install]
WantedBy=multi-user.target

Copy the systemd.service file, then enable and start the service:

cp omero-web-systemd.service /etc/systemd/system/omero-web.service

systemctl daemon-reload

systemctl enable omero-web.service

systemctl stop omero-web.service
(continues on next page)

2.2. Installation 129

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

systemctl start omero-web.service

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

Troubleshooting

The following steps are run as the omero-web system user.
In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

130 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO, Release 5.6.5-SNAPSHOT-1

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.
Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.
To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.
Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.
To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

SELinux

The following steps are run as root.
If you are running a system with SELinux enabled and are unable to access OMERO.web you may need to adjust the
security policy:

if [$(getenforce) != Disabled]; then

yum -y install policycoreutils-python
(continues on next page)

2.2. Installation 131

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections
https://wiki.centos.org/HowTos/SELinux

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

setsebool -P httpd_read_user_content 1
setsebool -P httpd_enable_homedirs 1
semanage port -a -t http_port_t -p tcp 4080

fi

OMERO.web installation on Ubuntu 18.04 and IcePy 3.6

Please first read OMERO.server installation on Ubuntu 18.04.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.
If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.
Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

132 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Creating a virtual environment

The following steps are run as root.
Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-ubuntu1804/
→˓releases/download/0.2.0/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.
For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
→˓web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

2.2. Installation 133

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions

OMERO, Release 5.6.5-SNAPSHOT-1

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.
→˓cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.
Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example
to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

134 Chapter 2. System Administrator Documentation

https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.gunicorn.org/en/stable/settings.html

OMERO, Release 5.6.5-SNAPSHOT-1

Setting up CORS

The following steps are run as root.
Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of OMERO.web. See the django-cors-headers page for more details on the settings.

Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.
Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.
→˓CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.
Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
→˓include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

2.2. Installation 135

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html

OMERO, Release 5.6.5-SNAPSHOT-1

Running OMERO.web

The following steps are run as root.
Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0'

The following steps are run as the omero-web system user.
Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
→˓","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.
Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
Redhat
chkconfig: - 98 02

(continues on next page)

136 Chapter 2. System Administrator Documentation

http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
echo -n $"Starting $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓start" &> /dev/null && echo -n ' OMERO.web'
sleep 5
RETVAL=$?
["$RETVAL" = 0]

echo
}

stop() {
echo -n $"Stopping $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓stop" &> /dev/null && echo -n ' OMERO.web'
RETVAL=$?
["$RETVAL" = 0]

echo
}

status() {
echo -n $"Status $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓status"
RETVAL=$?

}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop
start
;;

status)

(continues on next page)

2.2. Installation 137

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

status
;;

*)
echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

138 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO, Release 5.6.5-SNAPSHOT-1

Troubleshooting

The following steps are run as the omero-web system user.
In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.
Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.
To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.
Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

2.2. Installation 139

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/

OMERO, Release 5.6.5-SNAPSHOT-1

The following steps are run as the omero-web system user.
To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

OMERO.web installation on Ubuntu 20.04 and IcePy 3.6

Please first read OMERO.server installation on Ubuntu 20.04.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.8 is installed.

The following steps are run as root.
If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.
Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

140 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/settings.html#worker-connections

OMERO, Release 5.6.5-SNAPSHOT-1

Creating a virtual environment

The following steps are run as root.
Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-ubuntu2004/
→˓releases/download/0.2.0/zeroc_ice-3.6.5-cp38-cp38-linux_x86_64.whl

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.
For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
→˓web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

2.2. Installation 141

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions

OMERO, Release 5.6.5-SNAPSHOT-1

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.
→˓cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.
Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example
to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

142 Chapter 2. System Administrator Documentation

https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.gunicorn.org/en/stable/settings.html

OMERO, Release 5.6.5-SNAPSHOT-1

Setting up CORS

The following steps are run as root.
Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of OMERO.web. See the django-cors-headers page for more details on the settings.

Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.
Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.
→˓CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.
Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
→˓include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

2.2. Installation 143

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html

OMERO, Release 5.6.5-SNAPSHOT-1

Running OMERO.web

The following steps are run as root.
Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0'

The following steps are run as the omero-web system user.
Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
→˓","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.
Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
Redhat
chkconfig: - 98 02

(continues on next page)

144 Chapter 2. System Administrator Documentation

http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

description: init file for OMERO.web
###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
echo -n $"Starting $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓start" &> /dev/null && echo -n ' OMERO.web'
sleep 5
RETVAL=$?
["$RETVAL" = 0]

echo
}

stop() {
echo -n $"Stopping $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓stop" &> /dev/null && echo -n ' OMERO.web'
RETVAL=$?
["$RETVAL" = 0]

echo
}

status() {
echo -n $"Status $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓status"
RETVAL=$?

}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop
start
;;

status)

(continues on next page)

2.2. Installation 145

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

status
;;

*)
echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

146 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO, Release 5.6.5-SNAPSHOT-1

Troubleshooting

The following steps are run as the omero-web system user.
In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.
Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.
To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.
Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

2.2. Installation 147

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/

OMERO, Release 5.6.5-SNAPSHOT-1

The following steps are run as the omero-web system user.
To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

OMERO.web installation on Debian 10 and IcePy 3.6

Please first read OMERO.server installation on Debian 10.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.
If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.
Install dependencies:

apt-get update

apt-get -y install unzip

apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

148 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/settings.html#worker-connections

OMERO, Release 5.6.5-SNAPSHOT-1

Creating a virtual environment

The following steps are run as root.
Create the virtual environment. This is the recommended way to install OMERO.web:

python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-debian10/releases/
→˓download/0.1.0/zeroc_ice-3.6.5-cp37-cp37m-linux_x86_64.whl

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.
For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
→˓web/omero-web/nginx.conf.tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

• Session engine:

• OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

2.2. Installation 149

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions

OMERO, Release 5.6.5-SNAPSHOT-1

• Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
→˓cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

• After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.
→˓cache

• Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/ :

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:

• Debug mode, see omero.web.debug.

• Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

• Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.
Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin:$PATH:

• omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

• omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example
to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
→˓omero/web/omero-web/var/log/error.log"

150 Chapter 2. System Administrator Documentation

https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.gunicorn.org/en/stable/settings.html

OMERO, Release 5.6.5-SNAPSHOT-1

Setting up CORS

The following steps are run as root.
Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your OMERO.web installation. This can be achieved using the django-cors-headers app with additional configuration of OMERO.web. See the django-cors-headers page for more details on the settings.

Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.
Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
→˓middleware.CorsMiddleware"}'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.
→˓CorsPostCsrfMiddleware"}'
omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]'
or to allow all
omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.
Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
→˓include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

2.2. Installation 151

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html

OMERO, Release 5.6.5-SNAPSHOT-1

Running OMERO.web

The following steps are run as root.
Install WhiteNoise:

/opt/omero/web/venv3/bin/pip install whitenoise

Optional: Install Django Redis:

/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0'

The following steps are run as the omero-web system user.
Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
→˓","LOCATION": "redis://127.0.0.1:6379/0"}}'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": 0, "class": "whitenoise.
→˓middleware.WhiteNoiseMiddleware"}'

omero web start

Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.
Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash
#
/etc/init.d/omero-web
Subsystem file for "omero" web
#
BEGIN INIT INFO
Provides: omero-web
Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: OMERO.web
END INIT INFO
#
chkconfig: - 98 02
description: init file for OMERO.web

(continues on next page)

152 Chapter 2. System Administrator Documentation

http://whitenoise.evans.io/
https://github.com/jazzband/django-redis

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

###

RETVAL=0
prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER:-omero-web}
OMERO=/opt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR:-/opt/omero/web/venv3}

start() {
echo -n $"Starting $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓start" &> /dev/null && echo -n ' OMERO.web'
sleep 5
RETVAL=$?
["$RETVAL" = 0]

echo
}

stop() {
echo -n $"Stopping $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓stop" &> /dev/null && echo -n ' OMERO.web'
RETVAL=$?
["$RETVAL" = 0]

echo
}

status() {
echo -n $"Status $prog:"
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web␣

→˓status"
RETVAL=$?

}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop
start
;;

status)
status

(continues on next page)

2.2. Installation 153

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

;;
*)

echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:

• Session cookies omero.web.session_expire_at_browser_close:

– A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

omero config set omero.web.session_expire_at_browser_close "True"

– The age of session cookies, in seconds. The default value is 86400:

omero config set omero.web.session_cookie_age 86400

• Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

omero web clearsessions

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

154 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO, Release 5.6.5-SNAPSHOT-1

Troubleshooting

The following steps are run as the omero-web system user.
In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb.log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.
Install futures:

/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.
To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.
Install Gevent >= 0.13:

/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

2.2. Installation 155

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/

OMERO, Release 5.6.5-SNAPSHOT-1

The following steps are run as the omero-web system user.
To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

Note: Support for Apache deployment has been dropped in 5.3.0.

If your organization’s policies only allow Apache to be used as the external-facing web-server you should configure
Apache to proxy connections to an NGINX instance running on your OMERO server i.e. use Apache as a reverse proxy.
For more details see Apache mod_proxy documentation.

2.2.3 OMERO.server binary repository

About

The OMERO.server binary data repository is a fundamental piece of server-side functionality. It provides optimized
and indexed storage of original file, pixel and thumbnail data, attachments and full-text indexes. The repository’s
directories contain various files that, together with your SQL database, constitute the information about your users
and their data that OMERO.server relies upon for normal operation.

Layout

The repository is internally laid out as follows:

/OMERO
/OMERO/Pixels <--- Pixel data and pyramids
/OMERO/Files <--- Original file data
/OMERO/Thumbnails <--- Thumbnail data
/OMERO/FullText <--- Lucene full text search index
/OMERO/ManagedRepository <--- OMERO.fs filesets, with import logs
/OMERO/BioFormatsCache <--- Cached Bio-Formats state for rendering

Your repository is not:
• the “database”

• the directory where your OMERO.server binaries are

• the directory where your OMERO.client (OMERO.insight or OMERO.importer) binaries are

• your PostgreSQL data directory

156 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/settings.html#worker-connections
https://httpd.apache.org/docs/current/mod/mod_proxy.html

OMERO, Release 5.6.5-SNAPSHOT-1

PixelService resolution order for locating binary data for images

When the server is trying to find the binary data for an image, it looks:

• first under /OMERO/Pixels for a $NUMBER_pyramid file

• then under /OMERO/Pixels for a regular $NUMBER file

• then under /OMERO/Files for OMERO 4 files

• or under /OMERO/ManagedRepository for OMERO 5 files

Locking and remote shares

The OMERO server requires proper locking semantics on all files in the binary repository. In practice, this means
that remotely mounted shares such as AFS, CIFS, and NFS can cause issues. If you have experience and/or the time
to manage and monitor the locking implementations of your remote filesystem, then using them as for your binary
repository should be fine.

If, however, you are seeing errors such as NullPointerExceptions, “Bad file descriptors” and similar in your server log,
then you will need to use directly connected disks.

Warning: If your binary repository is a remote share and mounting the share fails or is dismounted, OMERO will
continue operating using the mount point instead! To prevent this, make the mount point read-only for the OMERO
user so that no data can be written to the mount point.

Changing your repository location

Note: It is strongly recommended that you make all changes to your OMERO binary repository with the server shut
down. Changing the omero.data.dir configuration does not move the repository for you, you must do this yourself.

Your repository location can be changed from its /OMERO default by modifying your OMERO.server configuration as
follows:

$ omero config set omero.data.dir /mnt/really_big_disk/OMERO

The suggested procedure is to shut down your OMERO.server instance, move your repository, change your omero.
data.dir and then start the instance back up. For example:

$ omero admin stop
$ mv /OMERO /mnt/really_big_disk
$ omero config set omero.data.dir /mnt/really_big_disk/OMERO
$ omero admin start

The omero.managed.dir property for the OMERO.fs managed repository may be adjusted similarly, even to a direc-
tory outside omero.data.dir.

Note: The managed repository should be located and configured to allow the OMERO server processes fast access to
the uploaded filesets that it contains.

2.2. Installation 157

OMERO, Release 5.6.5-SNAPSHOT-1

Access permissions

Your repository should be owned by the same user that is starting your OMERO.server instance. This is often ei-
ther yourself (find this out by executing whoami) or a separate omero (or similar) user who is dedicated to running
OMERO.server. For example:

$ whoami
omero
$ ls -al /OMERO
total 24
drwxr-xr-x 5 omero omero 128 Dec 12 2006 .
drwxr-xr-x 7 root root 160 Nov 5 15:24 ..
drwxr-xr-x 3 omero omero 4096 Dec 20 10:13 BioFormatsCache
drwxr-xr-x 2 omero omero 1656 Dec 18 14:31 Files
drwxr-xr-x 150 omero omero 12288 Dec 20 10:00 ManagedRepository
drwxr-xr-x 25 omero omero 23256 Dec 10 19:06 Pixels
drwxr-xr-x 2 omero omero 48 Dec 8 2006 Thumbnails

Repository size

At minimum, the binary repository should be comfortably larger than the images and other files that users may be
uploading to it. It is fine to set omero.data.dir or omero.managed.dir to very large volumes, or to use logical
volume management to conveniently increase space as necessary.

2.2.4 OMERO.server and PostgreSQL

In order to be installed, OMERO.server requires a running PostgreSQL instance that is configured to accept connections
over TCP. This section explains how to ensure that you have the correct PostgreSQL version and that it is installed and
configured correctly.

Ensuring you have a valid PostgreSQL version

For OMERO 5.6, PostgreSQL version 11 or later is recommended. Make sure you are using a supported version.

You can check which version of PostgreSQL you have installed with any of the following commands:

$ createuser -V
createuser (PostgreSQL) 9.4.1
$ psql -V
psql (PostgreSQL) 9.4.1
$ createdb -V
createdb (PostgreSQL) 9.4.1

If your existing PostgreSQL installation is an earlier version, it is recommended that you upgrade to a more up-to-date
version. Before upgrading, stop the OMERO server and then perform a full dump of the database using pg_dump. See
the OMERO.server backup and restore section for further details.

If using a Linux distribution-provided PostgreSQL server, upgrading to a newer version of the distribution will usually
make a newer version of PostgreSQL available. If the database was not migrated to the new version automatically,
restore your backup after installing, configuring and starting the new version of the database server. If a PostgreSQL
server was not provided by your system, EnterpriseDB provide an installer.

158 Chapter 2. System Administrator Documentation

https://www.postgresql.org/support/versioning/
https://www.enterprisedb.com/

OMERO, Release 5.6.5-SNAPSHOT-1

Checking PostgreSQL port listening status

You can check if PostgreSQL is listening on the default port (TCP/5432) by running the following command:

$ netstat -an | egrep '5432.*LISTEN'
tcp 0 0 0.0.0.0:5432 0.0.0.0:* LISTEN
tcp 0 0 :::5432 :::* LISTEN

Note: The exact output of this command will vary. The important thing to recognize is whether or not a process is
listening on TCP/5432.

If you cannot find a process listening on TCP/5432 you will need to find your postgresql.conf file and enable
PostgreSQL’s TCP listening mode. The exact location of the postgresql.conf file varies between installations.

It may be helpful to locate it using the package manager (rpm or dpkg) or by utilizing the find command. Usually, the
PostgreSQL data directory (which houses the postgresql.conf file, is located under /var or /usr:

$ sudo find /etc -name 'postgresql.conf'
$ sudo find /usr -name 'postgresql.conf'
$ sudo find /var -name 'postgresql.conf'
/var/lib/postgresql/data/postgresql.conf

Note: The PostgreSQL data directory is usually only readable by the user postgres so you will likely have to be
root in order to find it.

Once you have found the location of the postgresql.conf file on your particular installation, you will need to enable
TCP listening. The area of the configuration file you are concerned about should look similar to this:

#listen_addresses = 'localhost' # what IP address(es) to listen on;
comma-separated list of addresses;
defaults to 'localhost', '*' = all

#port = 5432
max_connections = 100
note: increasing max_connections costs ~400 bytes of shared memory per
connection slot, plus lock space (see max_locks_per_transaction). You
might also need to raise shared_buffers to support more connections.
#superuser_reserved_connections = 2
#unix_socket_directory = *
#unix_socket_group = *
#unix_socket_permissions = 0777 # octal
#bonjour_name = * # defaults to the computer name

2.2. Installation 159

OMERO, Release 5.6.5-SNAPSHOT-1

PostgreSQL HBA (host based authentication)

OMERO.server must have permission to connect to the database that has been created in your PostgreSQL instance.
This is configured in the host based authentication file, pg_hba.conf. Check the configuration by examining the
contents of pg_hba.conf. It’s important that at least one line allows connections from the loopback address (127.0.
0.1) as follows:

TYPE DATABASE USER CIDR-ADDRESS METHOD
IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5

Note: The other lines that are in your pg_hba.conf are important either for PostgreSQL internal commands to work
or for existing applications you may have. Do not delete them.

Completing configuration

After making any configuration changes to postgresql.conf or pg_hba.conf, reload the server for the changes to
take effect.

$ sudo service postgresql reload

See also:
PostgreSQL Interactive documentation for the current release of PostgreSQL.

Connections and Authentication Section of the PostgreSQL documentation about configuring the server using post-
gresql.conf.

Client Authentication Chapter of the PostgreSQL documentation about configuring client authentication with
pg_hba.conf.

2.2.5 Installing additional features

OMERO.grid

To unify the various components of OMERO, OMERO.grid was developed to monitor and control processes over nu-
merous remote systems. Based on ZeroC’s IceGrid framework, OMERO.grid provides management access, distributed
background processing, log handling and several other features.

Terminology

Please notice that ZeroC uses a specific naming scheme for IceGrid elements and actors. A server in the context of
this document is not a host computer - it is a process running inside an IceGrid node, servicing incoming requests. A
host is a computer on which IceGrid elements get deployed. For more details, see Terminology.

160 Chapter 2. System Administrator Documentation

https://www.postgresql.org/docs/current/interactive/index.html
https://www.postgresql.org/docs/current/interactive/runtime-config-connection.html
https://www.postgresql.org/docs/current/interactive/client-authentication.html
https://zeroc.com
https://doc.zeroc.com/display/Ice/Terminology

OMERO, Release 5.6.5-SNAPSHOT-1

Getting started

Requirements

The normal OMERO installation actually makes use of OMERO.grid internally. If you have followed the instructions
under OMERO.server installation you will have everything you need to start working with OMERO.grid.

The standard install should also be used to install other hosts in the grid, such as a computation-only host. Some
elements can be omitted for a computation-only host such as PostgreSQL, Apache/nginx, etc.

Running OMERO.web and/or starting up the full OMERO.server instance is not required in such a case (only the basic
requirements to run omero node are needed, i.e. ZeroC Ice and Python modules for OMERO scripts).

IceGrid Tools

If you would like to explore your IceGrid configuration, use

omero admin ice

It provides full access to the icegridadmin console described in the ZeroC manual. Specific commands can also be
executed:

omero admin ice help
omero admin ice application list
omero admin ice application describe OMERO
omero admin ice server list

Further, by running java -jar ice-gridgui.jar the GUI provided by ZeroC can be used to administer
OMERO.grid. This JAR is provided in the OMERO source code under lib/repository.

See also:
icegridadmin Command Line Tool Chapter of the ZeroC manual about the icegridadmin CLI

IceGrid GUI Tool Chapter of the ZeroC manual about the IceGrid GUI tool

How it works

IceGrid is a location and activation service, which functions as a central registry to manage all your OMERO server
processes. OMERO.grid provides server components which use the registry to communicate with one another. Other
than a minimal amount of configuration and starting a single daemon on each host machine, OMERO.grid manages
the complexity of all your computing resources.

Deployment descriptors

All the resources for a single OMERO site are described by one application descriptor. OMERO ships with several
example descriptors under etc/grid. These descriptors describe what processes will be started on what nodes, iden-
tified by simple names. For example the default descriptor, used if no other file is specified, defines the master node.
As you will see, these files are critical both for the correct functioning of your server as well as its security.

The deployment descriptors provided define which server instances are started on which nodes. The default descriptor
configures the master node to start the OMERO.blitz server, the Glacier2 router for firewalling, as well as a single
processor - Processor0. The master node is also configured via etc/master.cfg to host the registry, though this
process can be started elsewhere.

2.2. Installation 161

https://doc.zeroc.com/display/Ice/icegridadmin+Command+Line+Tool
https://zeroc.com
https://doc.zeroc.com/display/Ice/IceGrid+GUI+Tool
https://zeroc.com
https://doc.zeroc.com/display/Ice/IceGrid
https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/default.xml

OMERO, Release 5.6.5-SNAPSHOT-1

Deployment commands

The master node must be started first to provide the registry. This is done via the omero admin start command
which uses the default descriptor:

omero admin start

The deploy command looks for any changes to the defined descriptor and restarts only those servers which have modi-
fications:

omero admin deploy

Both omero admin start and omero admin deploy can optionally take a path to an application descriptor which
must be passed on every invocation:

omero admin deploy etc/grid/my-site.xml

Two other nodes, then, each provide a single processor, Processor1 and Processor2. These are started via:

To start a node identified by NAME, the following command can be used

omero node start NAME

At this point the node will try and connect to the registry to announce its presence. If a node with the same name is
already started, then registration will fail, which is important to prevent unauthorized users.

The configuration of your grid, however, is very much up to you. Based on the example descriptor files (*.xml) and
configuration files (*.cfg), it is possible to develop OMERO.grid installations completely tailored to your computing
resources.

The whole grid can be shutdown by stopping the master node via: omero admin stop. Each individual node can also
be shutdown via: omero node NAME stop on that particular node.

Deployment examples

Two examples will be presented showing the flexibility of OMERO.grid deployment and identifying files whose mod-
ification is critical for the deployment to work.

Nodes on a single host

The first example will focus on changing the deployed nodes/servers on a single host. It should serve as an introduction
to the concepts. Unless used for very specific requirements, this type of deployment doesn’t yield any performance
gains.

The first change that you will want to make to your application descriptor is to add additional processors. Take a look
at etc/templates/grid/default.xml. There you can define two new nodes - node1 and node2 by simply adding a new
XML element below the master node definition:

<node name="node1">
<server-instance template="ProcessorTemplate" index="1"/>

</node>

<node name="node2">
(continues on next page)

162 Chapter 2. System Administrator Documentation

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/default.xml

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

<server-instance template="ProcessorTemplate" index="2"/>
</node>

Remember to change the node name and the index number for each subsequent node definition. The node name and
the index number do not need to match. In fact, the index number can be completely ignored, except for the fact that it
must be unique. The node name, however, is important for properly starting your new processor.

You will need both a configuration file under etc/ with the same name, and unless the node name matches the name
of your local host, you will need to specify it on the command line:

omero node node1 start

or with the environment variable OMERO_NODE:

OMERO_NODE=node1 omero node start

After starting up both nodes, you can verify that you now have three processors running by looking at the output of
omero admin diagnostics.

For more information on using scripts, see the OMERO.scripts advanced topics.

Nodes on multiple hosts

Warning: Before attempting this type of deployment, make sure that the hosts can ping each other and that required
ports are open and not firewalled.

A more complex deployment example is running multiple nodes on networked hosts. Initially, the host’s loopback IP
address (127.0.0.1) is used in the grid configuration files.

For this example, let’s presume we have control over two hosts: omero-master (IP address 192.168.0.1/24) and
omero-slave (IP address 192.168. 0.2/24). The goal is to move the processor server onto another host (omero-slave)
to reduce the load on the host running the master node (omero-master). The configuration changes required to
achieve this are outlined below.

On host omero-master:

• etc/grid/default.xml - remove or comment out from the master node the server-instance using the
ProcessorTemplate. Below the master node add an XML element defining a new node:

<node name="omero-slave">
<server-instance template="ProcessorTemplate" index="0" dir=""/>

</node>

• etc/internal.cfg - change the value of Ice.Default.Locator from 127.0.0.1 to 192.168.0.1

• etc/master.cfg - change all occurrances of 127.0.0.1 to 192.168.0.1

On host omero-slave:

• copy or rename etc/node1.cfg to etc/omero-slave.cfg and change all node1 strings to omero-slave in
etc/omero-slave.cfg. Also update the IceGrid.Node.Endpoints value to tcp -h 192.168.0.2

• etc/internal.cfg - change the value of Ice.Default.Locator from 127.0.0.1 to 192.168.0.1

• etc/ice.config - add the line Ice.Default.Router=OMERO.Glacier2/router:tcp -p 4063 -h 192.
168.0.1

2.2. Installation 163

OMERO, Release 5.6.5-SNAPSHOT-1

To apply the changes, start the OMERO instance on the omero-master node by using omero admin start.
After that, start the omero-slave node by using omero node omero-slave start. Issuing omero admin
diagnostics on the master node should show a running processor instance and the omero-slave node should accept
job requests from the master node.

Securing grid resources

More than just making sure no malicious code enters your grid, it is critical to prevent unauthorized access via the
application descriptors (*.xml) and configuration (*.cfg) as mentioned above.

Firewall

The simplest and most effective way of preventing unauthorized access is to have all OMERO.grid resources behind
a firewall. Only the Glacier2 router has a port visible to machines outside the firewall. If this is possible in your
configuration, then you can leave the internal endpoints unsecured.

SSL (Secure Socket Layer)

Though it is probably unnecessary to use transport encryption within a firewall, encryption from clients to the Glacier2
router will often be necessary. For more information on SSL, see SSL.

Permissions Verifier

The IceSSL plugin can be used both for encrypting the channel as well as authenticating users. SSL-based authentica-
tion, however, can be difficult to configure especially for within the firewall, and so instead you may want to configure
a “permissions verifier” to prevent non-trusted users from accessing a system within your firewall. From master.cfg:

IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsVerifier
#IceGrid.Registry.AdminCryptPasswords=etc/passwd

Here we have defined a “null” permissions verifier which allows anyone to connect to the registry’s administrative
endpoints. One simple way of securing these endpoints is to use the AdminCryptPasswords property, which expects
a passwd-formatted file at the given relative or absolute path:

mrmypasswordisomero TN7CjkTVoDnb2
msmypasswordisome jkyZ3t9JXPRRU

where these values come from using openssl:

$ openssl
OpenSSL> passwd
Password:
Verifying - Password:
TN7CjkTVoDnb2
OpenSSL>

Another possibility is to use the OMERO.blitz permissions verifier, so that anyone with a proper OMERO account can
access the server.

See Controlling Access to IceGrid Sessions of the Ice manual for more information.

164 Chapter 2. System Administrator Documentation

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/master.cfg
https://doc.zeroc.com/ice/3.6/ice-services/icegrid/resource-allocation-using-icegrid-sessions#id-.ResourceAllocationusingIceGridSessionsv3.6-ControllingAccesstoIceGridSessions

OMERO, Release 5.6.5-SNAPSHOT-1

Unique node names

Only a limited number of node names are configured in an application descriptor. For an unauthorized user to fill a
slot, they must know the name (which is discoverable with the right code) and be the first to contact the grid saying “I
am Node029”, for example. A system administrator need only then be certain that all the node slots are taken up by
trusted machines and users.

It is also possible to allow “dynamic registration” in which servers are added to the registry after the fact. In some
situations this may be quite useful, but is disabled by default. Before enabling it, be sure to have secured your endpoints
via one of the methods outlined above.

Absolute paths

The example application descriptors shipped with OMERO all use relative paths to make installation easier. Once
you are comfortable with configuring OMERO.grid, it would most likely be safer to configure absolute paths. For
example, specifying that nodes execute under /usr/lib/omero requires that whoever starts the node have access to
that directory. Therefore, as long as you control the boxes which can attach to your endpoints (see Firewall), then you
can be relatively certain that no tampering can occur with the installed binaries.

Technical information and other tips

Processes

It is important to understand just what processes will be running on your servers. When you run omero admin start,
icegridnode is executed which starts a controlling daemon and deploys the proper descriptor. This configuration is
persisted under var/master and var/registry.

Once the application is loaded, the icegridnode daemon process starts up all the servers which are configured in the
descriptor. If one of the processes fails, it will be restarted. If restart fails, eventually the server will be “disabled”. On
shutdown, the icegridnode process also shutdowns all the server processes.

Targets

In application descriptors, it is possible to surround sections of the description with <target/> elements. For example,
in templates.xml the section which defines the main OMERO.blitz server includes:

<server id="Blitz-${index}" exe="${JAVA}" activation="always" pwd="${OMERO_HOME}">
<target name="debug">
<option>-Xdebug</option>
<option>-Xrunjdwp:server=y,transport=dt_socket,address=8787,suspend=y</option>

</target>
...

When the application is deployed, if “debug” is added as a target, then the -Xdebug, etc. options will be passed to the
Java runtime. This will allow remote connection to your server over the configured port.

Multiple targets can be enabled at the same time:

omero admin deploy etc/grid/default.xml debug secure someothertarget

2.2. Installation 165

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/templates.xml

OMERO, Release 5.6.5-SNAPSHOT-1

Ice.MessageSizeMax

Ice imposes an upper limit on all method invocations. This limit, Ice.MessageSizeMax, is configured in your applica-
tion descriptor (e.g. templates.xml) and configuration files (e.g. ice.config). The setting must be applied to all servers
which will be handling the invocation. For example, a call to InteractiveProcessor.execute(omero::RMap
inputs) which passes the inputs all the way down to processor.py will need to have a sufficiently large Ice.
MessageSizeMax for: the client, the Glacier2 router, the OMERO.blitz server, and the Processor.

The default is currently set to 65536 kilobytes which is 64MB.

Logging

Currently all output from OMERO.grid is stored in $OMERO_PREFIX/var/log/master.out with error messages
going to $OMERO_PREFIX/var/log/master.err. Individual services may also create their own log files.

Shortcuts

If the omero script is copied or symlinked to another name, then the script will separate the name on hyphens and
execute omero with the second and later parts prepended to the argument list.

For example,

ln -s omero omero-admin
omero-admin start

works identically to:

omero admin start

Symbolic linking

Shortcuts allow the bin/omero script to function as an init.d script when named omero-admin, and need only be
copied to /etc/init.d/ to function properly. It will resolve its installation directory, and execute from there.

For example,

ln -s $VENV_SERVER/bin/omero /usr/local/bin/omero
omero-admin start

The same works for putting bin/omero on your path:

PATH=$VENV_SERVER/bin:$PATH

This means that OMERO.grid can be unpacked anywhere, and as long as the user invoking the commands has the
proper permissions on the $OMERO_PREFIX directory, it will function normally.

166 Chapter 2. System Administrator Documentation

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/templates.xml
https://github.com/ome/openmicroscopy/blob/develop/etc/templates/ice.config

OMERO, Release 5.6.5-SNAPSHOT-1

Running as root

One exception to this rule is that starting OMERO.grid as root may actually delegate to another user, if the “user”
attribute is set on the <server/> elements in etc/grid/templates.xml.

See also:
OMERO sessions

OMERO.mail

The OMERO server has the ability to send email to any users who have a properly configured email address. OMERO
system administrators can then use the omero admin email command to contact those users.

In order to activate the subsystem, minimally the omero.mail.config property will need to be activated. It is likely
you will need to change the defaults for the following connection properties:

• omero.mail.host

• omero.mail.port

• omero.mail.smtp.auth

• omero.mail.smtp.starttls.enable

• omero.mail.from

All properties can be found under the Mail section of Configuration properties glossary.

Note: A current limitation of the system is that emails are not in a queue and therefore if you log out or otherwise lose
your OMERO session before the server has finished sending, the action will abort without completing.

Example secure SMTP configurations

Replace omero@gmail.com and mypassword with your real credentials.

Send email via GMail using TLS (port 587):

omero.mail.config=true
omero.mail.from=omero@gmail.com
omero.mail.host=smtp.googlemail.com
omero.mail.port=587
omero.mail.smtp.auth=true
omero.mail.username=omero@gmail.com
omero.mail.password=mypassword
omero.mail.smtp.starttls.enable=true

Send email via GMail using SSL (port 465):

omero.mail.config=true
omero.mail.from=omero@gmail.com
omero.mail.host=smtp.googlemail.com
omero.mail.port=465
omero.mail.smtp.auth=true
omero.mail.username=omero@gmail.com

(continues on next page)

2.2. Installation 167

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

omero.mail.password=mypassword
omero.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

Example minimum configuration

$ omero config set omero.mail.config true

By default, this will use localhost as the mail server on port 25 and send as the user omero.

To use your actual mail server:

$ omero config set omero.mail.host smtp.university.example

If authentication is required, then also configure:

$ omero config set omero.mail.username USER
$ omero config set omero.mail.password PASS

Setting email addresses

For any user to receive email, a valid email address must be configured. By default, the root OMERO user will not
have an email address configured. This can be done from one of the UIs or via the omero obj command:

$ omero obj update Experimenter:0 email=root@university.example

Note: Using a mailing list or an alias for the root user can simplify configuration.

Enabling mail notifications

A number of “mail senders” are available for sending notifications of certain events on the server. Those available
include:

• ServerUpMailSender and ServerDownMailSender which mail when the server goes up or down

• FailedLoginMailSender which can be configured to send for particular users if a bad password is used

• ObjectMailSender which can be configured to send an email under various conditions. Instances which are configured include:

– newUserMailSender which sends an email every time a user is created

– newCommentMailSenderwhich sends an email every time a user’s image is commented on by another
user

To activate the senders, the etc/blitz/mail-senders.example can be copied to a file ending with “.xml”.

168 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.web error reporting

OMERO.web will email the users listed in the omero.web.admins whenever the application identify broken link
(HTTP status code 404) or raises an unhandled exception that results in an internal server error (HTTP status code 500).
This gives the administrators immediate notification of any errors. The omero.web.admins will get a description of
the error, a complete Python traceback, and details about the HTTP request that caused the error.

Note: Reporting errors requires property omero.web.debug set to False and works together with OMERO.web
error handling.

Further configuration

Finally, if the above mail configuration properties do not cover your needs, you can add your own implementation as
described under Extending OMERO.server. The related property is omero.mail.bean:

$ omero config set omero.mail.bean myMailImplementation

OMERO.movie

A short decription on how to create movies from OMERO.

Creating a movie from OMERO

OMERO provides a script to make Mpeg or Quicktime movies from any image in the server. These movies are created
by a script called makemovie.py, this script has a number of options: these include: selecting a range of Z,T planes, the
channels to display. The movie can also show information overlayed over the image: z-section, scale bar and timing.

The resulting movie will then be uploaded to the server by the script and become a file attachment to the source image.

Viewing the movie

The make movie script allows you to save the movie in two different formats, a DivX-encoded AVI and QuickTime
movie. To view the AVI you may need to install a DivX codec from DivX. It should be noted that the DivX AVI is
normally 1/3 to 1/10 the size of the QuickTime movie.

Installing the make movie script

The make movie script currently uses the mencoder utility to encode the movies, this command should be in the path
of the computer (icegrid node) running the script.

We have Mac OSX installs for mencoder which were originally provided here. Unzip and put the mencoder in the
PATH available to the server, e.g. /usr/local/bin/. You may need to restart the server for this to take effect.

There are also macports, rpms and debs for mencoder.

Make movie also uses Pillow and numpy.

2.2. Installation 169

https://www.divx.com/
http://www.mplayerhq.hu/design7/dload.html
http://cvs.openmicroscopy.org.uk/snapshots/mencoder/mac/
https://stefpause.com/apple/mac/mplayer-os-x-10rc1-and-mencoder-binaries/
https://pillow.readthedocs.org
https://www.scipy.org/install.html

OMERO, Release 5.6.5-SNAPSHOT-1

Make movie command arguments

A detailed list of the commands accepted by the script are:

• imageId: This id of the image to create the movie from

• output: The name of the output file, sans the extension

• zStart: The starting z-section to create the movie from

• zEnd: The final z-section

• tStart: The starting timepoint to create the movie

• tEnd: The final timepoint.

• channels: The list of channels to use in the movie (index, from 0)

• splitView: Should we show the split view in the movie (not available yet)

• showTime: Show the average time of the aquisition of the channels in the frame.

• showPlaneInfo: Show the time and z-section of the current frame.

• fps: The number of frames per second of the movie

• scalebar: The scalebar size in microns, if <=0 will not show scale bar.

• format: The format of the movie to be created currently supports ‘video/mpeg’, ‘video/quicktime’

• overlayColour: The colour of the overlays, scalebar, time, as int(RGB)

• fileAnnotation: The fileAnnotation id of the uploaded movie. (return value from script)

OMERO.scripts

OMERO.scripts are the OME version of plugins, allowing you to extend the functionality of OMERO. Official core
OMERO.scripts come bundled with every OMERO.server release but you can also add new scripts you have written
yourself or found via the repositories forked from ome/omero-user-scripts.

Prerequisites

Uploading and managing scripts

OMERO.scripts user guide describes the workflow for developing and uploading scripts as an Admin. Any scripts
you add to the lib/scripts/ directory as a server admin will be considered ‘trusted’ and automatically detected
by OMERO, allowing them to be run on the server from the clients or command line by any of your users.
Once in the directory, scripts cannot be automatically updated and any additional ones will be lost when you upgrade
your server installation. Therefore, we recommend you use a Github repository to manage your scripts. If you are not
familiar with using git, you can use the GitHub app for your OS (available for Mac and Windows but not Linux). The
basic workflow is:

• fork our omero-user-script repository

• clone it in your lib/scripts directory

cd lib/scripts;
git clone git@github.com:YOURGITUSERNAME/omero-user-scripts.git YOUR_SCRIPTS

170 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-user-scripts/network/members
https://docs.openmicroscopy.org/contributing/using-git.html
https://docs.github.com/en/get-started/quickstart/set-up-git
https://github.com/ome/omero-user-scripts

OMERO, Release 5.6.5-SNAPSHOT-1

• save the scripts you want to use into the appropriate sub-directory in your cloned location
lib/scripts/YOUR_SCRIPTS

Then when you upgrade your OMERO.server installation, provided your Github repository is up to date with all your
latest script versions (i.e. all your local changes are committed), you just need to repeat the git clone step. Those
scripts will then be automatically detected by your new server installation and available for use from the clients and
command line as before.

Client Server SSL verification

If you configure OMERO.web behind NGINX with a recognized SSL certificate your users can be sure that they are
connecting to their intended server.

OMERO.server and clients do not automatically support host verification, so a man-in-the-middle attack is possible.
This may result in users inadvertently transmitting their login credentials to an attacker.

This can be remedied by configuring OMERO.server with a certificate (the same certificate used for OMERO.web
Nginx may work), and ensuring all OMERO clients are configured to verify the server certificate before connecting.

Server certificate

The easiest solution is to re-use the SSL certificates used to protect OMERO.web. First convert the public certificate
server.pem and private key server.key to the PKCS12 format where secret is the password used to protect the
combined output file server.p12:

openssl pkcs12 -export -out server.p12 -in server.pem -inkey server.key -passout␣
→˓pass:secret

Copy server.p12 to the OMERO.server host, for instance to /etc/ssl/omero/.

External access to OMERO.server is managed by the Glacier2 component which can be configured as follows:

Enable authenticating ciphers.
omero config set omero.glacier2.IceSSL.Ciphers "ADH:HIGH:!LOW:!MD5:!EXP:!3DES:@STRENGTH"
Look for certificates in this directory, you can omit and use the full path to files␣
→˓instead
omero config set omero.glacier2.IceSSL.DefaultDir /etc/ssl/omero/
omero config set omero.glacier2.IceSSL.CertFile server.p12
omero config set omero.glacier2.IceSSL.Password secret

For even stronger security require TLS 1.2, disable anonymous ciphers and only allow HIGH:

omero config set omero.glacier2.IceSSL.Protocols tls1_2
omero config set omero.glacier2.IceSSL.ProtocolVersionMin tls1_2
omero config set omero.glacier2.IceSSL.ProtocolVersionMax tls1_2
omero config set omero.glacier2.IceSSL.Ciphers HIGH

Restart OMERO.server.

2.2. Installation 171

https://www.cloudflare.com/learning/security/threats/man-in-the-middle-attack/

OMERO, Release 5.6.5-SNAPSHOT-1

Internal certificate authority

You can also create your own certificates by creating a certificate authority (CA), and using that to create a server
certificate. Set this additional server configuration property to point to the public CA certificate /etc/ssl/omero/
cacert.pem:

omero config set omero.glacier2.IceSSL.CAs cacert.pem

Zeroc provide the Ice Certificate Utilities package to help create certificates, but if you know what you are doing you
can use openssl directly.

Client host verification

At present there is no easy way to configure the standard OMERO clients to require host verification.

If you are a developer the following Ice properties can be passed to the omero.client constructor to force host vali-
dation:

• IceSSL.Ciphers=HIGH

• IceSSL.VerifyPeer=1

• IceSSL.VerifyDepthMax=0

• IceSSL.UsePlatformCAs=1

• IceSSL.Protocols=tls1_2 (if required by the server configuration)

Some platforms or languages do not support the cipher specification HIGH. Instead you can specify a cipher family such
as AES256 or AES_256. See the IceSSL.Ciphers documentation.

If you have your own certificate authority replace IceSSL.UsePlatformCAs with:

• IceSSL.CAs=/path/to/CA/cacert.pem

These properties check that the certificate chain is valid, but they do not verify that the hostname matches that of the
certificate. To verify the hostname either set:

• IceSSL.CheckCertName=1

If your certificate hostname does not match exactly (for example, if you have a wildcard certificate) use the IceSSL.
TrustOnly property instead. Multiple CN can be specified:

• IceSSL.TrustOnly=CN=omero.example.org;CN=*.example.org

Further information

• https://doc.zeroc.com/technical-articles/glacier2-articles/teach-yourself-glacier2-in-10-minutes#
TeachYourselfGlacier2in10Minutes-UsingSSLwithGlacier2

• https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/configuring-icessl

• https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/setting-up-a-certificate-authority

• https://doc.zeroc.com/ice/3.6/property-reference/icessl

172 Chapter 2. System Administrator Documentation

https://pypi.org/project/zeroc-icecertutils/
https://doc.zeroc.com/ice/3.6/property-reference/icessl#id-.IceSSL.*v3.6-IceSSL.Ciphers
https://doc.zeroc.com/technical-articles/glacier2-articles/teach-yourself-glacier2-in-10-minutes#TeachYourselfGlacier2in10Minutes-UsingSSLwithGlacier2
https://doc.zeroc.com/technical-articles/glacier2-articles/teach-yourself-glacier2-in-10-minutes#TeachYourselfGlacier2in10Minutes-UsingSSLwithGlacier2
https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/configuring-icessl
https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/setting-up-a-certificate-authority
https://doc.zeroc.com/ice/3.6/property-reference/icessl

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.server Websockets

OMERO 5.5.0 includes experimental support for websocket connections. This allows clients to connect to
OMERO.server over HTTP/S using the Ice protocol (note: this is not the same as the OMERO.web or JSON APIs).

Configuration

The omero.client.icetransports OMERO.server configuration property must be changed. See the linked docu-
mentation for details.

You can override the default ws (4065) and wss (4066) ports with the properties omero.ports.ws omero.ports.wss.

If you want to proxy OMERO.server websockets via a webserver such as Nginx you must also add a cipher supported
by Nginx to omero.glacier2.IceSSL.Ciphers since the anonymous ciphers that OMERO uses are not supported.

For a full configuration example see https://github.com/ome/docker-example-omero-websockets

Client connection

You can connect to an OMERO websocket by setting the appropriate Ice.Config properties in the client, for example:

Ice.Default.Router="OMERO.Glacier2/router:wss -p 8443 -h example.org -r omero/websocket"

Some clients also support specifying the Ice transport in the host, e.g. wss://example.org:8443/omero/
websocket.

2.3 Upgrading

Starting with OMERO 5.6, OMERO.server and OMERO.web installations are assumed to be separate throughout doc-
umentation, each with its own virtualenv. and installation directory.

2.3.1 Migration to Python 3

Basic steps

1. Choose a platform and a Python version. If your current installation platform does not match one of the recom-
mended platforms, you may want to choose a new platform as your migration target. See Choosing a platform
below.

2. Install OMERO.server and OMERO.web separately. Though not necessary, all instructions like OMERO.server
and OMERO.web below as well as the main server and web installation pages now assume that the two are in
separate installations.

3. Once both have been installed, perform a backup and restore procedure and test your installation against the copy
of your data.

2.3. Upgrading 173

https://github.com/ome/docker-example-omero-websockets

OMERO, Release 5.6.5-SNAPSHOT-1

Choosing a platform

The two recommended platforms, CentOS 7 and Ubuntu 18.04, have Python 3.6 as default installation and have there-
fore received the most testing which is why Python 3.6 is the preferred version of Python.

Both Python 3.5 and 3.7 should work and are slated to have support added, but Python 3.6 has been the focus of testing
during the migration.

Similarly, other operating systems are slated for having support added, but help from the community would be very
welcome! Obvious next candidates are CentOS 8 and Ubuntu 20.04.

Debian 9 is still on Python 3.5 and Debian 10 has moved to Ice 3.7. We have nonetheless an installation guide for
Debian 9 with Python 3.5 and Ice 3.6 but an installation guide for Debian 10 with Python 3.7 and Ice 3.6.

Other prerequisites

OMERO’s other prerequisites have not changed substantially but if you would like to take this opportunity to move to
the recommended version for all requirements, the current choices are:

• Ice 3.6 (non-optional)

• Java 11

• Nginx 1.14 or higher

• PostgreSQL 11

Other options

The installation walkthroughs provided in the documentation try to stick to a minimum installation. The only require-
ments are an understanding of the Unix shell, the standard package manager for your platform, and the regular Python
distribution mechanisms.

However, more advanced installation mechanisms are available if you are interested and have familiarity with the given
mechanism:

• Ansible roles are available for most installation steps. The primary roles, omero-server and omero-web have not
yet been released and will need to be installed from GitHub.

• A conda channel provides pre-built packages needed by OMERO if you prefer to use Anaconda/Miniconda
instead of the Python distribution provided by your platform.

• Docker images are also available. Both the omero-server and omero-web images are considered production
quality.

Please get in touch at https://forum.image.sc/c/data if you have any questions.

OMERO.server

The steps for an OMERO.server installation have not changed substantially.

Download the OMERO.server.zip as you would usually do, and unpack it under your installation directory. We suggest
/opt/omero/server/ and symlink the unpacked directory to OMERO.server

We highly recommend a virtualenv-based installation for all of the Python dependencies. Follow the standard instal-
lation instructions for your platform. All instructions use a virtual environment.

Once you have your installation in place, you will need to follow the standard upgrade instructions, working from a
copy of your data.

174 Chapter 2. System Administrator Documentation

https://galaxy.ansible.com/ome
https://anaconda.org/ome
https://hub.docker.com/u/openmicroscopy
https://forum.image.sc/c/data

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.web

Although it is possible to also follow the previous installation steps for OMERO.web, installation no longer requires
downloading a package from https://downloads.openmicroscopy.org. If you choose to follow this newly introduced
route, all requirements will be installed directly into the virtualenv for OMERO.web. Instructions are available under
web-deployment.

Note that setting of OMERODIR variable is now required to specify where the OMERO installation lives. This defines
where configuration files and log files will be stored. We suggest /opt/omero/web as the root for your installation.

The upgrade guide can help you to transfer your previous configuration. Moving forward, however, web upgrades
should be much simpler under Python 3. Only a pip install -U of the appropriate libraries should be necessary.

Plugins

Core OMERO.web plugins have been updated for Python 3 and released to PyPI e.g.

pip install 'omero-iviewer>=0.9.0'

2.3.2 OMERO.server upgrade

The OME team is committed to providing frequent, project-wide upgrades both with bug fixes and new functionality.
We try to make the schedule for these releases as public as possible. You may want to take a look at the Trello boards
for exactly what will go into a release. See also OMERO.web upgrade.

See the full details of OMERO 5.6.4 features in the CHANGELOGS.

This guide aims to be as definitive as possible so please do not be put off by the level of detail; upgrading should be a
straightforward process.

Warning: If you are upgrading from a version prior to OMERO 5.5 then you must also study the upgrade instruc-
tions for those prior versions because they may describe important steps that these instructions assume to already
have been done by OMERO 5.5 users. Before proceeding with these instructions you may first need to read the
instructions for upgrading to OMERO 5.5 because some extra steps may be required beyond simply running the
SQL upgrade scripts described below.

Upgrade checklist

• Check prerequisites

• File limits

• Password usage

• Memoization files invalidation

• Troubleshooting

• Upgrade check

2.3. Upgrading 175

https://downloads.openmicroscopy.org
https://pypi.org
https://trello.com/b/4EXb35xQ/getting-started
https://docs.openmicroscopy.org/latest/omero5.5/sysadmins/server-upgrade.html

OMERO, Release 5.6.5-SNAPSHOT-1

Check prerequisites

Before starting the upgrade, please ensure that you have reviewed and satisfied all the system requirements with correct
versions for installation. In particular, ensure that you are running a suitable version of PostgreSQL to enable successful
upgrading of the database, otherwise the upgrade script aborts with a message saying that your database server version
is less than the OMERO prerequisite.

File limits

You may wish to review the open file limits. Please consult the Too many open file descriptors section for further
details.

Password usage

The passwords and logins used here are examples. Please consult the Which user account and password do I use where?
section for explanation. In particular, be sure to replace the values of db_user and omero_database with the actual
database user and database name for your installation.

Memoization files invalidation

All cached Bio-Formats memoization files created at import time will be invalidated by the server upgrade. This means
the very first loading of each image after upgrade will be slower. After re-initialization, a new memoization file will be
automatically generated and OMERO will be able to load images in a performant manner again.

These files are stored under BioFormatsCache in the OMERO data directory, e.g. /OMERO/BioFormatsCache.
You may see error messages in your log files when an old memoization file is found; to avoid these messages delete
everything under this directory before starting the upgraded server.

It is possible to regenerate the memoization files before the user loads an image for the first time. For more information,
read MemoFileRegenerationReadMe.md.

Troubleshooting

If you encounter errors during an OMERO upgrade, database upgrade, etc., you should retain as much log information
as possible and notify the OMERO.server team via the forum.

Upgrade check

All OMERO products check themselves with the OmeroRegistry for update notifications on startup. If you wish to
disable this functionality you should do so now as outlined on the OMERO upgrade checks page.

176 Chapter 2. System Administrator Documentation

https://github.com/glencoesoftware/omero-ms-image-region/tree/v0.5.1/src/dist/MemoFileRegenerationReadMe.md
https://www.openmicroscopy.org/forums

OMERO, Release 5.6.5-SNAPSHOT-1

Upgrade steps

For all users, the basic workflow for upgrading your OMERO.server is listed below. Please refer to each section for
additional details.

• Check ahead for upgrade issues

• Perform a database backup

• Copy new binaries

• Upgrade your database

• Merge script changes

• Update your environment variables and memory settings

• Dependencies

• Restart your server

• Restore a database backup

Check ahead for upgrade issues

There is a precheck SQL script provided that performs various database checks to verify readiness for upgrade. The
precheck script works even with the OMERO server running so it may be used before downtime for the actual upgrade
is scheduled. Issues that the script reports will need to be resolved before the upgrade may proceed. The precheck
script will not make any changes to the database: it merely performs various precautionary checks also done by the
actual upgrade script.

$ cd OMERO.server
$ psql -h localhost -U db_user omero_database < sql/psql/OMERO5.4__0/OMERO5.3__
→˓1-precheck.sql
Password for user db_user:
...
...

status

+
+
+

YOUR DATABASE IS READY FOR UPGRADE TO VERSION OMERO5.4__0 +
+
+

(1 row)

Warning: The sql/psql/OMERO5.4__0/OMERO5.3__1-precheck.sql script referenced by the above psql
command assumes a planned upgrade from OMERO 5.3.4. If you are instead currently running OMERO 5.3.3 or an
earlier 5.3.x version then you perform the precheck by using the above command with sql/psql/OMERO5.4__0/
OMERO5.3__0-precheck.sql. That script verifies that the database contains no trace of 2017-SV5-filename-2
having been exploited; this vulnerability was fixed in OMERO 5.3.4.

2.3. Upgrading 177

https://www.openmicroscopy.org/security/advisories/2017-SV5-filename-2

OMERO, Release 5.6.5-SNAPSHOT-1

Perform a database backup

The first thing to do before any upgrade activity is to backup your database.

$ pg_dump -h localhost -U db_user -Fc -f before_upgrade.db.dump omero_database

Copy new binaries

Before copying the new binaries, stop the existing server:

$ cd OMERO.server
$ omero admin stop

Your OMERO configuration is stored using config.xml in the etc/grid directory under your OMERO.server direc-
tory. Assuming you have not made any file changes within your OMERO.server distribution directory, you are safe to
follow the following upgrade procedure:

$ cd ..
$ mv OMERO.server OMERO.server-old
$ unzip OMERO.server-5.6.4-ice36-byy.zip
$ ln -s OMERO.server-||version_omero_server|-ice36-byy OMERO.server
$ cp OMERO.server-old/etc/grid/config.xml OMERO.server/etc/grid

Note: byy needs to be replaced by the appropriate build number of OMERO.server.

Upgrade your database

Warning: This section only concerns users upgrading from a 5.3 or earlier server. If upgrading from a 5.4 or 5.5
server, you do not need to upgrade the database.

Ensure Unicode character encoding

OMERO requires a Unicode-encoded database; without it, the upgrade script aborts with a message warning how the
OMERO database character encoding must be UTF8. From psql:

SELECT datname, pg_encoding_to_char(encoding) FROM pg_database;
datname | pg_encoding_to_char

------------+---------------------
template1 | UTF8
template0 | UTF8
postgres | UTF8
omero | UTF8
(4 rows)

Alternatively, simply run psql -l and check the output. If your OMERO database is not Unicode-encoded with UTF8
then it must be re-encoded.

If you have the pg_upgradecluster command available then its --locale option can effect the change in encoding.
Otherwise, create a Unicode-encoded dump of your database: dump it as before but to a different dump file and with
an additional -E UTF8 option. Then, create a Unicode-encoded database for OMERO and restore that dump into it

178 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

with pg_restore, similarly to effecting a rollback. If required to achieve this, the -E UTF8 option is accepted by both
initdb and createdb.

Run the upgrade script

You must use the same username and password you have defined during OMERO.server installation. For a large
production system you should plan for the fact that the upgrade script may take several hours to run.

$ cd OMERO.server
$ psql -h localhost -U db_user omero_database < sql/psql/OMERO5.4__0/OMERO5.3__1.sql
Password for user db_user:
...
...

status

+
+
+

YOU HAVE SUCCESSFULLY UPGRADED YOUR DATABASE TO VERSION OMERO5.4__0 +
+
+

(1 row)

If you are upgrading from a server earlier than 5.3, then you must run the earlier upgrade scripts in sequence before
the one above. There is no need to download and run the server from an intermediate major release but you must still
study the upgrade instructions for earlier versions in case there are additional steps. For example, any optional SQL
scripts that affect the database probably run only on the specific version before the next upgrade script.

Note: If you perform the database upgrade using SQL shell, make sure you are connected to the database using
db_user before running the script. See this forum thread for more information.

Warning: The sql/psql/OMERO5.4__0/OMERO5.3__1.sql script referenced by the above psql command
assumes upgrade from OMERO 5.3.4. If you are instead currently running OMERO 5.3.3 or an earlier 5.3.x version
then you upgrade the database directly to OMERO 5.4.0 by using the above command with sql/psql/OMERO5.
4__0/OMERO5.3__0.sql.

Optimize an upgraded database (optional)

After you have run the upgrade script, you may want to optimize your database which can both save disk space and
speed up access times.

$ psql -h localhost -U db_user omero_database -c 'VACUUM FULL VERBOSE ANALYZE;'

2.3. Upgrading 179

https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=7778

OMERO, Release 5.6.5-SNAPSHOT-1

Merge script changes

If any new official scripts have been added under lib/scripts or if you have modified any of the existing ones, then
you will need to backup your modifications. Doing this, however, is not as simple as copying the directory over since
the core developers will have also improved these scripts.

For further information on managing your scripts, refer to OMERO.scripts. If you require help, please contact the OME
developers.

Update your environment variables and memory settings

Environment variables

If you changed the directory name where the 5.6.4 server code resides, make sure to update any system environment
variables. Before restarting the server, make sure your PATH system environment variable is pointing to the new location.
Also make sure the OMERODIR environment variable is set to the location of the server.

See Environment variables for more information.

JVM memory settings

Your memory settings should be copied along with etc/grid/config.xml, but you can check the current settings by
running omero admin jvmcfg. See Memory configuration for more information.

Dependencies

While upgrading the server you should keep OMERO.py dependencies up to date to ensure that security updates are
applied:

$ # first, activate virtualenv where omero-py is installed. Then upgrade:
$ pip install --upgrade 'omero-py>=5.11.2'

Restart your server

• Following a successful database upgrade, you can start the server.

$ omero admin start

• If anything goes wrong, please send the output of omero admin diagnostics to the forum.

Restore a database backup

If the upgraded database or the new server version do not work for you, or you otherwise need to rollback to a previous
database backup, you may want to restore a database backup. To do so, create a new database,

$ createdb -h localhost -U postgres -E UTF8 -O db_user omero_from_backup

restore the previous archive into this new database,

$ pg_restore -Fc -d omero_from_backup before_upgrade.db.dump

180 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/forums

OMERO, Release 5.6.5-SNAPSHOT-1

and configure your server to use it.

$ omero config set omero.db.name omero_from_backup

2.3.3 OMERO.web upgrade

The OME team is committed to providing frequent, project-wide upgrades with security fixes, bug fixes and new
functionality. We try to make the schedule for these releases as public as possible. You may want to take a look at the
Trello boards for exactly what will go into a release. See also OMERO.server upgrade.

See the full details of OMERO 5.6.4 features in the CHANGELOGS.

This guide aims to be as definitive as possible so please do not be put off by the level of detail; upgrading should be a
straightforward process.

Upgrade checklist

• Check prerequisites

• Upgrade

• Configuration

• Plugin updates

• Restart OMERO.web

• Troubleshooting

• Maintenance & Scaling

Check prerequisites

Before starting the upgrade, please ensure that you have reviewed and satisfied all the system requirements with correct
versions for installation.

Upgrade

Make sure you have activated the correct virtual environment then upgrade OMERO.web via pip:

$ pip install --upgrade 'omero-web>=5.14.0'

If the `omero-web` upgrade requires an upgrade to `omero-py` (e.g. for new features), this will happen automatically
above. However, even when an `omero-py` upgrade is not required, there may be some benefits to upgrading:

$ pip install --upgrade 'omero-py>=5.11.2'

2.3. Upgrading 181

https://trello.com/b/4EXb35xQ/getting-started

OMERO, Release 5.6.5-SNAPSHOT-1

Configuration

We now recommend that omero-web is installed in a separate python virtual environment.

If you are migrating to a new virtual environment, where $OMERODIR does not refer to a server with an existing config,
you will need to export and re-import the configuration from your previous installation.

OLD_INSTALLATION/bin/omero config get --show-password > properties.backup

omero-web virtual env
omero config load properties.backup

If you generated configuration stanzas using omero web configwhich enables OMERO.web via NGINX, you should
regenerate your config files, remembering to merge in any of your own modifications if necessary. You should carry
out this step even for minor version upgrades as there may be fixes which require it.

omero web config nginx > new.confg

More examples can be found under Configuration.

Plugin updates

OMERO.web plugins are very closely integrated into the webclient. For this reason, it is possible that an update of
OMERO will cause issues with an older version of a plugin. It is best when updating the server to also install any
available plugin updates according to their own documentation.

All official OMERO.web plugins can be installed from PyPI. You should remove all previously installed plugins and
install the latest versions using pip.

Restart OMERO.web

Finally, restart OMERO.web with the following command:

$ omero web restart

Troubleshooting

If you encounter errors during an OMERO.web upgrade, etc., you should retain as much log information as possible,
including the output of omero web diagnostics to the OMERO team via the mailing lists available on the support
page.

Maintenance & Scaling

If you have not already done so, there are a number of additional steps that can be performed on your OMERO.web
installation to improve its functioning. For example, you may need to set up a regular task to clear out any stale
OMERO.web session files. More information can be found in the various walkthroughs available from OMERO.web
installation and maintenance.

Additionally, it is recommended to use a WSGI-capable server such as NGINX. Information can be found under
OMERO.web installation and maintenance.

182 Chapter 2. System Administrator Documentation

https://pypi.org
https://www.openmicroscopy.org/support/

OMERO, Release 5.6.5-SNAPSHOT-1

2.4 Maintenance

This section contains instructions for administering, troubleshooting, and backing-up your installation.

2.4.1 Troubleshooting OMERO

Which user account and password do I use where?

Accounts table, including the example usernames and passwords used in the installation guides:

Account type Function Username Password
System Administrator/Root
System (Database) service account postgres
System (OMERO) service account omero_user
Database Database administrator postgres
Database Database user db_user db_password
OMERO OMERO administrator root root_password
OMERO OMERO users

Note: These example usernames and passwords are provided to help you follow the installation guide examples. Do
not use root_password or db_password; substitute your own passwords.

There are a total of three types of user accounts: system, database and OMERO accounts.

System accounts

These are accounts on your machine or directory server (e.g. LDAP, Active Directory). One account is used for
running the OMERO server (either your own or one you created specially for running OMERO, referred to here as
“omero_user”). There is also a user called the “root-level user” on the installation page. A separate “postgres” user is
used for running the database server. The “omero_user” account runs the OMERO server, and owns the files uploaded
to OMERO. This account must have permission to write to the /OMERO/ binary repository. Some operations in the
install scripts require the root-level/administrator-level privileges in order to use another account to perform particular
actions e.g. the “postgres” user to create a database. However the OMERO.server should never be run as the
root-level/administrator-level user or as the system-level “postgres” user.

Database accounts

The PostgreSQL database system contains user and administrative accounts; these are completely separate from the
system accounts, above, existing only inside the database. The database administrative user (“postgres”) is the owner
of all the database resources, and can create new users internal to the database. A single database account is used at
run time by OMERO to talk to your database. Therefore, you must configure the database values during installation:

$ omero config set omero.db.user db_user
$ omero config set omero.db.pass db_password

Note: Do not use db_user or db_password here; substitute your own username and password.

2.4. Maintenance 183

OMERO, Release 5.6.5-SNAPSHOT-1

A database user may have the same name as an account on your machine, in which case a password might not be
necessary.

OMERO accounts

These accounts only exist inside the OMERO system, and are completely separate from both the system and database
accounts, above. The first user which you will need to configure is the “root” OMERO user (different from any root-level
Unix account). This is done by setting the password in the database script, see Database tools.

Other OMERO users can be created via the OMERO.web admin tool. None of the passwords have to be the same, in
fact they should be different unless you are using the LDAP plugin.

Server fails to start

1. Check that you are able to successfully connect to your PostgreSQL installation as outlined on the PostgreSQL
page).

2. Check the permissions on your omero.data.dir (/OMERO by default) as outlined on the OMERO.server instal-
lation page.

3. Are you on a laptop? If you see an error message mentioning “node master couldn’t be reached”, you may be
suffering from a network address swap. Ice does not like to have its network changed as can happen if the server
is running on a laptop on wireless. If you lose connectivity to icegridnode, you may have to kill it manually via
kill PID or killall icegridnode (under Unix).

4. If you see an error message mentioning “Freeze::DatabaseException” or “could not lock file:
var/registry/__Freeze/lock”, your icegrid registry may have become corrupted. This is not a problem, but
it will be necessary to stop OMERO and delete the var/master directory (e.g. rm -rf var/master). When
restarting OMERO, the registry will be automatically re-created.

5. If you see an error message mentioning “Protocol family unavailable”, you will need to set the Ice.IPv6 property
with omero config set Ice.IPv6 0.

6. If you upgraded from a 5.0.2 server or older and copied the entire content of the etc/grid directory from the
old server to the new server, you will need to revert the changes made to templates.xml to generate the new
memory settings.

7. If OMERO starts up, but fails to respond to connection requests, check netstat -a for port 4064. If nothing is
listening on 4064, you may need to specify which network interface to use. omero config set Ice.Default.
Host 127.0.0.1, for example, would force OMERO to only listen on localhost. See Proxy and Endpoint Syntax
for more information.

Remote clients cannot connect to OMERO installation

OMERO.web connects but not OMERO.insight

The Admin section of OMERO.web appears to work properly and you may or may not have created some users, but no
matter what you do remote clients will not speak to OMERO. OMERO.insight gives you an error message similar to
the following despite giving the correct username and password:

This is often due to firewall misconfiguration on the machine that runs your OMERO server, affecting the ability of
remote clients to locate it. A common issue is when port TCP/4064 and/or TCP/4063 is not opened, run telnet
server-name 4064 (resp. 4063) to check if this is the case. The output of the command should be:

184 Chapter 2. System Administrator Documentation

https://trac.openmicroscopy.org/ome/ticket/7325
https://trac.openmicroscopy.org/ome/ticket/5576
https://trac.openmicroscopy.org/ome/ticket/7325
https://trac.openmicroscopy.org/ome/ticket/7325
https://trac.openmicroscopy.org/ome/ticket/12527
https://trac.openmicroscopy.org/ome/ticket/12527
https://doc.zeroc.com/ice/3.6/client-side-features/proxies/proxy-and-endpoint-syntax

OMERO, Release 5.6.5-SNAPSHOT-1

Trying server-name...
Connected to server-name.
Escape character is '^]'

Please see the Server security and firewalls page for more information.

SSL connection issues

Deployment platforms show a trend of making the transport layer security policy tighter by default. The recommended
way to overcome SSL connection issues for OMERO clients connecting to the server is to employ the omero-certificates
plugin available from PyPI:

omero certificates

Restart the OMERO.server as normal for the changes to take effect.

An alternative approach is to add the parameter @SECLEVEL=0 to the server SSL configuration.

Server crashes with. . .

• X11 connection rejected because of wrong authentication

• X connection to localhost:10.0 broken (explicit kill or server shutdown).

OMERO uses image scaling and processing techniques that may be interfered with when used with SSH (Secure Shell)
X11-forwarding. You should disable SSH X11-forwarding in your SSH session by using the -x flag as follows before
you restart the OMERO.server:

ssh -x my_server.examples.com

OutOfMemoryError / PermGen space errors in OMERO.server logs

Out of memory or permanent generation (PermGen) errors can be caused by many things. You may be asking too much
of the server. Or you may require an increase in the maximum Java heap or the permanent generation space. This can
be done by modifying the configuration for your OMERO.server. See Memory configuration.

Similarly, if you are finding out of memory errors in one of the other process logs (e.g. Indexer-0.log or
PixelData-0.log), you might try optimizing the JVM memory settings.

Furthermore, under certain conditions access of images greater than 4GB can be problematic on 32-bit platforms due
to certain bugs within the Java Virtual Machine including Bug ID: 4724038. A 64-bit platform for your OMERO.server
is HIGHLY recommended.

2.4. Maintenance 185

https://pypi.org/project/omero-certificates/
https://pypi.org
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=4724038

OMERO, Release 5.6.5-SNAPSHOT-1

Too many open files

This is most often seen as an error during importing and is caused by the number of opened files exceeding the limit
imposed by your operating system. It might be due to OMERO leaking file descriptors; if you are not using the latest
version, please upgrade, since a number of bugs which could cause this behavior have been fixed. It is also possible
for buggy scripts which do not properly release resources to cause this error.

To view the current per-process limit, run

ulimit -Hn

which will show the hard limit for the maximum number of file descriptors (-Sn will show the soft limit). This limit
may be increased. On Linux, see /etc/security/limits.conf (global PAM per-user limits configuration); it is
also possible to increase the limit in the shell with

ulimit -n newlimit

providing that you are uid 0 (other users can only increase the soft limit up to the hard limit). To view the system limit,
run

cat /proc/sys/fs/file-max

We recommend 8K as a minimum number of files limit for production systems, with 16K being reasonable for
bigger machines.
On Mac OS X, the standard ulimit will not work properly. There are several different ways of setting the ulimit,
depending upon the version of OS X you are using, but the most common are to edit sysctl.conf or launchd.conf
to raise the limit. However, note that both of these methods change the defaults for every process on the system, not
just for a single user or service.

Increasing the number of available filehandles via ‘ulimit -n’

ValueError: filedescriptor out of range in select() - this is a known issue in Python versions prior to 2.7.0. See #6201
and Python Issue #3392 for more details.

Directory exists but is not registered

Import errors of type Directory exists but is not registered: CheckedPath(username_id) suggest a
server-side issue under the ManagedRepository.

For production servers, this can be caused by a server crash during import or an issue at the file system level (permis-
sions, renaming). If the ManagedRepository/username_id folder is empty, you should try removing it before trying
another import.

For development servers, this may be caused by the binary directory not being cleaned after the database has been
wiped.

See also:
Upload problem: Directory exists but is not registered.

import: Directory exists but is not registered: CheckedPath(

[ome-devel] Directory exists but is not registered: CheckedPath(username_id)

186 Chapter 2. System Administrator Documentation

https://trac.openmicroscopy.org/ome/ticket/6201
https://bugs.python.org/issue3392
https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=7537
https://www.openmicroscopy.org/community/viewtopic.php?f=6&t=7722&p=15264&hilit=CheckedPath#p15264
http://lists.openmicroscopy.org.uk/pipermail/ome-devel/2014-October/003020.html

OMERO, Release 5.6.5-SNAPSHOT-1

Not enough heap space

java.lang.OutOfMemoryError: Java heap space

If you get an out of memory error, you can try increasing the maximum Java heap space, by setting the JAVA_OPTS
variable before running the import command. For example to set a maximum heap space of 3GB:

$ export JAVA_OPTS=-Xmx3G
$ omero import ...

Another change that may be required is to adjust the OMERO.server configuration. Run the following command:

$ omero config set omero.jvmcfg.percent 22 # 15 is the default

Then restart the OMERO.server.

DropBox fails to start: failed to get session

If the main server starts but DropBox fails with the following entry in var/log/DropBox.log,

2011-06-07 03:42:56,775 ERROR [fsclient.DropBox] (MainThread) Failed to get␣
→˓Session:

then it may be that the server is taking a relatively long time to start.

A solution to this is to increase the number of retries and/or the period (seconds) between retries in etc/grid/
templates.xml

<property name="omero.fs.maxRetries" value="5"/>
<property name="omero.fs.retryInterval" value="3"/>

Search does not return expected results

If searching for a specific term does not return the expected results (e.g. searching for the name of a tag does not return
the full list of a user’s images annotated with that tag), there are a few things that may have gone wrong. See Missing
search results for more details.

OMERO.web issues

OMERO.web running but status says not started

If you upgraded OMERO but forgot to stop OMERO.web, processes will still be running. In order to kill stale processes
by hand, run:

$ ps aux | grep django.pid

Note: As Gunicorn is based on the pre-fork worker model it is enough to kill the master process, the one with the
lowest PID.

2.4. Maintenance 187

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.web not available HTTP 404

Consult nginx error.log for more details.

The most common problem appears when the default configuration for location / is loaded prior to omeroweb.conf

2016/01/01 00:00:00 [error] 1234#0: *5 "/usr/share/nginx/html/webclient/login/index.html
→˓" is not found (2: No such file or directory), client: 1.2.3.4, server

OMERO.web not responding/timeout issues

[CRITICAL] WORKER TIMEOUT (pid:1234)

OMERO.web deployed with Gunicorn relies on the operating system to provide all of the load balancing while handling
requests. Adjust the timeout using omero.web.wsgi_timeout and scale the number of omero.web.wsgi_workers
starting with (2 x NUM_CORES) + 1 workers. For more details refer to Configuration.

Issues with downloading data from OMERO.web

An Configuration is available for testing with nginx if you are encountering problems with downloads failing. You can
also configure OMERO.web to limit downloads - refer to the OMERO.web installation and maintenance documentation
and Download restrictions for further details.

OMERO.web piecharts

‘Drive space’ does not generate pie chart or ‘My account’ does not show markup picture and crop the picture options.

Error message says: ‘Piechart could not be displayed. Please check log file to solve the problem’. Please check var/
log/OMEROweb.log for more details. There are a few known possibilities:

• ‘TclError: no display name and no $DISPLAY environment variable’. Turn off the compilation of TCL support
in Matplotlib.

• ‘ImportError: No module named Image’. Install Pillow (packages should be available for your distribution).
Also double check if all of the prerequisites were installed from OMERO.web deployment.

Troubleshooting performance issues with the clients

If you are having issues with slowdown and timeouts in the clients, there are three things to check:

• your network connection

• if you are running out of memory (processing large datasets can cause problems)

• whether your server’s HOME directory is on a network share

In the final case, two issues arise. Firstly, when performing some operations, the clients make use of temporary file
storage and log directories, as described in the Client configuration section of System requirements. If your home
directory is stored on a network, possibly NFS mounted (or similar), then these temporary files are being written and
read over the network which can slow access down. Secondly, the OMERO.server also accesses the temporary and log
folders of the user the server process is running as. As the server makes heavier use of these folders than the clients, if
the OMERO.server user directory is stored on a network drive then slow performance can occur.

188 Chapter 2. System Administrator Documentation

https://matplotlib.org/
https://pillow.readthedocs.org

OMERO, Release 5.6.5-SNAPSHOT-1

To resolve this, define the OMERO_TMPDIR environment variable to point at a temporary directory located on the local
file system (e.g. /tmp/omero).

Other issues

Connection problems and TCP window scaling on Linux systems

Later versions of the 2.6 Linux kernel, specifically 2.6.17, have TCP window scaling enabled by default. If you are
having initial logins never timeout or problems with connectivity in general you can try turning the feature off as follows:

echo 0 > /proc/sys/net/ipv4/tcp_window_scaling

Server or clients print “WARNING: Prefs file removed in background. . . ”

Nov 12, 2008 3:02:50 PM java.util.prefs.FileSystemPreferences$7 run
WARNING: Prefs file removed in background /root/.java/.userPrefs/prefs.xml
Nov 12, 2008 3:02:50 PM java.util.prefs.FileSystemPreferences$7 run
WARNING: Prefs file removed in background /usr/lib/jvm/java-1.7.0-icedtea-1.7.0.0/jre/.
→˓systemPrefs/prefs.xml

These warnings (also sometimes listed as ERRORS) can be safely ignored, and are solely related to how Java is installed
on your system. See Bug ID: 4751177 or this ome-users thread on our mailing list for more information.

Data corruption

If you are dealing with a data corruption issue, you may find the information on PixelService resolution order for
locating binary data for images useful.

PyTables version

Version 3.3 of PyTables contains a bug preventing its usage, see issue #598 . PyTables on Debian 9 should be installed
directly from PyPI instead of using python-tables. To install, run:

$ pip install 'tables<3.6'

2.4.2 OMERO.cli as an OMERO admin tool

When first beginning to work with the OMERO server, the omero db, omero config, and omero admin commands
will be the first you will need. For other important uses of Command Line see the links in “See Also” box.

2.4. Maintenance 189

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=4751177
http://lists.openmicroscopy.org.uk/pipermail/ome-users/2009-March/001465.html
https://github.com/PyTables/PyTables/issues/598#issuecomment-274154131
https://pypi.org

OMERO, Release 5.6.5-SNAPSHOT-1

Database tools

Rather than try to provide the functionality of a RDBM tool like psql, the omero db script command helps to
generate SQL scripts for building your database. You can then use those scripts from whatever tool is most comfortable
for you:

$ omero db script --password secretpassword

Using OMERO5.4 for version
Using 0 for patch
Using password from commandline
Saving to /home/omero/OMERO5.4__0.sql

If you do not specify the OMERO root password on the command line you will be prompted to enter it.

Server configuration

The omero config command is responsible for reading/writing user-specific profiles stored under $OMERODIR/etc/
grid/config.xml. To get the current profile, use the omero config def command:

$ omero config def
default

You can then examine the current profile keys using omero config get and set key-value pairs using omero config
set:

$ omero config get

$ omero config set example "my first value"

$ omero config get
example=my first value

You can use the OMERO_CONFIG environment variable to point at a different profile, e.g.:

$ OMERO_CONFIG=another omero config def
another

$ OMERO_CONFIG=another omero config get

$ OMERO_CONFIG=another omero config set example "my second value"

$ OMERO_CONFIG=another omero config get
example=my second value

The values set via omero config set override those compiled into the server jars. The default values which are
set can be seen in Configuration properties glossary. To add several values to a configuration, you can pipe them via
standard in using omero config load. To grep for the example LDAP configuration from omero-server.properties

$ grep omero.ldap src/main/resources/omero-server.properties | OMERO_CONFIG=ldap omero␣
→˓config load

$ OMERO_CONFIG=ldap omero config get
(continues on next page)

190 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/omero-server.properties

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

omero.ldap.attributes=objectClass
omero.ldap.base=ou=example,o=com
omero.ldap.config=false
omero.ldap.groups=
omero.ldap.keyStore=
omero.ldap.keyStorePassword=
omero.ldap.new_user_group=default
omero.ldap.password=
omero.ldap.protocol=
omero.ldap.trustStore=
omero.ldap.trustStorePassword=
omero.ldap.urls=ldap://localhost:389
omero.ldap.username=
omero.ldap.values=person

Each of these values can then be modified to suit your local setup. To remove one of the key-value pairs, pass no second
argument:

$ OMERO_CONFIG=ldap omero config set omero.ldap.trustStore

$ OMERO_CONFIG=ldap omero config set omero.ldap.trustStorePassword

$ OMERO_CONFIG=ldap omero config set omero.ldap.keyStore

$ OMERO_CONFIG=ldap omero config set omero.ldap.keyStorePassword

$ OMERO_CONFIG=ldap omero config get
omero.ldap.attributes=objectClass
omero.ldap.base=ou=example,o=com
omero.ldap.config=false
omero.ldap.groups=
omero.ldap.new_user_group=default
omero.ldap.password=
omero.ldap.protocol=
omero.ldap.urls=ldap://localhost:389
omero.ldap.username=
omero.ldap.values=person

If you will be using a particular profile more frequently you can set it as your default using the omero config def
command:

$ omero config def ldap

And finally, if you would like to remove a profile, for example to wipe a given password off of a system, use omero
config drop:

$ omero config drop

2.4. Maintenance 191

OMERO, Release 5.6.5-SNAPSHOT-1

Server administration

Server start

Once your database has been properly configured and your config profile is set to use that database, you are ready to
start your server using the omero admin start command:

$ omero admin start

This command performs the following operations in order:

1. rewrites the configuration files if omero admin start --force-rewrite is passed or the server has never
been started

2. checks the server status, i.e. pings the master node using the IceGrid administration tool

3. aborts the command if a server is running

4. rewrites the configuration files if it has not been done at step 1

5. starts the server

6. waits until the server is up

Most configuration files under etc/grid are generated using the templates under etc/grid/templates and the
server configuration stored in etc/grid/config.xml. The rewriting step updates the JVM memory settings (see
Memory configuration) and the server ports (see Ports) based on the server configuration.

-h, --help

Display the help for this subcommand.

--foreground

This option is particularly useful for debugging and maintenance and allows for starting the server up in the
foreground, that is without creating a daemon on UNIX-like systems. During the lifetime of the server, the
prompt from which it was launched will be blocked.

--force-rewrite

This option forces the server configuration files under etc/grid to be rewritten before the status of the server
is checked.

Server stop

To stop a running server, you can invoke the omero admin stop subcommand:

$ omero admin stop

This command does the following operations in order:

1. rewrites the server configuration files if omero admin stop --force-rewrite is passed

2. checks the server status, i.e. pings the master node using the IceGrid administration tool

3. aborts the command if no server is running

4. stops the server

5. waits until the server is down

-h, --help

Display the help for this subcommand.

192 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

--force-rewrite

This option forces the configuration files to be rewritten before the server status is checked.

Server restart

To stop and start the server in a single command, you can use the omero admin restart command:

$ omero admin restart

The restart subcommand supports the same options as omero admin start.

Server diagnostics

To debug a server or inspect the configuration, you can use the omero admin diagnostics command:

$ omero admin diagnostics

The output of this command will report information about:

• the server prerequisites (psql, java)

• the server environment variables

• the server memory settings and ports

• the status of the binary repository

User/group management

The omero user and omero group commands provide functionalities to add and manage users and groups on your
database.

See also:
• Moving objects between groups

• Changing ownership of objects

User creation

New users can be added to the database using the omero user add command:

$ omero user add -h

During the addition of the new user, you will need to specify the first and last name of the new user and their username
as well as the groups the user belongs to. To add John Smith identified as jsmith as a member of the group named
test-group, enter:

$ omero user add jsmith John Smith --group-name test-group

Additional parameters such as the email address, institution, middle name etc. can be passed as optional arguments to
the omero user add command.

2.4. Maintenance 193

OMERO, Release 5.6.5-SNAPSHOT-1

For managing the permissions of restricted administrators, OMERO.cli does provide means but that functionality is not
yet offered in a friendly manner by the omero user command. The OMERO.web Admin interface is recommended
for this task instead.

If you are using ldap as an authentication backend, you can create an OMERO user account for jsmith using the omero
ldap create command, which allows the administrator to add jsmith to an OMERO group, before they have ever
logged in to OMERO:

$ omero ldap create jsmith

Converting non-LDAP users to LDAP authentication

If you want to take an existing (non-LDAP) user and ‘upgrade’ them to using LDAP you can do so using the omero
ldap setdn command:

$ omero ldap setdn -h

The process is also reversible so that the OMERO password for a user rather than the LDAP password will be used.
See the caveat in the setdn help output below:

usage: omero ldap setdn [-h] [--user-id USER_ID]
[--user-name USER_NAME]
[--group-id GROUP_ID]
[--group-name GROUP_NAME] [-C]
[-s SERVER] [-p PORT] [-g GROUP]
[-u USER] [-w PASSWORD] [-k KEY]
[--sudo ADMINUSER] [-q]
choice

Enable or disable LDAP login for user (admins only)

Once LDAP login is enabled for a user, the password set via OMERO is
ignored, and any attempt to change it will result in an error. When
you disable LDAP login, the previous password will be in effect, but if the
user never had a password, one will need to be set!

Positional Arguments:
choice Enable/disable LDAP login (true/false)

Optional Arguments:
In addition to any higher level options

-h, --help show this help message and exit
--user-id USER_ID ID of the user.
--user-name USER_NAME Name of the user.
--group-id GROUP_ID ID of the group.
--group-name GROUP_NAME Name of the group.

Login arguments:
Environment variables:

OMERO_USERDIR Set the base directory containing the user's files.
Default: $HOME/omero

(continues on next page)

194 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager#lightadmin

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

OMERO_SESSIONDIR Set the base directory containing local sessions.
Default: $OMERO_USERDIR/sessions

OMERO_TMPDIR Set the base directory containing temporary files.
Default: $OMERO_USERDIR/tmp

OMERO_PASSWORD Set the user's password for creating new sessions.
Ignored if -w or --password is used.

Optional session arguments:

-C, --create Create a new session regardless of existing ones
-s SERVER, --server SERVER OMERO server hostname
-p PORT, --port PORT OMERO server port
-g GROUP, --group GROUP OMERO server default group
-u USER, --user USER OMERO username
-w PASSWORD, --password PASSWORD OMERO password
-k KEY, --key KEY OMERO session key (UUID of an active session)
--sudo ADMINUSER Create session as this admin. Changes meaning of␣

→˓password!
-q, --quiet Quiet mode. Causes most warning and diagnostic␣

→˓messages to be suppressed.

User deactivation

To deactivate a user, remove him/her from the system group user. Use the command omero user leavegroup and
specify the user group as the target:

Remove jsmith from group user
$ omero user leavegroup user --name=jsmith

To reactivate the user, add him/her back to the system group user i.e.:

$ omero user joingroup user --name=jsmith

User editing

Updating the details of a user e.g. the email address can be achieved using the omero obj update command:

Determine the ID of jsmith
$ omero user info --user-name jsmith
Change the email address of jsmith. Replace 123 by the ID of jsmith
$ omero obj update Experimenter:123 email=jsmith@new_address.com

2.4. Maintenance 195

OMERO, Release 5.6.5-SNAPSHOT-1

Group creation

New groups can be added to the database using the omero group add command:

$ omero group add -h

During the addition of the new group, you need to specify the name of the new group:

$ omero group add newgroup

The permissions of the group are set to private by default. Alternatively you can specify the permissions using --perms
or --type optional arguments:

$ omero group add read-only-1 --perms='rwr---'
$ omero group add read-annotate-1 --type=read-annotate

See also:
Groups and permissions system Description of the group permissions levels.

Lists of users/groups on the OMERO server can be queried using the omero user list and omero group list
commands:

$ omero user list
$ omero group list

Group membership

Users can be added to existing groups using the omero user joingroup or omero group adduser commands.
Similarly, users can be removed from existing groups using the omero user leavegroup or omero group
removeuser commands:

Add jsmith to group read-annotate-1
$ omero group adduser jsmith --name=read-annotate-1
Remove jsmith from group read-annotate-1
$ omero group removeuser jsmith --name=read-annotate-1
Add jsmith to group read-only-1
$ omero user joingroup read-only-1 --name=jsmith
Remove jsmith from group read-only-1
$ omero user leavegroup read-only-1 --name=jsmith

By passing the --as-owner option, these commands can also be used to manage group owners

Add jsmith to the owner list of group read-annotate-1
$ omero group adduser jsmith --name=read-annotate-1 --as-owner
Remove jsmith from the owner list of group read-annotate-1
$ omero user leavegroup read-annotate-1 --name=jsmith --as-owner

196 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Group copy

To create a copy of a group, you must first create a new group using the omero group add command:

$ omero group add read-only-2 --perms='rwr---'

Then you can use the omero group copyusers command to copy all group members from one group to another:

$ omero group copyusers read-only-1 read-only-2

To copy the group owners, use the same command with the --as-owner optional argument:

$ omero group copyusers read-only-1 read-only-2 --as-owner

Group modification

To change the permissions of a group, for example to make the group read-annotate-1 a read-write group, run:

$ omero group perms --perms='rwrw--' --name='read-annotate-1'

If you want to change its name to read-write-1 afterwards, run:

$ omero obj update ExperimenterGroup:123 name='read-write-1'

Adjusting administrator restrictions

OMERO 5.4 introduced the concept of a restricted administrator. The meaning and representation of the server’s
underlying permissions restrictions is described in developer documentation. OMERO.web offers easy management
of restrictions and is recommended for setting up restricted administrators via its Admin tab.

OMERO.cli does not offer easy management of restrictions because support is yet to be added. In the meantime it can
already manipulate administrator restrictions in the awkward manner described hereunder.

Warning: OMERO.web provides a simplified view of the available restrictions: the permissions mapping is
such that checking one box in the web interface may lift multiple underlying restrictions from an administrator.
The recommended OMERO.web management interface may thus prove confusing if OMERO.cli has been used
to set a combination of restrictions that does not correspond to those bundles of related restrictions available in
OMERO.web.

View an administrator’s restrictions

For an administrator with user ID 123,

$ omero hql "SELECT ap.name FROM Experimenter user JOIN user.config AS ap WHERE user.id␣
→˓= 123 AND ap.name LIKE 'AdminPrivilege:%' AND LOWER(ap.value) <> 'true' ORDER BY ap.
→˓name"

lists their applicable restrictions such that the administrator may not exercise privileges for that operation.

2.4. Maintenance 197

https://help.openmicroscopy.org/facility-manager#lightadmin

OMERO, Release 5.6.5-SNAPSHOT-1

Set a restriction on an administrator

For an administrator with user ID 123,

$ omero obj map-set Experimenter:123 config AdminPrivilege:SomePrivilege false

restricts them so that they may no longer exercise SomePrivilege.

Clear a restriction from an administrator

For an administrator with user ID 123,

$ omero obj map-set Experimenter:123 config AdminPrivilege:SomePrivilege true

removes a restriction so that they may exercise SomePrivilege.

Note: You may not clear a restriction from an administrator if you have that same restriction applying to yourself.

Warning: Never clear AdminPrivilege:ReadSession from a restricted administrator unless clearing all their re-
strictions to make them into a full administrator. No restricted administrator should be able to read all OMERO
sessions.

Repository management

Since 5.0.3 it is possible to list images, filesets and the repositories that contain them. At an administrator-only level it
is also possible to move filesets. This functionality is provided by the omero fs command. See

$ omero fs -h

Listing repositories

The omero fs repos subcommand lists the repositories used by OMERO. For example

omero fs repos

| Id | UUID | Type | Path
---+----+--------------------------------------+---------+--------------------------
0 | 1 | 83bf5c68-8236-47ff-ae3e-728674eb0103 | Managed | /OMERO/ManagedRepository
1 | 2 | ad899754-bff0-4605-a234-acd4da178f3b | Public | /OMERO
2 | 3 | ScriptRepo | Script | /dist/lib/scripts

The options available to this subcommand are:

-h, --help

Display the help for this subcommand.

198 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

--style {plain,csv,json,sql}

This option determines the output style, tabular sql being the default as in the previous example. The csv style
is comma-separated values with an initial header row, plain is the same as csv but without the header row. json
returns an array of JSON objects that can be piped to other tools.

--managed

This option lists only Managed repositories.

For example

omero fs repos --managed --style=csv

#,Id,UUID,Type,Path
0,1,83bf5c68-8236-47ff-ae3e-728674eb0103,Managed,/OMERO/ManagedRepository

Listing filesets

The omero fs sets subcommand lists filesets by various criteria. Filesets are bundles of original data imported into
OMERO 5 and above, which represent one or more images. For example

omero fs sets

| Id | Prefix | Images | Files | Transfer
----+-------+-----------------------------------+--------+-------+----------
0 | 79853 | user-3_9/2014-07/22/16-41-04.244/ | 1 | 1 |
1 | 79852 | user-3_9/2014-07/22/10-44-11.235/ | 1 | 1 |
2 | 79851 | user-3_9/2014-07/22/10-44-07.300/ | 1 | 1 |
3 | 79813 | user-3_9/2014-07/21/14-13-02.353/ | 1 | 1 |
4 | 79812 | user-3_9/2014-07/21/14-13-00.182/ | 1 | 1 |
5 | 79811 | user-3_9/2014-07/21/14-12-59.212/ | 1 | 1 |
6 | 79810 | user-3_9/2014-07/21/14-12-57.896/ | 1 | 1 |
7 | 79809 | user-3_9/2014-07/21/14-10-22.436/ | 3 | 600 |
...
24 | 79772 | user-4_5/2014-07/18/17-14-43.631/ | 1 | 1 |
(25 rows, starting at 0 of approx. 50173)

The options available to this subcommand are:

-h, --help

Display the help for this subcommand.

--style {plain,csv,json,sql}

See omero fs repos --style.

--limit LIMIT

This option specifies the maximum number of return values, the default is 25.

--offset OFFSET

This option specifies the number of entries to skip before starting the listing, the default, 0, is to skip no entries.

--order {newest,oldest,prefix}

This option determines the order of the rows returned, newest is the default.

--without-images

This option lists only those filesets without images, these may be corrupted filesets.

2.4. Maintenance 199

OMERO, Release 5.6.5-SNAPSHOT-1

--with-transfer WITH_TRANSFER [WITH_TRANSFER ...]

This option lists only those filesets imported using the given in-place import methods.

--check

This option checks each fileset for validity by recalculating each file’s checksum and comparing it with the
checksum recorded upon import. This may be slow. This option is available to administrators only.

--extended

With this option more details are provided for each returned value. This may be slow.

For example

omero fs sets --order oldest --limit 3 --offset 5 --check

| Id | Prefix | Images | Files | Transfer | Check
---+----+-----------------------------------+--------+-------+----------+-------
0 | 54 | user-3_9/2014-06/09/09-24-28.037/ | 1 | 1 | | OK
1 | 55 | user-3_9/2014-06/09/09-24-31.354/ | 1 | 1 | | OK
2 | 57 | user-5_4/2014-06/09/11-01-00.557/ | 1 | 1 | | OK
(3 rows, starting at 5 of approx. 78415)

Listing images

The omero fs images subcommand lists imported images by various criteria. This subcommand is useful for show-
ing pre-FS (i.e. OMERO 4.4 and before) images which have their original data archived with them. For example

omero fs images

| Image | Name | FS | # Files | Size
----+--------+-----------------------------------+-------+---------+----------
0 | 102803 | kidney_TFl_1.bmp.ome.tiff | 79853 | 1 | 435.1 KB
1 | 102802 | 4kx4k.jpg | 79852 | 1 | 1.7 MB
2 | 102801 | 2kx2k.jpg | 79851 | 1 | 486.3 KB
3 | 102773 | multi-channel.ome.tif | 79813 | 1 | 220.3 KB
4 | 102772 | multi-channel-z-series.ome.tif | 79812 | 1 | 1.1 MB
5 | 102771 | multi-channel-time-series.ome.tif | 79811 | 1 | 1.5 MB
6 | 102770 | multi-channel-4D-series.ome.tif | 79810 | 1 | 7.4 MB
7 | 102769 | 001_001_000_000.tif [Well B6] | 79809 | 600 | 1.1 GB
...
24 | 102732 | 00027841.png | 79774 | 1 | 235 B
(25 rows, starting at 0 of approx. 117393)

The options available to this subcommand are:

-h, --help

Display the help for this subcommand.

--style {plain,csv,json,sql}

See omero fs repos --style.

--limit LIMIT

See omero fs sets --limit.

--offset OFFSET

See omero fs sets --offset.

200 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

--order {newest,oldest,prefix}

See omero fs sets --order.

--archived

With this option the subcommand lists only images with archived data.

--extended

With this option more details are provided for each returned value. This may be slow.

For example

omero fs images --archived --offset 16 --limit 3

| Image | Name | FS | # Files | Size
---+-------+---------------------------+----+---------+---------
0 | 15481 | UMD001_ORO.svs [Series 1] | | 1 | 12.7 MB
1 | 15478 | biosamplefullframetif.tif | | 1 | 32.0 MB
2 | 10018 | 050118.lei [07-13-a] | | 4 | 4.8 MB
(3 rows, starting at 16 of approx. 833)

Renaming filesets

The omero fs rename subcommand moves an existing fileset, specified by its ID, to a new location. This subcom-
mand is available to administrators only.
It may be useful to rename an existing fileset after the import template (omero.fs.repo.path) has been changed to
match the new template. By default the files in the fileset and the accompanying import log are moved. For example,
after adding the group name and group ID to template and changing the date format

$ omero fs rename 9

Renaming Fileset:9 to pg-0_3/user-0_2/2014-07-23/16-48-20.786/
Moving user-0_2/2014-07/23/16-31-51.070/ to pg-0_3/user-0_2/2014-07-23/16-48-20.786/
Moving user-0_2/2014-07/23/16-31-51.070.log to pg-0_3/user-0_2/2014-07-23/16-48-20.786.
→˓log

The ID can be given as a number or in the form Fileset:ID.

The options available to this subcommand are:

-h, --help

Display the help for this subcommand.

--no-move

With this option the files will be left in place to be moved later. Advice will be given as to which files need to be
moved to complete the renaming process. Note that if the files are not moved then the renamed filesets will not
be accessible until the files have been moved into the new positions.

For example

$ omero fs rename Fileset:8 --no-move

Renaming Fileset:8 to pg-0_3/user-0_2/2014-07-23/16-49-23.543/
Done. You will now need to move these files manually:

(continues on next page)

2.4. Maintenance 201

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

mv /OMERO/ManagedRepository/user-0_2/2014-07/23/16-29-14.809/ /OMERO/ManagedRepository/
→˓pg-0_3/user-0_2/2014-07-23/16-49-23.543/
mv /OMERO/ManagedRepository/user-0_2/2014-07/23/16-29-14.809.log /OMERO/
→˓ManagedRepository/pg-0_3/user-0_2/2014-07-23/16-49-23.543.log

Note: The omero fs rename subcommand is currently disabled pending a bug-fix.

Detailing disk usage

The omero fs usage subcommand provides details of the underlying disk usage for various types of objects. This
subcommand takes optional positional arguments of object types with ids and returns the total disk usage of the specified
objects.

For example

omero fs usage Image:30001,30051 Plate:1051 --report

Total disk usage: 1064320138 bytes in 436 files
component | size (bytes) | files
--------------+--------------+-------
Thumbnail | 582030 | 256
Job | 1772525 | 2
Pixels | 49545216 | 12
FilesetEntry | 1011947729 | 124
Annotation | 472638 | 42
(5 rows)

If no positional argument is given then the total usage for the current user across all of that user’s groups is returned.

For example

omero fs usage --report

Total disk usage: 4526436430274 bytes in 26078 files
component | size (bytes) | files
--------------+---------------+-------
Pixels | 14654902013 | 2961
FilesetEntry | 4510839804505 | 8820
Thumbnail | 17337131 | 8110
Job | 265665153 | 2792
OriginalFile | 1757277 | 109
Annotation | 13167582976 | 3910
(6 rows)

If multiple objects are given and those objects contain common data then that usage will not be counted twice. For
example, if two datasets contain the same image then the fileset for that image will not be double-counted in the total
disk usage.

The options available to this subcommand are:

-h, --help

Display the help for this subcommand.

202 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

--style {plain,csv,json,sql}

See omero fs repos --style.

--wait WAIT

Number of seconds to wait for the processing to complete. To wait indefinitely use < 0, for no wait use 0. The
default is to wait indefinitely.

--size_only

Print total bytes used, in bytes, with no extra text, this is useful for automated scripting.

--report

Print detailed breakdown of disk usage by types of files. This option is ignored if –size_only is used.

--units {K,M,G,T,P}

Units to use for disk usage for the total size using base-2. The default is bytes.

--groups

Print size for all of the current user’s groups, this includes the user’s own data and the data of other group members
visible to the user. This option only applies if no positional arguments are given.

For example

omero fs usage --groups --size_only -C -u user-1

4576108188820

omero fs usage Project:1,2 Dataset:5 --units M --report

Total disk usage: 1432 MiB in 121 files
component | size (bytes) | files
------------+--------------+-------
Thumbnail | 73710 | 34
Pixels | 1499341282 | 34
Annotation | 3000028 | 53
(3 rows)

Creating directories

For directory creation in a Managed repository use omero fs mkdir: this creates both the directory on the underlying
filesystem and the corresponding entry in the OMERO server’s database. The new directory will be owned by the root
user and in the user group. The options available to this subcommand are:

-h, --help

Display the help for this subcommand.

--parents

Ensure that the whole given path exists in the Managed repository. Analogous to the common mkdir’s
--parents option, originally simply -p in IEEE Std 1003.1-2008.

See also:
Command Line Interface as an OMERO client User documentation for the Command Line Interface

Command Line Interface as an OMERO development tool Developer Documentation for the Command Line Inter-
face

2.4. Maintenance 203

OMERO, Release 5.6.5-SNAPSHOT-1

Help for any specific CLI command can be displayed using the -h argument. See Command line help for more infor-
mation.

2.4.3 OMERO.server backup and restore

Cleaning up your binary repository

As detailed in Binary data, it is possible that some files may be left behind when a delete action is performed. This was
mostly an issue on Windows, which is no longer supported for OMERO server, but is still possible on Posix systems. If
you think files have been left behind e.g. after a hard-reboot, a script to clean these up is included in the OMERO.server
distribution lib/python/omero/util/cleanse.py, which can be used so:

$ omero admin cleanse /OMERO

Note that only items not listed in the relational database (i.e. previously failed deletes) and empty directories will be
cleaned up by this script.

Note: If you are cleaning a large repository and the process runs for a long time but does not appear to succeed,
you may find that running $ omero sessions keepalive in one shell and then running the cleanse command from
another shell allows the process to finish without timing out.

Managing OMERO.server log files

Your OMERO.server will produce log files that are rotated when they reach 512MB. These directories will look like:

omero_dist $ ls var/log
Blitz-0.log FileServer.log MonitorServer.log Processor-0.log master.out
DropBox.log Indexer-0.log OMEROweb.log master.err

Any files with a .1, .2, .3 etc. suffix may be compressed or deleted.

OMERO.server log file location

The log file directory may also be relocated to different storage by modifying the etc/grid/default.xml file:

...
<variable name="OMERO_LOGS" value="var/log/"/>
...

Backing up OMERO

Understanding backup sources

OMERO.server has three main backup sources:

1. PostgreSQL database (assumed to be omero_database)

2. OMERO.server binary data store (assumed to be /OMERO)

3. OMERO.server configuration

204 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Warning: You must back up (1) and (2) frequently.

Frequent backups taken while the server is still running are usually sufficient but you should be aware that they may
not be consistent snapshots. The safest course of action is to perform backups during server downtime when possible,
especially if you think you may need the backup.

You need to back up (3) only before you make changes. You can copy it into /OMERO/backup to ensure it is kept safe:

$ omero config get > /OMERO/backup/omero.config

Other backup sources

If you have edited etc/grid/(win)default.xml directly for any reason then you will also need to copy that file to
somewhere safe, such as /OMERO/backup.

The lib/scripts directory should also be backed up, but restoring it may pose issues if any of your users have added
their own “official scripts”. A github repository is available at https://github.com/ome/scripts which provides help for
merging your scripts directories.

Backing up your PostgreSQL database

Database backups can be achieved using the PostgreSQL pg_dump command. Here is an example backup script that
can be placed in /etc/cron.daily to perform daily database backups:

#!/bin/bash

DATE=`date '+%Y-%m-%d_%H:%M:%S-%Z'`
OUTPUT_DIRECTORY=/OMERO/backup/database
DATABASE="omero_database"
DATABASE_ADMIN="postgres"

mkdir -p $OUTPUT_DIRECTORY
chown -R $DATABASE_ADMIN $OUTPUT_DIRECTORY
su $DATABASE_ADMIN -c "pg_dump -Fc -f $OUTPUT_DIRECTORY/$DATABASE.$DATE.pg_dump $DATABASE
→˓"

Other database backup configurations are outside the scope of this document but can be researched on the PostgreSQL
website (Chapter 25. Backup and Restore).

Note: Frequent backups of your PostgreSQL database are crucial; you do not want to be in the position of trying to
restore your server without one.

Note: Consider OMERO database dumps to be sensitive and be accordingly cautious in allowing access to them. For
example, the session.uuid column contains UUIDs with which OMERO clients can attach to existing sessions.

2.4. Maintenance 205

https://github.com/ome/scripts
https://www.postgresql.org/docs/10/backup.html
https://www.postgresql.org/docs/10/backup.html

OMERO, Release 5.6.5-SNAPSHOT-1

Backing up your binary data store

To simplify backup locations we have, in this document, located all database and configuration backups under /OMERO,
your binary data store. The entire contents of /OMERO should be backed up frequently as this will, especially if this
document’s conventions are followed, contain all the relevant data to restore your OMERO.server installation in the
unlikely event of a system failure, botched upgrade or user malice.

File system backup is often a very personal and controversial topic amongst systems administrators and as such the
OMERO project does not make any explicit recommendations about backup software. In the interest of providing
a working example we will use open source rdiff-backup project and like Backing up your PostgreSQL database
above, provide a backup script which can be placed in /etc/cron.daily to perform daily /OMERO backups:

#!sh
#!/bin/bash

FROM=/OMERO
TO=/mnt/backup_server

rdiff-backup $FROM $TO

rdiff-backup can also be used to backup /OMERO to a remote machine:

#!sh
#!/bin/bash

FROM=/OMERO
TO=backup_server.example.com::/backup/omero

rdiff-backup $FROM $TO

More advanced rdiff-backup configurations are beyond the scope of this document. If you want to know more you
are encouraged to read the documentation available on the rdiff-backup website.

Restoring OMERO

There are three main steps to OMERO.server restoration in the event of a system failure:

1. OMERO.server etc configuration

2. PostgreSQL database (assumed to be omero)

3. OMERO.server binary data store (assumed to be /OMERO)

Note: It is important that restoration steps are done in this order unless you are absolutely sure what you are doing.

206 Chapter 2. System Administrator Documentation

https://www.nongnu.org/rdiff-backup/docs.html

OMERO, Release 5.6.5-SNAPSHOT-1

Restoring your configuration

Once you have retrieved an OMERO.server package from the downloads page that matches the version you originally
had installed, all that is required is to restore your backup preferences by running:

$ omero config load /OMERO/backup/omero.config

You should then follow the Reconfiguration steps of install.

Restoring your PostgreSQL database

If you have had a PostgreSQL crash and database users are missing from your configuration, you should follow
the first two (Create a non-superuser database user and Create a database for OMERO data to reside in) steps of
OMERO.server installation. Once you have ensured that the database user and empty database exist, you can restore
the pg_dump file as follows:

$ sudo -u postgres pg_restore -Fc -d omero_database omero.2010-06-05_16:27:29-GMT.pg_dump

Restoring your OMERO.server binary data store

All that remains once you have restored your Java preferences and PostgreSQL database is to restore your /OMERO
binary data store backup.

See also:
List of backup software Wikipedia page listing the backup softwares.

PostgreSQL 10 Interactive Manual Chapter 25: Backup and Restore

rdiff-backup documentation Online documentation of rdiff-backup project

2.4.4 OMERO upgrade checks

On each startup the OMERO server checks for available upgrades via the UpgradeCheck class. An HTTP GET call is
made to the URL configured in omero-common.properties as omero.upgrades.url, currently http://upgrade.
openmicroscopy.org.uk by default (note that viewing that link in your browser will redirect you to this page).

Note: If you have been redirected here by clicking on a link to http://upgrade.openmicroscopy.org.uk in an
error message or log while trying to run one of the Bio-Formats command line tools, please see the Bio-Formats
command line tools documentation for assistance.

2.4. Maintenance 207

https://downloads.openmicroscopy.org/latest/omero5.5/
https://en.wikipedia.org/wiki/List_of_backup_software
https://www.postgresql.org/docs/10/backup.html
https://www.nongnu.org/rdiff-backup/docs.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/UpgradeCheck.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/resources/omero-common.properties
https://docs.openmicroscopy.org/bio-formats/6.9.1/users/comlinetools/index.html#version-checker
https://docs.openmicroscopy.org/bio-formats/6.9.1/users/comlinetools/index.html#version-checker

OMERO, Release 5.6.5-SNAPSHOT-1

Actions

Currently the only action taken when an upgrade is necessary is a log statement at WARN level.

2017-09-01 12:21:32,070 WARN [ome.system.UpgradeCheck] (main)␣
→˓UPGRADE AVAILABLE:Please upgrade to 5.6.4 See https://downloads.openmicroscopy.org/
latest/omero for the latest version

Future versions may also send emails and/or IMs to administrators. In the case of critical upgrades, the server may
refuse to start.

Privacy

Currently, the only information which is being transmitted to the server is:

• Java virtual machine version

• operating system details (architecture, version and name)

• current server version

• poll frequency (for determining statistics)

• your IP address (standard HTTP header information)

Note: Currently the “poll” property is unused.

If this is a problem for your site, please see Disabling below.

Disabling

If you would prefer to have no checks made, the check can be disabled by setting the omero.upgrades.url property to
an empty string:

omero.upgrades.url=

Developers

To use the UpgradeCheck class from your own code, it is necessary to have omero-common-x.y.z.jar on your
classpath. Then,

String version = "yourAppVersion" // e.g. 5.5.0;
ResourceBundle bundle = ResourceBundle.getBundle("omero-common");
String url = bundle.getString("omero.upgrades.url");
ome.system.UpgradeCheck check = new UpgradeCheck(
url, version, "insight"); // Or "importer", etc.

check.run();
check.isUpgradeNeeded();
// optionally
check.isExceptionThrown();

will connect to the server and check your current version against the latest release.

See also:

208 Chapter 2. System Administrator Documentation

https://downloads.openmicroscopy.org/latest/omero
https://downloads.openmicroscopy.org/latest/omero

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.server installation Instructions for installing OMERO.server on UNIX and UNIX-like platforms

OMERO.server upgrade Instructions for upgrading OMERO.server

Server security and firewalls Description of OMERO security practices

2.4.5 Moving the data repository

It may be necessary to move either the whole OMERO data directory or only the Managed Repository to a new location
on the file system. This should be done with care following the steps below.

Warning: Before moving OMERO data it is wise to ensure that both the data and the database are fully backed
up. See OMERO.server backup and restore.

The current location of the data repositories can be found using the fs repos command:

$ omero fs repos

| Id | UUID | Type | Path
---+----+--------------------------------------+---------+-------------------------------
→˓----------
0 | 1 | 309ea513-a23c-48d1-abd2-9ceed1b3ffa4 | Managed | /Users/omero/var/omero/
→˓ManagedRepository
1 | 2 | ScriptRepo | Script | /Users/omero/dist/lib/scripts
2 | 3 | 3ec8c878-c776-48a3-b57e-2a11b0c97045 | Public | /Users/omero/var/omero
(3 rows)

Note: This command can be slow, omero config get can also be used to determine if omero.data.dir or omero.
managed.dir have non-default values.

Moving the OMERO data directory

If the Managed Repository is within the OMERO data directory and the whole data directory is to be moved then the
following steps should be used:

omero admin stop
omero config set omero.data.dir NEW
mv OLD NEW
omero admin start

Warning: The use of omero config set is absolutely necessary here. The steps: omero admin stop, mv,
omero admin start without omero config set could lead to an unstable situation.

For example, moving the OMERO data directory from /Users/omero/var/omero to /Volumes/omero:

$ omero admin stop
...
$ omero config set omero.data.dir /Volumes/omero

(continues on next page)

2.4. Maintenance 209

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

$ mv /Users/omero/var/omero /Volumes/omero
$ omero admin start
...
$ omero fs repos

| Id | UUID | Type | Path
---+----+--------------------------------------+---------+-------------------------------
→˓--
0 | 1 | 309ea513-a23c-48d1-abd2-9ceed1b3ffa4 | Managed | /Volumes/omero/
→˓ManagedRepository
1 | 2 | ScriptRepo | Script | /Users/omero/dist/lib/scripts
2 | 3 | 3ec8c878-c776-48a3-b57e-2a11b0c97045 | Public | /Volumes/omero
(3 rows)

Moving the Managed Repository

If the Managed Repository is in a separate location from the OMERO data directory or only the Managed Repository
is to be moved then the following steps should be used:

omero admin stop
omero config set omero.managed.dir NEW
mv OLD NEW
omero admin start

Warning: The use of omero config set is absolutely necessary here. The steps: omero admin stop, mv,
omero admin start without omero config set could lead to an unstable situation.

For example, moving the Managed Repository from /Users/omero/var/omero/ManagedRepository to /
Volumes/imports/ManagedRepository:

$ omero admin stop
...
$ omero config set omero.managed.dir /Volumes/imports/ManagedRepository
$ mv /Users/omero/var/omero/ManagedRepository /Volumes/imports/ManagedRepository
$ omero admin start
...
$ omero fs repos

| Id | UUID | Type | Path
---+----+--------------------------------------+---------+-------------------------------
→˓----
0 | 1 | 309ea513-a23c-48d1-abd2-9ceed1b3ffa4 | Managed | /Volumes/imports/
→˓ManagedRepository
1 | 2 | ScriptRepo | Script | /Users/omero/dist/lib/scripts
2 | 3 | 3ec8c878-c776-48a3-b57e-2a11b0c97045 | Public | /Users/omero/var/omero
(3 rows)

Note: If omero.managed.dir is not set then the location of the Managed Repository will be determined by omero.
data.dir and the OMERO directory should only be moved as a whole.

210 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

If the Managed Repository needs to be moved to a location other than that set by omero.data.dir, to a location
outside of the OMERO data directory, for example, then omero.managed.dir must be set.

If omero.managed.dir is set then the Managed Repository and the OMERO data directory should be treated inde-
pendently and thus be moved separately if necessary.

Extending the Managed Repository

It is possible to leave the Managed Repository in place yet have newly imported image files stored on a different
underlying storage volume. For example, if your omero.managed.dir is set to /mnt/omero/ManagedRepository
then, as that volume fills, it would become better for new imports to be stored elsewhere. An OMERO administrator
may use the omero fs mkdir subcommand to properly set up a subdirectory for that new volume in the existing
Managed Repository:

omero fs mkdir volume-B

This is the correct way to create /mnt/omero/ManagedRepository/volume-B ready for new imports. The new
storage volume may then be mounted at that mount point. Alternatively, if the volume is already mounted elsewhere,
such as /mnt/omero/large-volume-B/, then while the OMERO server is shut down you may create a corresponding
symbolic link at /mnt/omero/ManagedRepository/volume-B:

rmdir /mnt/omero/ManagedRepository/volume-B
ln -s /mnt/omero/large-volume-B /mnt/omero/ManagedRepository/volume-B

In either case the omero.fs.repo.path must be updated in the server configuration. An example of adjusting its
usual default value is:

omero config set omero.fs.repo.path 'volume-B/%user%_%userId%//%year%-%month%/%day%/
→˓%time%'

After the OMERO server is started then new imports should upload onto the new storage volume. At a later date further
storage volumes may be added by using this same workflow.

2.5 Optimizing Server Configuration

This section discusses the options for configuring OMERO.server for optimum performance and security.

2.5.1 Server security and firewalls

General

OMERO has been built with security in mind. Various standard security practices have been adhered to during the
development of the server and client including:

• Encryption of all passwords between client and server via SSL

• Full encryption of all data when requested via SSL

• User and group based access control

• Authentication via LDAP

• Limited visible TCP ports to ease firewalling

2.5. Optimizing Server Configuration 211

OMERO, Release 5.6.5-SNAPSHOT-1

• Use of a higher level language (Java or Python) to limit buffer overflows and other security issues associated with
native code

• Escaping and bind variable use in all SQL interactions performed via Hibernate

Note: The OMERO team treats the security of all components with care and attention. If you have a security issue to
report, please do not hesitate to contact us using our private, secure mailing list as described on the Security page.

Firewall configuration

Securing your OMERO system with so called firewalling or packet filtering can be done quite easily. By default,
OMERO clients only need to connect to two TCP ports for communication with your OMERO.server: 4063 (unsecured)
and 4064 (SSL). These are the IANA assigned ports for the Glacier2 router from ZeroC. Both of these values, however,
are completely up to you, see SSL below.

Important OMERO ports:

• TCP/4063
• TCP/4064

If you are using OMERO.web, then you will also need to make your HTTP and HTTPS ports available. These are
usually 80 and 443.

Important OMERO.web ports:

• TCP/80
• TCP/443

Example OpenBSD firewall rules

block in log on $ext_if from any to <omero_server_ip>
pass in on $ext_if proto tcp from any to <omero_server_ip> port 4063
pass in on $ext_if proto tcp from any to <omero_server_ip> port 4064
pass in on $ext_if proto tcp from any to <omero_server_ip> port 443
pass in on $ext_if proto tcp from any to <omero_server_ip> port 80

Example Linux firewall rules

iptables -P INPUT drop
iptables -A INPUT -p tcp --dport 4063 -j ACCEPT
iptables -A INPUT -p tcp --dport 4064 -j ACCEPT
iptables -A INPUT -p tcp --dport 443 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT
...

212 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/security/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
https://zeroc.com

OMERO, Release 5.6.5-SNAPSHOT-1

Passwords

The passwords stored in the password table are salted and hashed, so it is impossible to recover a lost one, instead a
new one must be set by an admin.

If the password for the root user is lost, the only way to reset it (in the absence of other admin accounts) is to manually
update the password table. The omero command can generate the required SQL statement for you:

$ omero db password
Please enter password for OMERO root user:
Please re-enter password for OMERO root user:
UPDATE password SET hash = 'PJueOtwuTPHB8Nq/1rFVxg==' WHERE experimenter_id = 0;

Current hashed password:

$ psql mydatabase -c " select * from password"
experimenter_id | hash
-----------------+--------------------------

0 | Xr4ilOzQ4PCOq3aQ0qbuaQ==
(1 row)

Change the password using the generated SQL statement:

$ psql mydatabase -c "UPDATE password SET hash = 'PJueOtwuTPHB8Nq/1rFVxg==' WHERE␣
→˓experimenter_id = 0;"
UPDATE 1

Stored data

The server’s binary repository and database contain information that may be confidential. Afford access only on a
limited and necessary basis. For example, the ReadSession warning is for naught if the restricted administrator can
read the contents of the session table.

Java key- and truststores

If your server is connecting to another server over SSL, you may need to configure a truststore and/or a keystore for
the Java process. This happens, for example, when your LDAP server uses SSL. See the LDAP plugin for information
on how to configure the LDAP URLs. As with all configuration properties, you will need to restart your server after
changing them.

To do this, you will need to configure several server properties, similar to the properties you configured during instal-
lation.

• truststore path

omero config set omero.security.trustStore /home/user/.keystore

A truststore is a database of trusted entities and their
associated X.509 certificate chains authenticating the
corresponding public keys. The truststore contains the
Certificate Authority (CA) certificates and the certificate(s) of
the other party to which this entity intends to send encrypted
(confidential) data. This file must contain the public key
certificates of the CA and the client's public key certificate.

2.5. Optimizing Server Configuration 213

OMERO, Release 5.6.5-SNAPSHOT-1

If you don’t have one you can create it using the following:

openssl s_client -connect {{host}}:{{port}} -prexit < /dev/null | openssl x509 -
→˓outform PEM | keytool -import -alias ldap -storepass {{password}} -keystore {
→˓{truststore}} -noprompt

• truststore password

omero config set omero.security.trustStorePassword secret

• keystore path

omero config set omero.security.keyStore /home/user/.mystore

A keystore is a database of private keys and their associated
X.509 certificate chains authenticating the corresponding public
keys.

A keystore is mostly needed if you are doing client-side certificates
for authentication against your LDAP server.

• keystore password

omero config set omero.security.keyStorePassword secret

SSL

Especially if you are going to use LDAP authentication to your server, it is important to encrypt the transport channel
between clients and the Glacier2 router to keep your passwords safe.

By default, all logins to OMERO occur over SSL using an anonymous handshake. After the initial connection, com-
munication is un-encrypted to speed up image loading. Clients can still request to have all communications encrypted
by clicking on the lock symbol. An unlocked symbol means that non-password related activities (i.e. anything other
than login and changing your password) will be unencrypted, and the only critical data which is passed in the clear is
your session id.

Administrators can configure OMERO such that unencrypted connections are not allowed, and the user’s choice will
be silently ignored. The SSL and non-SSL ports are configured in the etc/grid/default.xml file and, as described
above, default to 4064 and 4063 respectively and can be modified using the Ports configuration properties. For instance,
to prefix all ports with 1, use omero.ports.prefix:

$ omero config set omero.ports.prefix 1

You can disable unencrypted connections by redirecting clients to the SSL port using the server property omero.
router.insecure:

$ omero config set omero.router.insecure "OMERO.Glacier2/router:ssl -p 4064 -h @omero.
→˓host@"

If you want to force host verification see Client Server SSL verification.

See also:
LDAP authentication

214 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

2.5.2 LDAP authentication

LDAP is an open standard for querying and modifying directory services that is commonly used for authentication,
authorization and accounting (AAA). OMERO.server supports the use of an LDAP server to query (but not modify)
AAA information for the purposes of automatic user creation.

This allows OMERO users to be automatically created and placed in groups according to your existing institution
policies. This can significantly simplify your user administration burden. Note that OMERO has its own concept of
“groups” that is quite distinct from LDAP groups.

The OMERO.server LDAP implementation can handle a number of use cases. For example:

• Allow every “inetOrgPerson” under omero.ldap.base to login

• but restrict access based upon an arbitrary LDAP filter, e.g.

omero.ldap.user_filter=(memberOf=cn=someGoup,ou=Lab,o=College)

• and add that user to some number of groups, e.g.

omero.ldap.new_user_group=:query:(member=@{dn})

How it works

On login, the username provided is searched for in OMERO. If the name does not exist, then the LDAP plugin is queried
for a username matching the system-wide user filter. If such an LDAP entry exists and the password matches, a new
user with the given username is created, and the user is added to any groups which match the new_user_group setting.

On subsequent logins, the user filter and the password are again checked against the LDAP server, and if there is no
longer a match, login is refused. If you would prefer to only have the user_filter applied during user creation and
not on every login, see Legacy password providers.

You can take existing non-LDAP users and ‘upgrade’ them to using LDAP with the OMERO command line tool, see
Converting non-LDAP users to LDAP authentication. You can also use omero ldap create to add an ldap user to
OMERO groups without requiring them to log in first, see User/group management for details.

LDAP properties

The LDAP plugin is configured via several configuration properties, all starting with omero.ldap (see LDAP).

Some of the property values are passed directly to the underlying LDAP library (Spring LDAP), which in turn makes
use of the Java API. OMERO does not modify the error messages thrown by the library or by Java, so please consult
the appropriate documentation to diagnose any low-level problems.

Note: Please remember that once a change has been made, a server restart will be needed.

2.5. Optimizing Server Configuration 215

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://spring.io/projects/spring-ldap/

OMERO, Release 5.6.5-SNAPSHOT-1

Minimum configuration

The following properties are the minimum requirements for logging in to OMERO using LDAP.

omero.ldap.config=true
omero.ldap.urls=ldap://localhost:389
omero.ldap.username=
omero.ldap.password=
omero.ldap.base=ou=example,o=com

After having configured your connection, you can turn LDAP on and off between restarts by setting omero.ldap.
config to false. The base property determines where in the LDAP tree searches will begin. No users or groups will
be found if they are not under the base provided.

User lookup

Two user properties are used to look up users by login name and, if necessary, create new users based on the information
in LDAP.

omero.ldap.user_filter=(objectClass=person)
omero.ldap.user_mapping=omeName=cn,firstName=givenName,lastName=sn,email=mail,
→˓institution=department,middleName=middleName

omero.ldap.user_filter will be AND’ed to the username query, and can contain any valid LDAP filter string. The
username query is taken from the LDAP attribute which gets mapped to “omeName” by omero.ldap.user_mapping.
Here, the “cn” is mapped to “omeName”, so the username query is (cn=[login name]). The final query is
(&(objectClass=person)(cn=[login name])), which must return a single result to be considered valid.

Group lookup

Three group properties are all concerned with what groups a user will be placed in on creation.

omero.ldap.group_filter=(objectClass=groupOfNames)
omero.ldap.group_mapping=name=cn
omero.ldap.new_user_group=default

The group filter and group mapping work just as the user filter and mapping do, in that the group
name query will be AND’d with the group_filter. In this case, the final query would be
(&(objectClass=groupOfNames)(cn=[group name])). However, these properties may not be used depending
on the value of new_user_group, which can have several different values:

• If not prefixed at all, then the value is simply the name of a group which all users from LDAP should be added
to.

• If prefixed with :ou:, then a user’s last organizational unit (OU) will be used as his or her group. For example, the
user with the DN “cn=frank,ou=TheLab,ou=LifeSciences,o=TheCollege” will be placed in the group “TheLab”.

• If prefixed with :attribute:, then the rest of the string is taken to be an attribute all of whose values will
be taken as group names. For example, omero.ldap.new_user_group=:attribute:memberOf would add a
user to all the groups named by memberOf. You can prefix this value with filtered_ to have the group_filter
applied to the attribute values, i.e. :filtered_attribute:memberOf will mean that only the values of mem-
berOf which match group_filter will be considered. An example value of the memberOf attribute would be:
CN=mygroup,OU=My Group,OU=LabUsers, DC=openmicroscopy,DC=org

216 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

• If prefixed with :dn_attribute:, then the rest of the string is taken to be an attribute all
of whose values will be taken as group distinguished names. For example, omero.ldap.
new_user_group=:dn_attribute:memberOf would add a user to all the groups named by memberOf,
where the name of the group is mapped via group_mapping. You can prefix this value with filtered_ to
have the group_filter applied to the attribute values, i.e. :filtered_dn_attribute:memberOf will mean
that only the values of memberOf which match group_filter will be considered. An example value of the
memberOf attribute would be: CN=mygroup,OU=My Group,OU=LabUsers, DC=openmicroscopy,DC=org

Note that if an attribute specified in omero.ldap.group_mapping does not constitute a part of the Distin-
guished Name (DN) as determined by your LDAP server then it can only be found by using :attribute: or
:filtered_attribute: instead. Typical attributes that comprise the DN are: DC, CN, OU, O, STREET, L,
ST, C and UID.

• If prefixed with :query:, then the rest of the value is taken as a query to be AND’ed to the group filter. In the
query, values from the user such as “@{cn}”, “@{email}”, or “@{dn}” can be used as place holders.

• If prefixed with :bean:, then the rest of the string is the name of a Spring bean which implements the NewUser-
GroupBean interface. See the developer documentation LDAP plugin design for more info.

Compound Filters

Note: OMERO uses standard RFC 2254 LDAP filters, so they must conform to that syntax and are only able to do what
those filters can do. You can test the filters via ldapsearch on your OMERO server (assuming you have the OpenLDAP
binaries installed).

If you are using OpenLDAP make sure your directory has the memberOf attribute correctly configured. Some versions
of ApacheDS do not support memberOf at all.

Both the user_filter and the group_filter can contain any valid LDAP filter string. These must be a valid filter
in themselves. e.g.

omero.ldap.user_filter=(|(ou=Queensland Brain Institute)(ou=Ageing Dementia Research))

The “|” operator (read: “OR”) above allows members of two organizational units to login to OMERO. Expanding the
list allows concentric “rings” of more and more OU’s granular access to OMERO.

omero.ldap.group_filter=(&(objectClass=groupOfNames)(mail=omero.flag))

The “&” operator (read: “AND”) produces a filter that will only match groups that have the mail at-
tribute set to the value omero.flag. When combined with the group_mapping, the final query would be
(&(&(objectClass=groupOfNames)(mail=omero.flag))(cn=[group name]))

This is the same as the query (&(objectClass=groupOfNames)(mail=omero.flag)(cn=[group name])) but
setting group_filter to (objectClass=groupOfNames)(mail=omero.flag) is not valid as that is not a valid
filter on its own.

To restrict the list of groups to just the ones returned by the above query, the following setting is also required to remove
unmatched groups:

omero.ldap.new_user_group=:filtered_dn_attribute:memberOf

2.5. Optimizing Server Configuration 217

http://www.faqs.org/rfcs/rfc2254.html

OMERO, Release 5.6.5-SNAPSHOT-1

Case sensitivity

By default, the LDAP plugin is case-sensitive i.e. it will treat the usernames JSmith and jsmith as two different users.
You can remove case sensitivity using:

omero config set omero.security.ignore_case true

Warning: Enabling this option will affect all, even non-LDAP, usernames in your OMERO system. It is the system
administrator’s responsibility to handle any username clashes which may result. Making non-LDAP usernames
lowercase is required. Non-LDAP users with uppercase characters in their username will not be able to log in and
will not appear in some administrative tools.

UPDATE experimenter SET omename = lower(omename); can be used on your database to make this change
to all users if desired. This operation is irreversible.

LDAP over SSL

If you are connecting to your server over SSL, that is, if your URL is of the form ldaps://ldap.example.com:636
you may need to configure a key and trust store for Java. See the Server security and firewalls page for more information.

Synchronizing LDAP on user login

This feature allows for LDAP to be considered the authority on user/group membership. With the following setting
enabled, each time a user logs in to OMERO their LDAP groups will be read from the LDAP server and reflected in
OMERO:

omero config set omero.ldap.sync_on_login true

Admin actions carried out in the clients may not survive this synchronization e.g. if an admin has removed an LDAP user
from an LDAP group in the UI, the user will be re-added to the group when logging in again after the synchronization.

Note: This applies to groups created by LDAP in OMERO 5.1.x. Groups created in older versions of OMERO will
not be registered as LDAP groups if you have manually altered their membership, even if the membership now matches
the LDAP group.

omero ldap setdn true --group-name $NAME can be used to make these previous OMERO groups into LDAP
groups.

Legacy password providers

The primary component of the LDAP plugin is the LdapPasswordProvider, which is responsible for creating users,
checking their passwords, and adding them to or removing them from groups. The default password provider is the
chainedPasswordProvider which first checks LDAP if LDAP is enabled, and then checks JDBC. This can explicitly
be enabled by executing the system admin command:

omero config set omero.security.password_provider chainedPasswordProvider

When the LDAP password provider implementation changes, previous versions can be configured as necessary.

218 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

• chainedPasswordProviderNoSalt

The chainedPasswordProviderNoSalt uses the version of the JDBC password provider without password
salting support as available in the OMERO 4.4.x series. To enable it, use:

omero config set omero.security.password_provider chainedPasswordProviderNoSalt

• chainedPasswordProvider431

With the 431 password provider, the user filter is only checked on first login and not kept on subsequent logins.
This allows for an OMERO admin to change the username of a user in omero to be different than the one kept in
LDAP. To enable it, use:

omero config set omero.security.password_provider chainedPasswordProvider431

See also:
OMERO.server installation Installation guide for OMERO.server under UNIX-based platforms

Server security and firewalls Security pages for OMERO.server

LDAP plugin design Developer documentation on extending the LDAP plugin yourself.

What are your LDAP requirements? Forum discussion if you have LDAP requirements that are not covered by the
above configuration

JNDI referrals documentation https://docs.oracle.com/javase/jndi/tutorial/ldap/referral/jndi.html

Active Directory

Active Directory (AD) supports a form of LDAP and can be used by OMERO like most other directory services.

In AD, the Domain Services (DS) ‘forest’ is a complete instance of an Active Directory which contains one or more
domains. Querying a particular Domain Service will yield results which are local to that domain only. In an environ-
ment with just one domain it is possible to use the default configuration instructions for OMERO LDAP. If there are
multiple domains in the forest then it is necessary to query the Global Catalogue to enable querying across all of them.

Global Catalogue

In an AD DS forest, a Global Catalogue provides a central repository of all the domain information from all of the
domains. This can be queried in the same way as a specific Domain Service using LDAP, but it runs on different ports;
3268 and 3269 (SSL).

• LDAP AD Global Catalogue server URL string

omero config set omero.ldap.urls ldap://ldap.example.com:3268

Note: A SSL URL above should look like this: ldaps://ldap.example.com:3269

2.5. Optimizing Server Configuration 219

https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=14
https://docs.oracle.com/javase/jndi/tutorial/ldap/referral/jndi.html
https://en.wikipedia.org/wiki/Active_Directory
https://msdn.microsoft.com/en-us/library/aa362244(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/cc728188(v=ws.10).aspx

OMERO, Release 5.6.5-SNAPSHOT-1

2.5.3 Performance and monitoring

Once you have your OMERO server running and secured, a second critical step will be tuning various configuration
parameters in order to get optimal performance. Assorted timeouts can be found under Performance but the more
critical properties are outlined below.

Database configuration

The configuration properties starting with omero.db control how OMERO manages JDBC connections to your database.
For a production system, omero.db.poolsize is the most important property to modify. By default, a limited number
of simultaneous connections (e.g. 10) are allowed. You should plan for allowing a few connections per concurrent user.

$ omero config set omero.db.poolsize 100

Memory configuration

OMERO should automatically configure itself to take advantage of the physical memory installed on a system whilst
leaving room for other services. You may wish to override the defaults on a production server, for instance if your
machine is solely dedicated to running OMERO you can increase the amount of memory that OMERO will use. You
may also need to modify your settings if you are seeing out-of-memory errors when dealing with certain types of
images.

A number of configuration properties starting with omero.jvmcfg control the calculation of how much memory to
allocate to various OMERO services on startup, most importantly:

• blitz

• indexer

• pixeldata

Configuration properties

Configuration properties can either be applied to all three service types at the same time by omitting the service type
(e.g. omero.jvmcfg.strategy) or to each individually by including it (e.g. omero.jvmcfg.strategy.blitz).

For example, the default, PercentStrategy, is equivalent to making the call:

$ omero config set omero.jvmcfg.strategy percent

This could be changed to use the ManualStrategy for all servers:

$ omero config set omero.jvmcfg.strategy manual

220 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Strategies

A couple of strategies are available for calculating the effective JVM settings from the provided configuration properties.

PercentStrategy Default. Reads the percent configuration property which can also be set globally or on a service-type
basis. This percentage (0-100) of the system memory is used for the process, subject to minimum and maximum
limits which can be changed. omero.jvmcfg.system_memory, omero.jvmcfg.min_system_memory, and
omero.jvmcfg.max_system_memory are all used for defining the system memory seen. The default percent-
ages are: blitz and pixeldata 15%, indexer 10%. If omero.jvmcfg.perm_gen or omero.jvmcfg.heap_size
are explicitly set, they will be used directly as with the ManualStrategy.

ManualStrategy Simply provides the values given as the JVM settings. If no value is set for a particular configuration
property, then the default is used: heap_size=512m and perm_gen=128m These values are equivalent to the
defaults in OMERO 5.0.2 and earlier.

Examples

$ omero config set omero.jvmcfg.percent.blitz 50

would raise the blitz heap size to 50% of the system memory seen.

$ omero config set omero.jvmcfg.system_memory 24000

would set the system memory seen to 24GB regardless of the actual amount of memory present in the system. The
PercentageStrategy would use this as the basis for setting the Java heap sizes for all services.

$ omero config set omero.jvmcfg.max_system_memory 64000

would raise the maximum system memory seen by an OMERO installation to 64000MB of system memory. Assuming
there was at least 64000MB of memory installed blitz would default to using 9600MB.

$ omero config set omero.jvmcfg.strategy.indexer manual
$ omero config set omero.jvmcfg.heap_size.indexer 2000

would set the indexer heap size to 2000MB without modifying the settings for the other services.

Tips

View the memory settings that will apply to a newly started server.

$ omero admin jvmcfg

After modifying any memory settings, be sure to restart your server.

$ omero admin restart

See also:
https://www.openmicroscopy.org/community/viewtopic.php?f=4&t=7400 Forum thread on PixelData JVM (Java

Virtual Machine) memory settings

Grid configuration Section of the advanced server configuration documentation describing etc/grid/templates.
xml.

2.5. Optimizing Server Configuration 221

https://www.openmicroscopy.org/community/viewtopic.php?f=4&t=7400

OMERO, Release 5.6.5-SNAPSHOT-1

Monitoring

In addition to watching the OMERO log files, the JVM itself provides a number of tools that you can use to determine
the health of your server. JVisualVM, for example, can be used to visualize the memory use of each JVM:

You will need to have the PID (process ID) for the service you want to monitor, which will usually be the main Blitz
process. You can find the PID either via omero admin diagnostics or alternatively via the jps command found in
the JDK.

Another tool, JConsole, also provides access to the memory statistics for your JVM, but also lists the JMX (Java Man-
agement Extensions) management beans which provide extensive information about the running process. Information
includes the number of queries that have been run, the number of open file handles, the system properties that were set
on startup, and much more. Further, the ome.system.metrics package makes use of JMX to expose further properties.

With further configuration, JMX properties can also be accessed remotely which can be very useful for monitoring
your server with Checkmk, Nagios, Zenoss, or similar. However, care must be taken to protect the exposed ports.

Note: The commands above require the Java JDK (Java Development Kit) as opposed to the JRE (Java Runtime
Environment).

222 Chapter 2. System Administrator Documentation

https://visualvm.github.io/
https://openjdk.java.net/tools/svc/jconsole/
https://checkmk.com/
https://www.nagios.org/
https://www.zenoss.com/

OMERO, Release 5.6.5-SNAPSHOT-1

2.5. Optimizing Server Configuration 223

OMERO, Release 5.6.5-SNAPSHOT-1

Metrics

Building on top of Coda Hale’s Metrics library, OMERO provides the ome.system.metrics package which measures a
number of internal events and makes them available both via JMX as described under Monitoring but also prints them
to the log files.

By default, these values are printed to each of the JVM-based log files (e.g. var/log/Blitz-0.log, var/log/
Indexer-0.log, etc) once per hour. This value can be configured via omero.metrics.slf4j_minutes. A typical
value might look like:

11:28:18,923 INFO [ome.system.metrics] (r-thread-1) type=TIMER,␣
→˓name=ome.services.fulltext.FullTextIndexer.batch ...

Values include basic statistics (count, min, max, mean, etc.) as well as 75th, 90th, 95th, etc percentiles. Further, the
rate over the last minute, the last 5 minutes, and the last 15 minutes is provided (m1, m5, m15). For example:

• count=3601

• min=0.41. . .

• max=7.85. . .

• mean=0.94. . .

• stddev=0.31. . .

• median=0.96. . .

• p75=1.08. . .

• p95=1.25. . .

• p98=1.35. . .

• p99=1.43. . .

• p999=7.69. . .

• mean_rate=0.50. . .

• m1=0.49. . .

• m5=0.499. . .

• m15=0.49. . .

• rate_unit=events/second

• duration_unit=milliseconds

Useful metrics include:

ch.qos.logback.core.Appender.error The number and rate of errors that have been logged. (All services)

jvm.fileDescriptorCountRatio The ratio of used to available file descriptors. (All services)

ome.services.eventlogs.EventLogQueue.priorityCount The number of items in the queue. (Indexer-only)

ome.io.nio.PixelsService.minmaxTimes Time taken to generate min/max values per plane. (PixelData-only)

ome.io.nio.PixelsService.tileTimes Time taken to generate tiled-pyramids for a big image. (PixelData-only)

224 Chapter 2. System Administrator Documentation

https://metrics.dropwizard.io/

OMERO, Release 5.6.5-SNAPSHOT-1

2.5.4 Search and indexing configuration

How Indexing works

Indexing is not driven by the user, but happens automatically in the background and can be controlled by a number of
settings listed under Search. The indexer runs periodically as defined by omero.search.cron and parses the latest
batch of new or modified objects in the database.

Upon successful completion, the persistent count in the configuration table will be incremented.

omero=# select value from configuration where name = 'PersistentEventLogLoader.v2.current_
→˓id';
value

30983
(1 row)

Note: Presence of more than one PersistentEventLogLoader.* value in your database indicates that you have
run indexing with multiple versions of the server. This is fine. To allow a new server version to force an up-
date, the configuration key may be changed. For example, PersistentEventLogLoader.current_id became
PersistentEventLogLoader.v2.current_id in a5cb64a.

Missing search results

If you are having any difficult with search results not appearing timely, first you should start by checking the health of
the Indexer-0 process:

• Check the server’s log directory for a file named Indexer-0.log and monitor its progress (e.g. using tail or
similar). If messages of the format:

INFO [ome.services.fulltext.FullTextIndexer] (3-thread-2) INDEXED 2 objects in␣
→˓1 batch(es) [2483 ms.]

are periodically being appended to the log file, then your indexer process may be running behind. You can either
wait for it to catch up, or try increasing the search batch size in order to speed processing. See the section on the
omero.search.batch setting for more information.

• If there are no updates to the Indexer-0.log file even when new images, tags, files, etc. are added to the server,
then it is possible that the Indexer process has become stuck. It is possible to force a restart of the indexer using
the IceGrid Tools like so:

> omero admin ice
Ice 3.6.3 Copyright (c) 2003-2016 ZeroC, Inc.
>>> server list
Blitz-0
DropBox
FileServer
Indexer-0
...
>>> server stop Indexer-0

You do not need to manually re-start the Indexer, as IceGrid will handle the creation of a new Indexer process
automatically.

2.5. Optimizing Server Configuration 225

https://github.com/ome/openmicroscopy/commit/a5cb64a

OMERO, Release 5.6.5-SNAPSHOT-1

In case neither of the above seems to be the case, then your indexer is running normally and more likely your index has
been corrupted. You will need to re-index OMERO. Reasons why this might have occurred include:

• Missing search terms are part of a very large text file. If the indexer’s maximum file size limit is reached, a file
may not be indexed. See the section on the omero.search.max_file_size setting for more information on
increasing this limit.

• A bug in Lucene prior to OMERO 5.0.1 caused some documents to be “sealed” in that old search terms would
return the document, but newer terms would not.

Re-indexing

Background re-indexing

Under most circumstances, you should be able to re-index the database while the server is still running. If you need to
make any adjustments to the server configuration or the process heap size, first shut the server down and make these
changes before restarting the server. Use the following steps to initiate a re-indexing.

• Disable the search indexer process and stop any currently running indexer processes:

$ omero admin reindex --prepare

• Remove the existing search Indexes by deleting the contents of the FullText subdirectory of your omero.data.
dir:

$ omero admin reindex --wipe

• Reset the indexer’s progress counter in the database:

$ omero admin reindex --reset 0

• Re-enable/restart the indexer process:

$ omero admin reindex --finish

Depending on the size of your database, it may take the indexer some time to finish re-indexing. During this time, your
OMERO server will remain available for use, however the search functionality will be degraded until the re-indexing
is finished. See Monitoring re-indexing for information on how long this should take.

Note: Once you wipe your full-text directory, searches will return fewer or no results until re-indexing is complete.

Off-line re-indexing

It is also possible to re-index the database with the server off-line. First, shutdown the OMERO server as normal and
make any adjustments to the configuration that need to be made. Clear the contents of the FullText directory and
reset the indexing’s progress counter as above:

$ omero admin reindex --wipe
$ omero admin reindex --reset 0

Then run the off-line re-indexing command:

226 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

$ omero admin reindex --foreground

Re-indexing the database in off-line mode will use a 1 GB heap by default, but this can be specified on the command-line
with the --mem argument:

$ omero admin reindex --foreground --mem=2g

Other search configuration properties from Search can be set for the processing by setting the JAVA_OPTS environment
variable:

$ JAVA_OPTS="-Domero.search.max_partition_size=100000" bin/omero admin reindex --
→˓foreground

Once foreground indexing is complete, re-enable the background indexer as above:

$ omero admin reindex --finish

Monitoring re-indexing

During re-indexing, it is possible to estimate the percent indexed using the following SQL command:

omero=> select 'At ' || current_timestamp(0) || ', Percent indexed: ' || trunc(((select␣
→˓count(*) from eventlog el, configuration c where el.id < cast(c.value as int) and (c.
→˓name like 'PersistentEventLogLoader%')) * 1.0) / (select count(*) from eventlog) * 100,
→˓ 2) || '%';

?column?
--
At 2014-06-14 07:54:37+00, Percent indexed: 70.90%
(1 row)

This value is also logged periodically both when re-indexing in the background and the foreground and is available via
JMX. See Metrics for more information.

The overall re-indexing performance depends significantly on the memory settings and the size of the repository to
index. The following table provides estimates of the process duration based on re-indexing of existing production
servers of various sizes:

Re-indexing type Re-indexing duration Binary repository size Indexer memory settings
Background1 8h 19TB -Xmx4800m
Off-line 6h30 16TB --mem 2g

See also:
OMERO search Section of the developer documentation describing how to perform search queries against the server.

1 [ome-users] Re-indexing OMERO’s search database

2.5. Optimizing Server Configuration 227

http://lists.openmicroscopy.org.uk/pipermail/ome-users/2015-February/005038.html

OMERO, Release 5.6.5-SNAPSHOT-1

2.5.5 FS configuration options

Background

Users import their image files to the OMERO.fs server. The contents of these files are kept intact by the server and the
import process preserves the files’ path and name (at least within the rules of omero.fs.repo.path_rules below),
so that OMERO.fs can become a trusted repository for the master copy of users’ data. While the default server con-
figuration from Configuration properties glossary should typically suffice, omero config set may be used to adjust
settings related to file uploads. These settings are explained below.

Repository location

Several properties determine where FS-imported files are stored:

• omero.data.dir - singleton property (i.e. once globally) which points to the legacy repository location for
OMERO. For OMERO to run on multiple systems, the contents of this directory must be on a shared volume.

• omero.managed.dir - singleton property which points to the default ManagedRepository. In an OMERO
install in which there is only one Blitz server, this will be the only repository. This need not be located under
omero.data.dir but is by default.

• omero.repo.dir (experimental) - value passed to all non-legacy, standalone repositories. This is not actively
used, but would allow hosting repositories on multiple physical systems without the need for a shared volume.
For example, after running omero admin start on the main machine, it would be possible to launch nodes on
various machines via omero node start fs-B, omero node start fs-C, etc. Each of these would pass a
different omero.repo.dir value to its process.

Template path

When files are uploaded to the managed repository, a parent directory is created to receive the upload. A multi-file
image has all its files stored in the same parent directory, though they may be in different subdirectories of that parent
to mirror the original directory structure before upload. The omero.fs.repo.path setting defines the creation of that
parent directory. It is this value which makes the ManagedRepository “managed”.

Path naming constraints

There is some flexibility in how this parent directory is named. The constraints are:

• The path components (individual directories in the path) must be separated by / characters.

• A path component separator may be written as // only if followed by at least one more path component. In this
case:

– The server ensures that the path components preceding the // are owned by the root user.

– Any newly created path components following the // are owned by the user who owns the images.

• If no // is present then all newly created path components are owned by the user who owns the images.

• The path must be unique for each import. It is for this reason that the %time% term expands to a time with
millisecond resolution.

• To avoid confusion with the expansion terms enumerated below, avoid other uses of the % character in path
components.

In the above, ownership of path components is in the context of OMERO users accessing the OMERO managed repos-
itory through its API. It does not relate to operating system users’ permissions for the underlying filesystem.

228 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Expansion terms

Special terms may be used within path components: these are replaced with text that depends on the import.

For any directory in the template path

%userId% expands to the user’s numerical ID

%user% expands to the user’s name

%institution% expands to the user’s institution name; this path component is wholly omitted if the user has no
institution set

%institution:default% expands to the user’s institution name, or to the supplied “default” if the user has no insti-
tution set; for instance, %institution:State College of Florida, Manatee-Sarasota% is permitted

%groupId% expands to the OMERO group’s numerical ID

%group% expands to the OMERO group’s name

%perms% expands to the group’s six-character permissions string, for example rw---- for a private group

%year% expands to the current year number, for example 2014

%month% expands to the current month number, zero-padded, for example 08

%monthname% expands to the current month name, for example August

%day% expands to the current day number in the month, zero-padded, for example 04

%sessionId% expands to the session’s numerical ID

%session% expands to the session key (UUID) of the session, for example
6c2dae43-cfad-48ce-af6f-025569f9e6df

%thread% expands to the name of the server thread that is performing the import

For user-owned directories only

These expansion terms may not precede // in the template path.

%time% expands to the current time, in hours, minutes, seconds, milliseconds, for example 13-49-07.727

%hash% expands to an eight-digit hexadecimal hash code that is constant for the set of files being imported, for example
0554E3A1

%hash:digits% expands as %hash%, where digits is a comma-separated list of how many digits of the hash to use
in different subdirectories; for example, hash-%hash:3,3,2% expands to a form like hash-123/456/78

%increment% expands to an integer that increases consecutively so as to create the next new directory, for example
using inc-%increment% with preexisting directories up to inc-24 would expand to inc-25

%increment:digits% expands as %increment% where digits specifies a minimum length to which to zero-pad
the integer, for example using inc-%increment:3% with preexisting directories up to inc-024 would expand
to inc-025

%subdirs% expands to nothing until the preceding directory has more than one thousand entries, in which case it
expands to an integer that increases consecutively to similarly limit the entry count in subdirectories; applies
recursively to extend the number of path components as needed, so, using example/below-%subdirs% in the
path, with example/below-000 to example/below-999 all “full”, three-digit subdirectories below those are
created, such as example/below-123/456

2.5. Optimizing Server Configuration 229

OMERO, Release 5.6.5-SNAPSHOT-1

%subdirs:digits% expands as %subdirs% where digits specifies to how many digits %subdirs% may expand for
each path component: for example, example/%subdirs:4%-below allows ten thousand directory entries in
example before creating example/1234-below and, much later, example/1234-below/5678

No more than one of %time%, %subdirs% or %increment% may be used in any one path component, although they
may each be used many times in the whole path. If %subdirs% expands to nothing then its entire path component is
omitted: no other expansion terms in that component are used.

Legal file names

Although OMERO.fs attempts to preserve file naming, the server’s operating system or file system is likely to somehow
constrain what file names may be stored by OMERO.fs. This is of particular concern when a user may upload from a
more permissive system to a server on a less permissive system, or when it is anticipated that the server itself may be
migrated to a less permissive system. The server never accepts Unicode control characters in file names.

The omero.fs.repo.path_rules setting defines the combination of restrictions that the server must apply in accept-
ing file uploads. The restrictions are grouped into named sets:

Windows required prohibits names with the characters ", *, /, :, <, >, ?, \, |, names beginning with $, the names
AUX, CLOCK$, CON, NUL, PRN, COM1 to COM9, LPT1 to LPT9, and anything beginning with one of those names
followed by .

Windows optional prohibits names ending with . or a space

UNIX required prohibits names with the character /

UNIX optional prohibits names beginning with . or -

These rules are applied to each separate path component of the file name on the client’s system. So, for instance,
an upload of a file /tmp/myfile.tif from a Linux system would satisfy the UNIX required restrictions because
neither of the path components tmp and myfile.tif contains a / character.

Applying the “optional” restrictions does not assist OMERO.fs at all; those restrictions are designed to ease man-
ual maintenance of the directory specified by the omero.managed.dir setting, being where the server stores users’
uploaded files.

Checksum algorithm

As the client uploads each file to the server, it calculates a checksum for the file. After the upload is complete the client
reports that checksum to the server. The server then calculates the checksum for the corresponding file from its local
filesystem and checks that it matches what the client reported. File integrity is thus assured because corruption during
transmission or writing would be revealed by a checksum mismatch.

There are various algorithms by which checksums may be calculated. The list of available algorithms is given by
omero.checksum.supported. To calculate comparable checksums the client and server use the same algorithm.
The server API permits clients to specify the algorithm, but it is expected that they will typically accept the server
default.

The number that suffixes each of the checksum algorithm names specifies the bit width of the resulting checksum. A
larger bit width makes it less likely that different files will have the same checksum by coincidence, but lengthens the
checksum hex strings that are reported to the user and stored in the hash column of the originalfile table in the
database.

230 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

2.5.6 Grid configuration

In some cases, the configuration properties will not suffice to fully configure your server. In that case, it may be
necessary to make use of IceGrid’s XML configuration files. Like the config.xml file mentioned above, these are
stored under etc/grid: etc/grid/default.xml is used on Unix systems and there is also etc/grid/templates.
xml.

The default OMERO application descriptor deploys multiple server instances (Blitz-0, FileServer, Indexer-0, PixelData-
0, . . .) on a single node. Each server instance is defined by a server-template element in etc/grid/templates.
xml with its own parameters.

Modifying the application descriptors

When you run omero admin start without any other arguments, it looks up the default application descriptor for
your platform:

$ omero admin start
No descriptor given. Using etc/grid/default.xml
Waiting on startup. Use CTRL-C to exit

The “start” and “deploy” command, however, take several other parameters:

$ omero admin start --help
usage: omero admin start [-h] [-u USER] [file] [targets [targets ...]]

Start icegridnode daemon and waits for required components to come up,
i.e. status == 0

If the first argument can be found as a file, it will be deployed as the
application descriptor rather than etc/grid/default.xml. All other
arguments will be used as targets to enable optional sections of the
descriptor

Positional Arguments:
file Application descriptor. If not provided, a default will be used
targets Targets within the application descriptor which should be␣

→˓activated.

If a file is passed in as the first argument, then that application descriptor as opposed to etc/grid/default.xml
will be used. You can also modify the default application descriptors in place.

Note: The largest issue with using your own application descriptors or modifying the existing ones is that they tend to
change between versions, and there is no facility for automatically merging your local changes. You should be prepared
to re-make whatever changes you perform directly on the new files.

2.5. Optimizing Server Configuration 231

OMERO, Release 5.6.5-SNAPSHOT-1

Targets

Targets are elements within the application descriptors which can optionally turn on configuration. The target is only
applicable until the next invocation of omero admin start or omero admin deploy

Note: You must remember to always apply the targets on each omero admin command. If not, the target will not be
removed. Therefore, they are often better used for debugging purposes; however, as opposed to alternative application
descriptors, using the pre-existing targets should not require any special effort during upgrades.

Debugging

<properties id="PythonServer">
<property name="Ice.ImplicitContext" value="Shared"/>
<!-- Default logging settings for Python servers. -->
<property name="omero.logging.timedlog" value="False"/>
<property name="omero.logging.logsize" value="5000000"/>
<property name="omero.logging.lognum" value="9"/>
<property name="omero.logging.level" value="20"/>
<target name="debug">
<property name="omero.logging.level" value="10"/>

</target>

Here, the “debug” target allows increasing the logging output of the Python servers without modifying any files.

JMX configuration

<server-template id="BlitzTemplate">
<parameter name="index"/>
<parameter name="config" default="default"/>
<parameter name="jmxhost" default=""/>
<parameter name="jmxport" default="3001"/>
...
<target name="jmx">

<!-- Be sure to understand the consequences of enabling JMX.
It allows calling remote methods on your JVM -->

<option>-Dcom.sun.management.jmxremote=${jmxhost}</option>
<option>-Dcom.sun.management.jmxremote.port=${jmxport}</option>
<option>-Dcom.sun.management.jmxremote.authenticate=false</option>
<option>-Dcom.sun.management.jmxremote.ssl=false</option>

</target>

The JMX target enables remote connections for external monitoring of the Blitz server. If you need to modify the
“jmxport” or “jmxhost” variables, you will need to do so directly in the application descriptor XML.

232 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Changing ports / multiple servers on a single host

By modifying the default OMERO ports, it is possible to run multiple OMERO servers on the same physical machine.
All port numbers can be adjusted using the relevant configuration properties.

To run multiple servers on a single host, the easiest approach is to prefix all ports (SSL, TCP, registry) using omero.
ports.prefix:

First server
export OMERODIR=~/OMERO.server-1
omero admin start

Second server
export OMERODIR=~/OMERO.server-2
omero config set omero.ports.prefix 1
omero admin start

Third server
export OMERODIR=~/OMERO.server-3
omero config set omero.ports.prefix 2
omero admin start

Clients will need to use the appropriate port (4064, 14064 or 24064) to connect to OMERO.

See also:
SSL Section of the Server security and firewalls page.

Extending OMERO

Finally, if configuration does not suffice, there are also options for extending OMERO with your own code. These are
described on the development site under Extending OMERO.server.

2.5.7 Configuration properties glossary

• Introduction

• Mandatory properties

• Binary repository

• Client

• Database

• Glacier2

• Grid

• Ice

• JVM

• LDAP

• Mail

• Metrics

2.5. Optimizing Server Configuration 233

OMERO, Release 5.6.5-SNAPSHOT-1

• Name

• Performance

• Pixeldata

• Policy

• Ports

• Query

• Scripts

• Search

• Security

• Server

• Web

Introduction

The primary form of configuration is via the use of key/value properties, stored in etc/grid/config.xml and read
on server startup. Backing up and copying these properties is as easy as copying this file to a new server version.

The etc/omero.properties file of your distribution defines all the default configuration properties used by the server.
Changes made to the file are not recognized by the server. Instead, configuration options can be set using the omero
config set command:

$ omero config set <parameter> <value>

When supplying a value with spaces or multiple elements, use single quotes. The quotes will not be saved as part of
the value (see below).

To remove a configuration option (to return to default values where mentioned), simply omit the value:

$ omero config set <parameter>

These options will be stored in a file: etc/grid/config.xml which you can read for reference. DO NOT edit this
file directly.

You can also review all your settings by using:

$ omero config get

which should return values without quotation marks.

A final useful option of omero config edit is:

$ omero config edit

which will allow for editing the configuration in a system-default text editor.

Note: Please use the escape sequence \" for nesting double quotes (e.g. "[\"foo\", \"bar\"]") or wrap with '
(e.g. '["foo", "bar"]').

Examples of doing this are on the server installation page, as well as the LDAP installation page.

234 Chapter 2. System Administrator Documentation

https://github.com/ome/openmicroscopy/blob/develop/etc/omero.properties

OMERO, Release 5.6.5-SNAPSHOT-1

Mandatory properties

The following properties need to be correctly set for all installations of the OMERO.server. Depending on your set-up,
default values may be sufficient.

• omero.data.dir

• omero.db.host

• omero.db.name

• omero.db.pass

Binary repository

property omero.checksum.supported

omero.checksum.supported

Checksum algorithms supported by the server for new file uploads, being any comma-separated non-empty subset of:

• Adler-32

• CRC-32

• MD5-128

• Murmur3-32

• Murmur3-128

• SHA1-160

• File-Size-64

In negotiation with clients, this list is interpreted as being in descending order of preference.

Default: SHA1-160, MD5-128, Murmur3-128, Murmur3-32, CRC-32, Adler-32, File-Size-64

property omero.data.dir

omero.data.dir

Default: /OMERO/

property omero.fs.repo.path

omero.fs.repo.path

Value dynamically set during the build Template for FS managed repository paths. Allowable elements are:

%user% bob
%userId% 4
%group% bobLab
%groupId% 3
%year% 2011

(continues on next page)

2.5. Optimizing Server Configuration 235

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

%month% 01
%monthname% January
%day% 01
%time% 15-13-54.014
%institution% University of Dundee
%hash% 0D2D8DB7
%increment% 14
%subdirs% 023/613
%session% c3fdd5d8-831a-40ff-80f2-0ba5baef448a
%sessionId% 592
%perms% rw----
%thread% Blitz-0-Ice.ThreadPool.Server-3
/ path separator
// end of root-owned directories

These are described further at FS configuration options

The path must be unique per fileset to prevent upload conflicts, which is why %time% includes milliseconds.

A // may be used as a path separator: the directories preceding it are created with root ownership, the remainder are
the user’s. At least one user-owned directory must be included in the path.

The template path is created below omero.managed.dir, e.g. /OMERO/ManagedRepository/$omero.fs.repo.
path/

Default: %user%_%userId%//%year%-%month%/%day%/%time%

property omero.fs.repo.path_rules

omero.fs.repo.path_rules

Rules to apply to judge the acceptability of FS paths for writing into omero.managed.dir, being any comma-separated
non-empty subset of:

• Windows required

• Windows optional

• UNIX required

• UNIX optional

• local required

• local optional

Minimally, the “required” appropriate for the server is recommended. Also applying “optional” rules may make sysad-
min tasks easier, but may be more burdensome for users who name their files oddly. “local” means “Windows” or
“UNIX” depending on the local platform, the latter being applied for Linux and Mac OS X.

Default: Windows required, UNIX required

property omero.managed.dir

236 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.managed.dir

Default: ${omero.data.dir}/ManagedRepository

Client

property omero.client.browser.thumb_default_size

omero.client.browser.thumb_default_size

The default thumbnail size

Default: 96

property omero.client.download_as.max_size

omero.client.download_as.max_size

Clients disable download as jpg/png/tiff above max pixel count.

Default: 144000000

property omero.client.icetransports

omero.client.icetransports

Comma separated list of Ice transports available to clients. The default value (“ssl,tcp”) instructs Ice to open the ports
specified by the omero.ports.ssl and omero.ports.tcp properties. Restricting to “ssl” will prevent all non-encrypted
connections to the OMERO server.

Additionally, there are two experimental values for using websockets: “ws” and “wss” for unencrypted and encrypted,
respectively. The ports that are opened are controlled by the omero.ports.ws and omero.ports.wss properties. To enable
all possible protocols use: “ssl,tcp,wss,ws”.

Note: When using websockets behind a web server like nginx, additional configuration may be needed.

Default: ssl, tcp

property omero.client.scripts_to_ignore

omero.client.scripts_to_ignore

Server-side scripts used in IScript service Clients shouldn’t display.

Default: /omero/figure_scripts/Movie_Figure.py, /omero/figure_scripts/Split_View_Figure.py,
/omero/figure_scripts/Thumbnail_Figure.py, /omero/figure_scripts/ROI_Split_Figure.py,
/omero/export_scripts/Make_Movie.py, /omero/import_scripts/Populate_ROI.py

property omero.client.ui.menu.dropdown.colleagues.enabled

2.5. Optimizing Server Configuration 237

OMERO, Release 5.6.5-SNAPSHOT-1

omero.client.ui.menu.dropdown.colleagues.enabled

Flag to show/hide colleagues

Default: true

property omero.client.ui.menu.dropdown.colleagues.label

omero.client.ui.menu.dropdown.colleagues.label

Client dropdown menu colleagues label.

Default: Members

property omero.client.ui.menu.dropdown.everyone.enabled

omero.client.ui.menu.dropdown.everyone.enabled

Flag to show/hide all users.

Default: true

property omero.client.ui.menu.dropdown.everyone.label

omero.client.ui.menu.dropdown.everyone.label

Client dropdown menu all users label.

Default: All Members

property omero.client.ui.menu.dropdown.leaders.enabled

omero.client.ui.menu.dropdown.leaders.enabled

Flag to show/hide leader.

Default: true

property omero.client.ui.menu.dropdown.leaders.label

omero.client.ui.menu.dropdown.leaders.label

Client dropdown menu leader label.

Default: Owners

property omero.client.ui.tree.orphans.description

238 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.client.ui.tree.orphans.description

Description of the “Orphaned images” container.

Default: This is a virtual container with orphaned images. These images are not linked anywhere. Just drag them to
the selected container.

property omero.client.ui.tree.orphans.enabled

omero.client.ui.tree.orphans.enabled

Flag to show/hide “Orphaned images” container. Only accept “true” or “false”

Default: true

property omero.client.ui.tree.orphans.name

omero.client.ui.tree.orphans.name

Name of the “Orphaned images” container located in client tree data manager.

Default: Orphaned Images

property omero.client.ui.tree.type_order

omero.client.ui.tree.type_order

Client tree type order rank list first type is ranked 1 (the highest), last is the lowest if set to ‘false’ empty list allows
mixing all types and sorting them by default client ordering strategy

Default: tagset, tag, project, dataset, screen, plate, acquisition, image

property omero.client.viewer.initial_zoom_level

omero.client.viewer.initial_zoom_level

Initial client image viewer zoom level for big images

Default: 0

property omero.client.viewer.interpolate_pixels

omero.client.viewer.interpolate_pixels

Client viewers interpolate pixels by default.

Default: true

property omero.client.viewer.roi_limit

2.5. Optimizing Server Configuration 239

OMERO, Release 5.6.5-SNAPSHOT-1

omero.client.viewer.roi_limit

Client viewers roi limit.

Default: 2000

property omero.client.web.host

omero.client.web.host

Absolute omeroweb host http(s)://your_domain/prefix/

Default: [empty]

Database

property omero.db.authority

omero.db.authority

The string that will be used as the base for LSIDs in all exported OME objects including OME-XML and OME-TIFF.
It’s usually not necessary to modify this value since the database UUID (stored in the database) is sufficient to uniquely
identify the source.

Default: export.openmicroscopy.org

property omero.db.dialect

omero.db.dialect

Implementation of the org.hibernate.dialect.Dialect interface which will be used to convert HQL queries and save
operations into SQL SELECTs and DML statements.

(PostgreSQL default)

Default: ome.util.PostgresqlDialect

property omero.db.driver

omero.db.driver

JDBC driver used to access the database. Other drivers can be configured which wrap this driver to provide logging,
monitoring, etc.

(PostgreSQL default)

Default: org.postgresql.Driver

property omero.db.host

240 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.db.host

The host name of the machine on which the database server is running. A TCP port must be accessible from the server
on which OMERO is running.

Default: localhost

property omero.db.name

omero.db.name

The name of the database instance to which OMERO will connect.

Default: omero

property omero.db.pass

omero.db.pass

The password to use to connect to the database server

Default: omero

property omero.db.patch

omero.db.patch

The patch version of the database which is in use. This value need not match the patch version of the server that is is
being used with. Any changes by developers to the database schema will result in a bump to this value.

Default: 0

property omero.db.poolsize

omero.db.poolsize

Sets the number of database server connections which will be used by OMERO.

A sizeable increase in this value, e.g. to 100, will significantly increase the performance of your server, but your
database installation will need to be configured to accept at least as many, preferably more, connections as this value.

The related values omero.threads.max_threads and omero.threads.background_threads do not need to be increased by
the same amount. A system will be more stable if background_threads is less than max_threads and max_threads is
less than poolsize.

Default: 10

property omero.db.port

2.5. Optimizing Server Configuration 241

OMERO, Release 5.6.5-SNAPSHOT-1

omero.db.port

TCP port on which the database server is listening for connections. Used by the JDBC driver to access the database.
Use of a local UNIX socket is not supported.

(PostgreSQL default)

Default: 5432

property omero.db.prepared_statement_cache_size

omero.db.prepared_statement_cache_size

Default: 10

property omero.db.profile

omero.db.profile

Default values for the current profile will be hard-coded into the hibernate.properties file in the model-*.jar. By using
a different jar, you can modify the defaults.

Note: some other properties are defined in the file etc/profiles/$omero.db.profile Especially of importance is
omero.db.port Set during the build

Default: psql

property omero.db.properties

omero.db.properties

Properties to set on OMERO.server’s JDBC connection to the database. See https://jdbc.postgresql.org/documentation/
head/connect.html

Default: [empty]

property omero.db.sql_action_class

omero.db.sql_action_class

Implementation of the ome.util.SqlAction interface which will be used to perform all direct SQL actions, i.e. without
Hibernate.

(PostgreSQL default)

Default: ome.util.actions.PostgresSqlAction

property omero.db.statistics

242 Chapter 2. System Administrator Documentation

https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/connect.html

OMERO, Release 5.6.5-SNAPSHOT-1

omero.db.statistics

Whether JMX statistics are collected for DB usage (by Hibernate, etc)

Default: true

property omero.db.url

omero.db.url

The URL specifying how the Java driver connects to the database system.

Default: jdbc:postgresql://${omero.db.host}:${omero.db.port}/${omero.db.name}?ApplicationName=OMERO.${omero.name}&${omero.db.properties}

property omero.db.user

omero.db.user

The username to use to connect to the database server

Default: omero

property omero.db.version

omero.db.version

Version of the database which is in use. This value typically matches the major.minor version of the server that it is
being used with. Typically, only developers will change this version to bump to a new major version.

Default: OMERO5.4

Glacier2

property omero.glacier2.IceSSL

omero.glacier2.IceSSL

Glacier2Template IceSSL defaults and overrides, see https://doc.zeroc.com/ice/3.6/property-reference/icessl. Any
property beginning omero.glacier2.IceSSL. will be used to update the corresponding IceSSL. property.

Default: [empty]

property omero.glacier2.IceSSL.Ciphers

2.5. Optimizing Server Configuration 243

https://doc.zeroc.com/ice/3.6/property-reference/icessl

OMERO, Release 5.6.5-SNAPSHOT-1

omero.glacier2.IceSSL.Ciphers

Glacier2Template SSL allowed cipher suites

Default: ADH:!LOW:!MD5:!EXP:!3DES:@STRENGTH

property omero.glacier2.IceSSL.ProtocolVersionMax

omero.glacier2.IceSSL.ProtocolVersionMax

Glacier2Template SSL maximum allowed protocol (mac bug)

Default: tls1_1

property omero.glacier2.IceSSL.Protocols

omero.glacier2.IceSSL.Protocols

Glacier2Template SSL allowed protocols

Default: tls1

property omero.glacier2.IceSSL.VerifyPeer

omero.glacier2.IceSSL.VerifyPeer

Glacier2Template SSL verification requirements

Default: 0

Grid

property omero.cluster.read_only

omero.cluster.read_only

Deprecated. If true, will override both the db and repo properties to be true.

Default: false

property omero.cluster.read_only.db

omero.cluster.read_only.db

If access to the database is read-only: no writes should be attempted. A “false” may be overridden by
omero.cluster.read_only above.

Default: false

property omero.cluster.read_only.repo

244 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.cluster.read_only.repo

If access to the binary repo is read-only: no writes should be attempted. A “false” may be overridden by
omero.cluster.read_only above.

Default: false

property omero.cluster.redirector

omero.cluster.redirector

Default: nullRedirector

property omero.grid.registry_timeout

omero.grid.registry_timeout

registry_timeout is the milliseconds which the registry and other services will wait on remote services to respond.

Default: 5000

Ice

property Ice.IPv6

Ice.IPv6

Disable IPv6 by setting to 0. Only needed in certain situations.

Default: 1

JVM

property omero.jvmcfg.append

omero.jvmcfg.append

Contains other parameters which should be passed to the JVM. The value of “append” is treated as if it were on the
command line so will be separated on whitespace. For example, ‘-XX:-PrintGC -XX:+UseCompressedOops’ would
results in two new arguments. Note that when using config set from the command line one may need to give a prior –
option to prevent a value starting with - from already being parsed as an option, and values may need quoting to prevent
whitespace or other significant characters from being interpreted prematurely.

Default: [empty]

property omero.jvmcfg.heap_dump

2.5. Optimizing Server Configuration 245

OMERO, Release 5.6.5-SNAPSHOT-1

omero.jvmcfg.heap_dump

Toggles on or off heap dumps on OOMs. Default is “off”. The special value “tmp” will create the heap dumps in your
temp directory.

Default: [empty]

property omero.jvmcfg.heap_size

omero.jvmcfg.heap_size

Explicit value for the -Xmx argument, e.g. “1g”

Default: [empty]

property omero.jvmcfg.max_system_memory

omero.jvmcfg.max_system_memory

Suggestion for strategies as to the maximum memory that they will use for calculating JVM settings (MB).

Default: 48000

property omero.jvmcfg.min_system_memory

omero.jvmcfg.min_system_memory

Suggestion for strategies as to the minimum memory that they will use for calculating JVM settings (MB).

Default: 3414

property omero.jvmcfg.percent

omero.jvmcfg.percent

Used only by the percent strategy. An integer between 0 and 100 which is the percent of active memory that will be
used by the service.

Default: [empty]

property omero.jvmcfg.perm_gen

omero.jvmcfg.perm_gen

Explicit value for the MaxPermSize argument to the JVM, e.g. “500M”. Ignored for Java8+

Default: [empty]

property omero.jvmcfg.strategy

246 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.jvmcfg.strategy

Memory strategy which will be used by default. Options include: percent, manual

Default: percent

property omero.jvmcfg.system_memory

omero.jvmcfg.system_memory

Manual override of the total system memory that OMERO will think is present on the local OS (MB). If unset, an
attempt will be made to detect the actual amount: first by using the Python library psutil and if that is not installed, by
running a Java tool. If neither works, 4.0GB is assumed.

Default: [empty]

LDAP

property omero.ldap.base

omero.ldap.base

LDAP server base search DN, i.e. the filter that is applied to all users. (can be empty in which case any LDAP user is
valid)

Default: ou=example, o=com

property omero.ldap.config

omero.ldap.config

Enable or disable LDAP (true or false).

Default: false

property omero.ldap.connect_timeout

omero.ldap.connect_timeout

Sets com.sun.jndi.ldap.connect.timeout on the Spring LDAP default security context source environment. The
context source is responsible for interacting with JNDI/LDAP.

This timeout is specified in milliseconds and controls the amount of time JNDI/LDAP will wait for a connection to be
established.

A timeout less than or equal to zero means that no timeout will be observed and that the OMERO server will wait
indefinitely for LDAP connections to be established. Such a timeout should be used with extreme caution as connectivity
issues may then cause your server to no longer be able to create new sessions.

For more information on what this JNDI/LDAP property does, see https://docs.oracle.com/javase/jndi/tutorial/ldap/
connect/create.html

Default: 5000

2.5. Optimizing Server Configuration 247

https://docs.oracle.com/javase/jndi/tutorial/ldap/connect/create.html
https://docs.oracle.com/javase/jndi/tutorial/ldap/connect/create.html

OMERO, Release 5.6.5-SNAPSHOT-1

property omero.ldap.group_filter

omero.ldap.group_filter

Default: (objectClass=groupOfNames)

property omero.ldap.group_mapping

omero.ldap.group_mapping

Default: name=cn

property omero.ldap.new_user_group

omero.ldap.new_user_group

Without a prefix the “new_user_group” property specifies the name of a single group which all new users will be added
to. Other new_user_group strings are prefixed with :x: and specify various lookups which should take place to find
one or more target groups for the new user.

:ou: uses the final organizational unit of a user’s dn as the single OMERO group e.g. omero.ldap.
new_user_group=:ou:

:attribute: uses all the values of the specified attribute as the name of multiple OMERO groups. e.g. omero.
ldap.new_user_group=:attribute:memberOf

Like :attribute:, :filtered_attribute: uses all the values of the specified attribute as the name of
multiple OMERO groups but the attribute must pass the same filter as :query: does. e.g. omero.ldap.
new_user_group=:filtered_attribute:memberOf

Similar to :attribute:, :dn_attribute: uses all the values of the specified attribute as the DN of multiple OMERO
groups. e.g. omero.ldap.new_user_group=:dn_attribute:memberOf

A combination of filtered_attribute and dn_attribute, :filtered_dn_attribute: uses all of the values of the spec-
ified attribute as the DN of multiple OMERO groups but the attribute must pass the same filter as :query: e.g.
omero.ldap.new_user_group=:filtered_dn_attribute:memberOf

:query: performs a query for groups. The “name” property will be taken as defined by omero.ldap.group_mapping
and the resulting filter will be AND’ed with the value group_filter (above) e.g. omero.ldap.
new_user_group=:query:(member=@{dn})

:bean: looks in the server’s context for a bean with the given name which implements ome.security.auth.
NewUserGroupBean e.g. omero.ldap.new_user_group=:bean:myNewUserGroupMapperBean

Default: default

property omero.ldap.new_user_group_owner

248 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.ldap.new_user_group_owner

A query element to check if user who is being created via the new_user_group setting should be made a “manager”, i.e.
owner, of the queried group. E.g. omero.ldap.new_user_group_owner=(owner=@{dn}) will use the ‘manager’
attribute to set the ‘owner’ flag in the database. This query element is appended to any query used by new_user_group
with an AND.

This property is not used by new_user_group type ‘default’ and only potentially by :bean:.

Default: [empty]

property omero.ldap.password

omero.ldap.password

LDAP server bind password (if required; can be empty)

Default: [empty]

property omero.ldap.read_timeout

omero.ldap.read_timeout

Sets com.sun.jndi.ldap.read.timeout on the Spring LDAP default security context source environment. The
context source is responsible for interacting with JNDI/LDAP.

This timeout is specified in milliseconds and controls the amount of time JNDI/LDAP will wait for a response from
the LDAP server. When connecting to a server using SSL this timeout also applies to the SSL handshake process.

A timeout less than or equal to zero means that no timeout will be observed and that the OMERO server will wait
indefinitely for LDAP replies. Such a timeout should be used with extreme caution, especially when using SSL and/or
without a connection pool, as connectivity issues may then cause your server to no longer be able to create new sessions.

For more information on what this JNDI/LDAP property does, see https://docs.oracle.com/javase/tutorial/jndi/
newstuff/readtimeout.html

Default: 5000

property omero.ldap.referral

omero.ldap.referral

Available referral options are: “ignore”, “follow”, or “throw” as per the JNDI referral documentation.

Default: ignore

property omero.ldap.sync_on_login

2.5. Optimizing Server Configuration 249

https://docs.oracle.com/javase/tutorial/jndi/newstuff/readtimeout.html
https://docs.oracle.com/javase/tutorial/jndi/newstuff/readtimeout.html

OMERO, Release 5.6.5-SNAPSHOT-1

omero.ldap.sync_on_login

Whether or not values from LDAP will be synchronized to OMERO on each login. This includes not just the username,
email, etc, but also the groups that the user is a member of.

Note: Admin actions carried out in the clients may not survive this synchronization e.g. LDAP users removed from
an LDAP group in the UI will be re-added to the group when logging in again after the synchronization.

Default: false

property omero.ldap.urls

omero.ldap.urls

Set the URL of the LDAP server. A SSL URL for this property would be of the form: ldaps://ldap.example.com:636

Default: ldap://localhost:389

property omero.ldap.user_filter

omero.ldap.user_filter

Default: (objectClass=person)

property omero.ldap.user_mapping

omero.ldap.user_mapping

Default: omeName=cn, firstName=givenName, lastName=sn, email=mail, institution=department, middle-
Name=middleName

property omero.ldap.username

omero.ldap.username

LDAP server bind DN (if required; can be empty)

Default: [empty]

Mail

property omero.mail.bean

250 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.mail.bean

Mail sender properties

Default: defaultMailSender

property omero.mail.config

omero.mail.config

Enable or disable mail sender (true or false).

Default: false

property omero.mail.from

omero.mail.from

the email address used for the “from” field

Default: omero@${omero.mail.host}

property omero.mail.host

omero.mail.host

the hostname of smtp server

Default: localhost

property omero.mail.password

omero.mail.password

the password to connect to the smtp server (if required; can be empty)

Default: [empty]

property omero.mail.port

omero.mail.port

the port of smtp server

Default: 25

property omero.mail.smtp.auth

2.5. Optimizing Server Configuration 251

OMERO, Release 5.6.5-SNAPSHOT-1

omero.mail.smtp.auth

see javax.mail.Session properties

Default: false

property omero.mail.smtp.connectiontimeout

omero.mail.smtp.connectiontimeout

Default: 60000

property omero.mail.smtp.debug

omero.mail.smtp.debug

Default: false

property omero.mail.smtp.socketFactory.class

omero.mail.smtp.socketFactory.class

Default: javax.net.SocketFactory

property omero.mail.smtp.socketFactory.fallback

omero.mail.smtp.socketFactory.fallback

Default: false

property omero.mail.smtp.socketFactory.port

omero.mail.smtp.socketFactory.port

Default: ${omero.mail.port}

property omero.mail.smtp.starttls.enable

omero.mail.smtp.starttls.enable

Default: false

property omero.mail.smtp.timeout

252 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.mail.smtp.timeout

Default: 60000

property omero.mail.transport.protocol

omero.mail.transport.protocol

other smtp parameters; see org.springframework.mail.javamail.JavaMailSenderImpl

Default: smtp

property omero.mail.username

omero.mail.username

the username to connect to the smtp server (if required; can be empty)

Default: [empty]

Metrics

property omero.metrics.bean

omero.metrics.bean

Which bean to use: nullMetrics does nothing defaultMetrics uses the properties defined below

Default: defaultMetrics

property omero.metrics.graphite

omero.metrics.graphite

Address for Metrics to send server data

Default: [empty]

property omero.metrics.slf4j_minutes

omero.metrics.slf4j_minutes

Number of minutes to periodically print to slf4j 0 or lower disables the printout.

Default: 60

2.5. Optimizing Server Configuration 253

OMERO, Release 5.6.5-SNAPSHOT-1

Name

property omero.name

omero.name

Name of the OMERO component that is running in this process.

Default: Server

Performance

property omero.sessions.max_user_time_to_idle

omero.sessions.max_user_time_to_idle

Sets the maximum duration in milliseconds a user can request before a login is required due to inactivity.

Default: 6000000

property omero.sessions.max_user_time_to_live

omero.sessions.max_user_time_to_live

Sets the maximum duration in milliseconds a user can request before a login is required (0 signifies never).

Default: 0

property omero.sessions.maximum

omero.sessions.maximum

Sets the default duration before a login is required; 0 signifies never.

Default: 0

property omero.sessions.sync_force

omero.sessions.sync_force

Default: 1800000

property omero.sessions.sync_interval

254 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.sessions.sync_interval

Default: 120000

property omero.sessions.timeout

omero.sessions.timeout

Sets the default duration of inactivity in milliseconds after which a login is required.

Default: 600000

property omero.threads.background_threads

omero.threads.background_threads

Number of threads from the max_threads pool that can be used at any given time for background tasks like import.

Default: 10

property omero.threads.background_timeout

omero.threads.background_timeout

Number of milliseconds to wait for a slot in the background queue before a rejection error will be raised.

Default: 3600000

property omero.threads.cancel_timeout

omero.threads.cancel_timeout

Default: 5000

property omero.threads.idle_timeout

omero.threads.idle_timeout

Default: 5000

property omero.threads.max_threads

2.5. Optimizing Server Configuration 255

OMERO, Release 5.6.5-SNAPSHOT-1

omero.threads.max_threads

Maximum number of threads that can simultaneously run at the “USER” priority level. Internal system threads may
still run.

Default: 50

property omero.threads.min_threads

omero.threads.min_threads

Number of threads that will be kept waiting at all times.

Default: 5

property omero.throttling.method_time.error

omero.throttling.method_time.error

Time in milliseconds after which a single method invocation will print a ERROR statement to the server log. If ERRORs
are frequently being printed to your logs, you may want to increase this value after checking that no actual problem
exists. Values of more than 60000 (1 minute) are not advised.

Default: 20000

property omero.throttling.method_time.error.indexer

omero.throttling.method_time.error.indexer

Value for the indexer is extended to 1 day

Default: 86400000

property omero.throttling.method_time.warn

omero.throttling.method_time.warn

Time in milliseconds after which a single method invocation will print a WARN statement to the server log.

Default: 5000

property omero.throttling.method_time.warn.indexer

omero.throttling.method_time.warn.indexer

Value for the indexer is extended to 1 hour

Default: 3600000

property omero.throttling.objects_read_interval

256 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.throttling.objects_read_interval

Default: 1000

property omero.throttling.objects_written_interval

omero.throttling.objects_written_interval

Default: 1000

property omero.throttling.servants_per_session

omero.throttling.servants_per_session

Default: 10000

Pixeldata

property omero.pixeldata.backoff

omero.pixeldata.backoff

Name of the spring bean which will be used to calculate the backoff (in ms) that users should wait for an image to be
ready to view.

Default: ome.io.nio.SimpleBackOff

property omero.pixeldata.backoff.default

omero.pixeldata.backoff.default

A default value for the backoff time.

Default: 1000

property omero.pixeldata.backoff.maxpixels

omero.pixeldata.backoff.maxpixels

The maximum number of pixels (in any dimension), if exceeded the default value will be used.

Default: 1000000

property omero.pixeldata.batch

2.5. Optimizing Server Configuration 257

OMERO, Release 5.6.5-SNAPSHOT-1

omero.pixeldata.batch

Number of instances indexed per indexing. (Ignored by pixelDataEventLogQueue)

Default: 50

property omero.pixeldata.cron

omero.pixeldata.cron

Polling frequency of the pixeldata processing. Set empty to disable pixeldata processing.

Cron Format: seconds minutes hours day-of-month month day-of-week year (optional). For example, “0,30 * * * * ?” is
equivalent to running every 30 seconds. See https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.
html

Default: */4 * * * * ?

property omero.pixeldata.dispose

omero.pixeldata.dispose

Whether the PixelData.dispose() method should try to clean up ByteBuffer instances which may lead to memory ex-
ceptions. See ticket #11675 for more information. Note: the property is set globally for the JVM.

Default: true

property omero.pixeldata.event_log_loader

omero.pixeldata.event_log_loader

EventLogLoader that will be used for loading EventLogs for the action “PIXELDATA”. Choices include: pixel-
DataEventLogQueue and the older pixelDataPersistentEventLogLoader

Default: pixelDataEventLogQueue

property omero.pixeldata.max_plane_height

omero.pixeldata.max_plane_height

With omero.pixeldata.max_plane_width, specifies the plane size cutoff above which a pixel pyramid will be
generated by the pixeldata service unless subresolutions can be read from the file format. These values will be ignored
for floating or double pixel data types where no pyramid will be generated.

Default: 3192

property omero.pixeldata.max_plane_width

258 Chapter 2. System Administrator Documentation

https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html

OMERO, Release 5.6.5-SNAPSHOT-1

omero.pixeldata.max_plane_width

With omero.pixeldata.max_plane_height, specifies the plane size cutoff above which a pixel pyramid will be
generated by the pixeldata service unless subresolutions can be read from the file format. These values will be ignored
for floating or double pixel data types where no pyramid will be generated.

Default: 3192

property omero.pixeldata.max_projection_bytes

omero.pixeldata.max_projection_bytes

Specifies the maximum number of bytes the server will allow to be projected in real time with the rendering engine.

Default: 268435456

property omero.pixeldata.memoizer.dir

omero.pixeldata.memoizer.dir

The directory in which Bio-Formats may create memo files for images from the managed repository.

Default: ${omero.data.dir}/BioFormatsCache

property omero.pixeldata.memoizer.dir.local

omero.pixeldata.memoizer.dir.local

For read-only servers set this to a local read-write directory so that memo files can be created and used. Activates only
if the binary repository is read-only.

Default: [empty]

property omero.pixeldata.memoizer_wait

omero.pixeldata.memoizer_wait

Maximum time in milliseconds that file parsing can take without the parsed metadata being cached to
omero.pixeldata.memoizer.dir.

Default: 0

property omero.pixeldata.repetitions

2.5. Optimizing Server Configuration 259

OMERO, Release 5.6.5-SNAPSHOT-1

omero.pixeldata.repetitions

Instead, it is possible to tell the server to run more pixeldata repetitions, each of which gets completely committed
before the next. This will only occur when there is a substantial backlog of pixels to process.

(Ignored by pixelDataEventLogQueue; uses threads instead)

Default: 1

property omero.pixeldata.threads

omero.pixeldata.threads

How many pixel pyramids will be generated at a single time. The value should typically not be set to higher than the
number of cores on the server machine.

Default: 2

property omero.pixeldata.tile_height

omero.pixeldata.tile_height

Default: 256

property omero.pixeldata.tile_sizes_bean

omero.pixeldata.tile_sizes_bean

Default sizes for tiles are provided by a ome.io.nio.TileSizes implementation. By default the bean (“configuredTile-
Sizes”) uses the properties provided here.

Default: configuredTileSizes

property omero.pixeldata.tile_width

omero.pixeldata.tile_width

Default: 256

Policy

property omero.policy.bean

260 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.policy.bean

Instance of the PolicyService interface which will be responsible for checking certain server actions made by a user.

Default: defaultPolicyService

property omero.policy.binary_access

omero.policy.binary_access

Configuration for the policy of whether users can access binary files from disk. Binary access includes all attempts to
download a file from the UI.

The individual components of the string include:

• write - whether or not users who have WRITE access to the objects can access the binary. This includes group
and system administrators.

• read - whether or not users who have READ access to the objects can access the binary.

• image - whether or not images are to be considered accessible as a rule.

• plate - whether or not plates and contained HCS objects are to be considered accessible as a rule. This includes
wells, well samples, and plate runs.

Though the order of the components of the property are not important, the order that they are listed above roughly
corresponds to their priority. E.g. a -write value will override +plate.

Example 1: “-read,+write,+image,-plate” only owners of an image and admins can download it.

Example 2: “-read,-write,-image,-plate” no downloading is possible.

Configuration properties of the same name can be applied to individual groups as well. E.g. adding,
omero.policy.binary_access=-read to a group’s config property, you can prevent group-members from
downloading original files, as at https://docs.openmicroscopy.org/latest/omero/sysadmins/customization.html#
download-restrictions

Configuration is pessimistic: if there is a negative either on the group or at the server-level, the restriction will be
applied. A missing value at the server restricts the setting but allows the server to override.

Default: +read, +write, +image

Ports

property omero.ports.prefix

omero.ports.prefix

The prefix to apply to all port numbers (SSL, TCP, registry) used by the server

Default: [empty]

property omero.ports.registry

2.5. Optimizing Server Configuration 261

https://docs.openmicroscopy.org/latest/omero/sysadmins/customization.html#download-restrictions
https://docs.openmicroscopy.org/latest/omero/sysadmins/customization.html#download-restrictions

OMERO, Release 5.6.5-SNAPSHOT-1

omero.ports.registry

The IceGrid registry port number to use

Default: 4061

property omero.ports.ssl

omero.ports.ssl

The Glacier2 SSL port number to use

Default: 4064

property omero.ports.tcp

omero.ports.tcp

The Glacier2 TCP port number to use (unencrypted)

Default: 4063

property omero.ports.ws

omero.ports.ws

The Glacier2 WS port number to use (unencrypted)

Default: 4065

property omero.ports.wss

omero.ports.wss

The Glacier2 WSS port number to use

Default: 4066

Query

property omero.query.timeout

omero.query.timeout

For the query service how many seconds before a query times out.

Default: 1000

property omero.query.timeout.admin

262 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.query.timeout.admin

How many seconds before a query times out for administrative users.

Default: ${omero.query.timeout}

Scripts

property omero.launcher.jython

omero.launcher.jython

Executable on the PATH which will be used for scripts with the mimetype ‘text/x-jython’.

Default: jython

property omero.launcher.matlab

omero.launcher.matlab

Executable on the PATH which will be used for scripts with the mimetype ‘text/x-matlab’.

Default: matlab

property omero.launcher.python

omero.launcher.python

Executable on the PATH which will be used for scripts with the mimetype ‘text/x-python’.

No value implies use sys.executable

Default: [empty]

property omero.process.jython

omero.process.jython

Server implementation which will be used for scripts with the mimetype ‘text/x-jython’. Changing this value requires
that the appropriate class has been installed on the server.

Default: omero.processor.ProcessI

property omero.process.matlab

2.5. Optimizing Server Configuration 263

OMERO, Release 5.6.5-SNAPSHOT-1

omero.process.matlab

Server implementation which will be used for scripts with the mimetype ‘text/x-matlab’. Changing this value requires
that the appropriate class has been installed on the server.

Default: omero.processor.MATLABProcessI

property omero.process.python

omero.process.python

Server implementation which will be used for scripts with the mimetype ‘text/x-python’. Changing this value requires
that the appropriate class has been installed on the server.

Default: omero.processor.ProcessI

property omero.scripts.cache.cron

omero.scripts.cache.cron

Frequency to reload script params. By default, once a day at midnight.

Cron Format: seconds minutes hours day-of-month month day-of-week year (optional). For example, “0,30 * * * * ?” is
equivalent to running every 30 seconds. See https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.
html

Default: 0 0 0 * * ?

property omero.scripts.cache.spec

omero.scripts.cache.spec

Guava LoadingCache spec for configuring how many script JobParams will be kept in memory for how long.

For more information, see https://google.github.io/guava/releases/27.1-jre/api/docs/com/google/common/cache/
CacheBuilderSpec.html

Default: maximumSize=1000

property omero.scripts.timeout

omero.scripts.timeout

Default: 3600000

264 Chapter 2. System Administrator Documentation

https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://google.github.io/guava/releases/27.1-jre/api/docs/com/google/common/cache/CacheBuilderSpec.html
https://google.github.io/guava/releases/27.1-jre/api/docs/com/google/common/cache/CacheBuilderSpec.html

OMERO, Release 5.6.5-SNAPSHOT-1

Search

property omero.search.analyzer

omero.search.analyzer

Analyzer used both index and to parse queries

Default: ome.services.fulltext.FullTextAnalyzer

property omero.search.batch

omero.search.batch

Size of the batches to process events per indexing. Larger batches can speed up indexing, but at the cost of memory.

Default: 5000

property omero.search.bridges

omero.search.bridges

Extra bridge classes, comma-separated, to be invoked on each indexing. Bridges are used to parse more information
out of the data.

Default: [empty]

property omero.search.cron

omero.search.cron

Polling frequency of the indexing. Set empty to disable search indexing.

Cron Format: seconds minutes hours day-of-month month day-of-week year (optional). For example, “0,30 * * * * ?” is
equivalent to running every 30 seconds. See https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.
html

Default: */2 * * * * ?

property omero.search.event_log_loader

omero.search.event_log_loader

Default: eventLogQueue

property omero.search.excludes

2.5. Optimizing Server Configuration 265

https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html

OMERO, Release 5.6.5-SNAPSHOT-1

omero.search.excludes

Indexing takes place on all EventLogs as they occur in the database. The types listed here will be skipped if they appear
in the “entityType” field of the EventLog table.

Default: ome.model.annotations.ChannelAnnotationLink, ome.model.core.Channel,
ome.model.core.PlaneInfo, ome.model.core.PixelsOriginalFileMap, ome.model.containers.DatasetImageLink,
ome.model.containers.ProjectDatasetLink, ome.model.containers.CategoryGroupCategoryLink,
ome.model.containers.CategoryImageLink, ome.model.display.ChannelBinding, ome.model.display.QuantumDef,
ome.model.display.Thumbnail, ome.model.meta.Share, ome.model.meta.Event, ome.model.meta.EventLog,
ome.model.meta.GroupExperimenterMap, ome.model.meta.Node, ome.model.meta.Session,
ome.model.annotations.RoiAnnotationLink, ome.model.roi.Roi, ome.model.roi.Shape, ome.model.roi.Text,
ome.model.roi.Rectangle, ome.model.roi.Mask, ome.model.roi.Ellipse, ome.model.roi.Point,
ome.model.roi.Path, ome.model.roi.Polygon, ome.model.roi.Polyline, ome.model.roi.Line,
ome.model.screen.ScreenAcquisitionWellSampleLink, ome.model.screen.ScreenPlateLink,
ome.model.screen.WellReagentLink, ome.model.stats.StatsInfo

property omero.search.include_actions

omero.search.include_actions

EventLog.action values which will be indexed. Unless custom code is generating other action types, this property
should not need to be modified.

Default: INSERT, UPDATE, REINDEX, DELETE

property omero.search.include_types

omero.search.include_types

Whitelist of object types which will be indexed. All other types will be ignored. This matches the currently available
UI options but may need to be expanded for custom search bridges.

Default: ome.model.core.Image, ome.model.containers.Project, ome.model.containers.Dataset,
ome.model.screen.Plate, ome.model.screen.Screen, ome.model.screen.PlateAcquisition, ome.model.screen.Well

property omero.search.locking_strategy

omero.search.locking_strategy

Default: native

property omero.search.max_file_size

266 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.search.max_file_size

Maximum file size for text indexing (bytes) If a file larger than this is attached, e.g. to an image, the indexer will simply
ignore the contents of the file when creating the search index. This should not be set to more than half of the Indexer
heap space.

Note: If you set the max file size to greater than 1/2 the size of the indexer’s heap (256 MB by default), you may
encounter Out of Memory errors in the Indexer process or you may cause the search index to become corrupt. Be sure
that you also increase the heap size accordingly (see OutOfMemoryError / PermGen space errors in OMERO.server
logs).

Default: 131072000

property omero.search.max_partition_size

omero.search.max_partition_size

Number of objects to load in a single indexing window. The larger this value the fewer times a single object will be
indexed unnecessarily. Each object uses roughly 100 bytes of memory.

Default: 1000000

property omero.search.merge_factor

omero.search.merge_factor

Default: 25

property omero.search.ram_buffer_size

omero.search.ram_buffer_size

Default: 64

property omero.search.repetitions

omero.search.repetitions

Instead, it is possible to tell the server to run more indexing repetitions, each of which gets completely committed before
the next. This will only occur when there is a substantial backlog of searches to perform. (More than 1 hours worth)

Default: 1

property omero.search.reporting_loops

2.5. Optimizing Server Configuration 267

OMERO, Release 5.6.5-SNAPSHOT-1

omero.search.reporting_loops

Periodically the completion percentage will be printed. The calculation can be expensive and so is not done frequently.

Default: 100

Security

property omero.security.chmod_strategy

omero.security.chmod_strategy

Default: groupChmodStrategy

property omero.security.filter.bitand

omero.security.filter.bitand

Default: (int8and(permissions, %s) = %s)

property omero.security.keyStore

omero.security.keyStore

A keystore is a database of private keys and their associated X.509 certificate chains authenticating the corresponding
public keys. A keystore is mostly needed if you are doing client-side certificates for authentication against your LDAP
server.

Default: [empty]

property omero.security.keyStorePassword

omero.security.keyStorePassword

Sets the password of the keystore

Default: [empty]

property omero.security.login_failure_throttle_count

omero.security.login_failure_throttle_count

Default: 1

property omero.security.login_failure_throttle_time

268 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.security.login_failure_throttle_time

Default: 3000

property omero.security.password_provider

omero.security.password_provider

Implementation of PasswordProvider that will be used to authenticate users. Typically, a chained password provider
will be used so that if one form of authentication (e.g. LDAP) does not work, other attempts will be made.

Default: chainedPasswordProvider

property omero.security.password_required

omero.security.password_required

Controls whether the server will allow creation of user accounts with an empty password. If set to true (default, strict
mode), empty passwords are disallowed. This still allows the guest user to interact with the server.

Default: true

property omero.security.trustStore

omero.security.trustStore

A truststore is a database of trusted entities and their associated X.509 certificate chains authenticating the correspond-
ing public keys. The truststore contains the Certificate Authority (CA) certificates and the certificate(s) of the other
party to which this entity intends to send encrypted (confidential) data. This file must contain the public key certificates
of the CA and the client’s public key certificate.

Default: [empty]

property omero.security.trustStorePassword

omero.security.trustStorePassword

Sets the password of the truststore

Default: [empty]

Server

property omero.server.nodedescriptors

2.5. Optimizing Server Configuration 269

OMERO, Release 5.6.5-SNAPSHOT-1

omero.server.nodedescriptors

Override the default set of OMERO services. For example, to run OMERO.server with Blitz and Tables only (i.e.
disable Processor, DropBox, Indexer, PixelData) set this to master:Blitz-0,Tables-0. Also use this to distribute
OMERO services across multiple nodes, for example: master:Blitz-0,Tables-0 worker1:Processor-0. See
https://docs.openmicroscopy.org/omero/latest/sysadmins/grid.html#deployment-examples

Default: [empty]

Web

property omero.web.admins

omero.web.admins

A list of people who get code error notifications whenever the application identifies a broken link or raises an unhandled
exception that results in an internal server error. This gives the administrators immediate notification of any errors, see
OMERO.mail. Example:'[["Full Name", "email address"]]'.

Default: []

property omero.web.application_server

omero.web.application_server

OMERO.web is configured to run in Gunicorn as a generic WSGI (TCP)application by default. Available options:
wsgi-tcp (Gunicorn, default), wsgi (Advanced users only, e.g. manual Apache configuration with mod_wsgi).

Default: wsgi-tcp

property omero.web.application_server.host

omero.web.application_server.host

The front-end webserver e.g. NGINX can be set up to run on a different host from OMERO.web. The property ensures
that OMERO.web is accessible on an external IP. It requires copying all the OMERO.web static files to the separate
NGINX server.

Default: 127.0.0.1

property omero.web.application_server.max_requests

omero.web.application_server.max_requests

The maximum number of requests a worker will process before restarting.

Default: 0

property omero.web.application_server.port

270 Chapter 2. System Administrator Documentation

https://docs.openmicroscopy.org/omero/latest/sysadmins/grid.html#deployment-examples

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.application_server.port

Upstream application port

Default: 4080

property omero.web.apps

omero.web.apps

Add additional Django applications. For example, see Creating an app

Default: []

property omero.web.base_include_template

omero.web.base_include_template

Template to be included in every page, at the end of the <body>

Default: None

property omero.web.caches

omero.web.caches

OMERO.web offers alternative session backends to automatically delete stale data using the cache session store back-
end, see Django cached session documentation for more details.

Default: {\”default\”: {\”BACKEND\”: \”django.core.cache.backends.dummy.DummyCache\”}}

property omero.web.chunk_size

omero.web.chunk_size

Size, in bytes, of the “chunk”

Default: 1048576

property omero.web.cors_origin_allow_all

omero.web.cors_origin_allow_all

If True, cors_origin_whitelist will not be used and all origins will be authorized to make cross-site HTTP requests.

Default: false

property omero.web.cors_origin_whitelist

2.5. Optimizing Server Configuration 271

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.cors_origin_whitelist

A list of origin hostnames that are authorized to make cross-site HTTP requests. Used by the django-cors-headers app
as described at https://github.com/ottoyiu/django-cors-headers

Default: []

property omero.web.csrf_cookie_httponly

omero.web.csrf_cookie_httponly

Prevent CSRF cookie from being accessed in JavaScript. Currently disabled as it breaks background JavaScript POSTs
in OMERO.web.

Default: false

property omero.web.csrf_cookie_secure

omero.web.csrf_cookie_secure

Restrict CSRF cookies to HTTPS only, you are strongly recommended to set this to true in production.

Default: false

property omero.web.databases

omero.web.databases

Default: {}

property omero.web.debug

omero.web.debug

A boolean that turns on/off debug mode. Use debug mode only in development, not in production, as it logs sensitive
and confidential information in plaintext.

Default: false

property omero.web.django_additional_settings

omero.web.django_additional_settings

Additional Django settings as list of key-value tuples. Use this to set or override Django settings that aren’t managed
by OMERO.web. E.g. ["CUSTOM_KEY", "CUSTOM_VALUE"]

Default: []

property omero.web.favicon_url

272 Chapter 2. System Administrator Documentation

https://github.com/ottoyiu/django-cors-headers

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.favicon_url

Favicon URL, specifies the path relative to django’s static file dirs.

Default: webgateway/img/ome.ico

property omero.web.feedback.comment.enabled

omero.web.feedback.comment.enabled

Enable the feedback form for comments. These comments are sent to the URL in omero.qa.feedback (OME team
by default).

Default: true

property omero.web.feedback.error.enabled

omero.web.feedback.error.enabled

Enable the feedback form for errors. These errors are sent to the URL in omero.qa.feedback (OME team by default).

Default: true

property omero.web.html_meta_referrer

omero.web.html_meta_referrer

Default content for the HTML Meta referrer tag. See https://www.w3.org/TR/referrer-policy/#referrer-policies for al-
lowed values and https://caniuse.com/referrer-policy for browser compatibility. Warning: Internet Explorer 11 does
not support the default value of this setting, you may want to change this to “origin” after reviewing the linked docu-
mentation.

Default: origin-when-crossorigin

property omero.web.index_template

omero.web.index_template

Define template used as an index page http://your_host/omero/.If None user is automatically redirected to the
login page.For example use ‘webclient/index.html’.

Default: None

property omero.web.logdir

2.5. Optimizing Server Configuration 273

https://www.w3.org/TR/referrer-policy/#referrer-policies
https://caniuse.com/referrer-policy

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.logdir

A path to the custom log directory.

Default: /home/omero/OMERO.server/var/log

property omero.web.login.client_downloads_base

omero.web.login.client_downloads_base

GitHub repository containing the Desktop client downloads

Default: ome/omero-insight

property omero.web.login.show_client_downloads

omero.web.login.show_client_downloads

Whether to link to official client downloads on the login page

Default: true

property omero.web.login_incorrect_credentials_text

omero.web.login_incorrect_credentials_text

The error message shown to users who enter an incorrect username or password.

Default: Connection not available, please check your user name and password.

property omero.web.login_logo

omero.web.login_logo

Customize webclient login page with your own logo. Logo images should ideally be 150 pixels high or less and will
appear above the OMERO logo. You will need to host the image somewhere else and link to it with the OMERO logo.

Default: None

property omero.web.login_redirect

omero.web.login_redirect

Redirect to the given location after logging in. It only supports arguments for Django reverse function.
For example: '{"redirect": ["webindex"], "viewname": "load_template", "args":["userdata"],
"query_string": {"experimenter": -1}}'

Default: {}

property omero.web.login_view

274 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/ref/urlresolvers/#reverse

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.login_view

The Django view name used for login. Use this to provide an alternative login workflow.

Default: weblogin

property omero.web.max_table_download_rows

omero.web.max_table_download_rows

Prevent download of OMERO.tables exceeding this number of rows in a single request.

Default: 10000

property omero.web.maximum_multifile_download_size

omero.web.maximum_multifile_download_size

Prevent multiple files with total aggregate size greater than this value in bytes from being downloaded as a zip archive.

Default: 1073741824

property omero.web.middleware

omero.web.middleware

Warning: Only system administrators should use this feature. List of Django middleware classes in the form [{“class”:
“class.name”, “index”: FLOAT}]. See Django middleware. Classes will be ordered by increasing index

Default: [{\”index\”: 1, \”class\”: \”django.middleware.common.BrokenLinkEmailsMiddleware\”},{\”index\”:
2, \”class\”: \”django.middleware.common.CommonMiddleware\”},{\”index\”: 3,
\”class\”: \”django.contrib.sessions.middleware.SessionMiddleware\”},{\”index\”: 4,
\”class\”: \”django.middleware.csrf.CsrfViewMiddleware\”},{\”index\”: 5, \”class\”:
\”django.contrib.messages.middleware.MessageMiddleware\”},{\”index\”: 6, \”class\”:
\”django.middleware.clickjacking.XFrameOptionsMiddleware\”}]

property omero.web.nginx_server_extra_config

omero.web.nginx_server_extra_config

Extra configuration lines to add to the Nginx server block. Lines will be joined with n. Remember to terminate lines
with; when necessary.

Default: []

property omero.web.open_with

2.5. Optimizing Server Configuration 275

https://docs.djangoproject.com/en/1.11/topics/http/middleware/

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.open_with

A list of viewers that can be used to display selected Images or other objects. Each viewer is defined as ["Name",
"url", options]. Url is reverse(url). Selected objects are added to the url as ?image=:1&image=2Objects supported
must be specified in options with e.g. {"supported_objects":["images"]} to enable viewer for one or more
images.

Default: [[\”Image viewer\”, \”webgateway\”, {\”supported_objects\”: [\”image\”],\”script_url\”: \”web-
client/javascript/ome.openwith_viewer.js\”}]]

property omero.web.page_size

omero.web.page_size

Number of images displayed within a dataset or ‘orphaned’ container to prevent from loading them all at once.

Default: 200

property omero.web.ping_interval

omero.web.ping_interval

Timeout interval between ping invocations in seconds

Default: 60000

property omero.web.pipeline_css_compressor

omero.web.pipeline_css_compressor

Compressor class to be applied to CSS files. If empty or None, CSS files won’t be compressed.

Default: None

property omero.web.pipeline_js_compressor

omero.web.pipeline_js_compressor

Compressor class to be applied to JavaScript files. If empty or None, JavaScript files won’t be compressed.

Default: None

property omero.web.pipeline_staticfile_storage

276 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.pipeline_staticfile_storage

The file storage engine to use when collecting static files with the collectstatic management command. See the docu-
mentation for more details.

Default: pipeline.storage.PipelineStorage

property omero.web.plate_layout

omero.web.plate_layout

If ‘shrink’, the plate will not display rows and columns before the first Well, or after the last Well. If ‘trim’, the plate
will only show Wells from A1 to the last Well. If ‘expand’ (default), the plate will expand from A1 to a multiple of 12
columns x 8 rows after the last Well.

Default: expand

property omero.web.prefix

omero.web.prefix

Used as the value of the SCRIPT_NAME environment variable in any HTTP request.

Default: None

property omero.web.public.cache.enabled

omero.web.public.cache.enabled

Default: false

property omero.web.public.cache.key

omero.web.public.cache.key

Default: omero.web.public.cache.key

property omero.web.public.cache.timeout

omero.web.public.cache.timeout

Default: 86400

property omero.web.public.enabled

2.5. Optimizing Server Configuration 277

https://django-pipeline.readthedocs.org/en/latest/storages.html
https://django-pipeline.readthedocs.org/en/latest/storages.html

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.public.enabled

Enable and disable the OMERO.web public user functionality.

Default: false

property omero.web.public.get_only

omero.web.public.get_only

Restrict public users to GET requests only

Default: true

property omero.web.public.password

omero.web.public.password

Password to use during authentication.

Default: None

property omero.web.public.server_id

omero.web.public.server_id

Server to authenticate against.

Default: 1

property omero.web.public.url_filter

omero.web.public.url_filter

Set a regular expression that matches URLs the public user is allowed to access. If this is not set, no URLs will be
publicly available.

Default: (?#This regular expression matches nothing)a^

property omero.web.public.user

omero.web.public.user

Username to use during authentication.

Default: None

property omero.web.redirect_allowed_hosts

278 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.redirect_allowed_hosts

If you wish to allow redirects to an external site, the domains must be listed here. For example [“openmicroscopy.org”].

Default: []

property omero.web.root_application

omero.web.root_application

Override the root application label that handles /. Warning you must ensure the application’s URLs do not conflict
with other applications. omero-gallery is an example of an application that can be used for this (set to gallery)

Default: [empty]

property omero.web.search.default_group

omero.web.search.default_group

ID of group to pre-select in search form.

Default: 0

property omero.web.search.default_user

omero.web.search.default_user

ID of user to pre-select in search form.

Default: 0

property omero.web.secret_key

omero.web.secret_key

A boolean that sets SECRET_KEY for a particular Django installation.

Default: None

property omero.web.secure

omero.web.secure

Force all backend OMERO.server connections to use SSL.

Default: false

property omero.web.secure_proxy_ssl_header

2.5. Optimizing Server Configuration 279

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.secure_proxy_ssl_header

A tuple representing a HTTP header/value combination that signifies a request is secure. Example
'["HTTP_X_FORWARDED_PROTO_OMERO_WEB", "https"]'. For more details see secure proxy ssl header.

Default: []

property omero.web.server_list

omero.web.server_list

A list of servers the Web client can connect to.

Default: [[\”localhost\”, 4064, \”omero\”]]

property omero.web.session_cookie_age

omero.web.session_cookie_age

The age of session cookies, in seconds.

Default: 86400

property omero.web.session_cookie_domain

omero.web.session_cookie_domain

The domain to use for session cookies

Default: None

property omero.web.session_cookie_name

omero.web.session_cookie_name

The name to use for session cookies

Default: None

property omero.web.session_cookie_path

omero.web.session_cookie_path

The path to use for session cookies

Default: None

property omero.web.session_cookie_secure

280 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/ref/settings/#secure-proxy-ssl-header

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.session_cookie_secure

Restrict session cookies to HTTPS only, you are strongly recommended to set this to true in production.

Default: false

property omero.web.session_engine

omero.web.session_engine

Controls where Django stores session data. See Configuring the session engine for more details.

Default: omeroweb.filesessionstore

property omero.web.session_expire_at_browser_close

omero.web.session_expire_at_browser_close

A boolean that determines whether to expire the session when the user closes their browser. See Django Browser-length
sessions vs. persistent sessions documentation for more details.

Default: true

property omero.web.sharing.opengraph

omero.web.sharing.opengraph

Dictionary of server-name: site-name, where server-name matches a name from omero.web.server_list. For example:
'{"omero": "Open Microscopy"}'

Default: {}

property omero.web.sharing.twitter

omero.web.sharing.twitter

Dictionary of server-name: @twitter-site-username, where server-name matches a name from omero.web.server_list.
For example: '{"omero": "@openmicroscopy"}'

Default: {}

property omero.web.show_forgot_password

omero.web.show_forgot_password

Allows to hide ‘Forgot password’ from the login view - useful for LDAP/ActiveDir installations

Default: true

property omero.web.static_root

2.5. Optimizing Server Configuration 281

https://docs.djangoproject.com/en/1.11/ref/settings/#session-engine
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.static_root

The absolute path to the directory where collectstatic will collect static files for deployment. If the staticfiles contrib
app is enabled (default) the collectstatic management command will collect static files into this directory.

Default: /home/omero/OMERO.server/var/static

property omero.web.static_url

omero.web.static_url

URL to use when referring to static files. Example: '/static/' or 'http://static.example.com/'. Used as
the base path for asset definitions (the Media class) and the staticfiles app. It must end in a slash if set to a non-empty
value.

Default: /static/

property omero.web.staticfile_dirs

omero.web.staticfile_dirs

Defines the additional locations the staticfiles app will traverse if the FileSystemFinder finder is enabled, e.g. if you
use the collectstatic or findstatic management command or use the static file serving view.

Default: []

property omero.web.template_dirs

omero.web.template_dirs

List of locations of the template source files, in search order. Note that these paths should use Unix-style forward
slashes.

Default: []

property omero.web.thumbnails_batch

omero.web.thumbnails_batch

Number of thumbnails retrieved to prevent from loading them all at once. Make sure the size is not too big, otherwise
you may exceed limit request line, see https://docs.gunicorn.org/en/latest/settings.html?highlight=limit_request_line

Default: 50

property omero.web.time_zone

282 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/latest/settings.html?highlight=limit_request_line

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.time_zone

Time zone for this installation. Choices can be found in the TZ database name column of: https://en.wikipedia.org/
wiki/List_of_tz_database_time_zones Default "Europe/London"

Default: Europe/London

property omero.web.top_logo

omero.web.top_logo

Customize the webclient top bar logo. The recommended image height is 23 pixels and it must be hosted outside of
OMERO.web.

Default: [empty]

property omero.web.top_logo_link

omero.web.top_logo_link

The target location of the webclient top logo, default unlinked.

Default: [empty]

property omero.web.ui.center_plugins

omero.web.ui.center_plugins

Add plugins to the center panels. Plugins are ['Channel overlay', 'webtest/webclient_plugins/
center_plugin.overlay.js.html', 'channel_overlay_panel']. The javascript loads data into
$('#div_id').

Default: []

property omero.web.ui.metadata_panes

omero.web.ui.metadata_panes

Manage Metadata pane accordion. This functionality is limited to the existing sections.

Default: [{\”name\”: \”tag\”, \”label\”: \”Tags\”, \”index\”: 1},{\”name\”: \”map\”, \”label\”: \”Key-Value
Pairs\”, \”index\”: 2},{\”name\”: \”table\”, \”label\”: \”Tables\”, \”index\”: 3},{\”name\”: \”file\”, \”label\”:
\”Attachments\”, \”index\”: 4},{\”name\”: \”comment\”, \”label\”: \”Comments\”, \”index\”: 5},{\”name\”: \”rat-
ing\”, \”label\”: \”Ratings\”, \”index\”: 6},{\”name\”: \”other\”, \”label\”: \”Others\”, \”index\”: 7}]

property omero.web.ui.right_plugins

2.5. Optimizing Server Configuration 283

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.ui.right_plugins

Add plugins to the right-hand panel. Plugins are ['Label', 'include.js', 'div_id']. The javascript loads data
into $('#div_id').

Default: [[\”Acquisition\”, \”webclient/data/includes/right_plugin.acquisition.js.html\”, \”meta-
data_tab\”],[\”Preview\”, \”webclient/data/includes/right_plugin.preview.js.html\”, \”preview_tab\”]]

property omero.web.ui.top_links

omero.web.ui.top_links

Add links to the top header: links are ['Link Text', 'link|lookup_view', options], where the url is
reverse(‘link’), simply ‘link’ (for external urls) or lookup_view is a detailed dictionary {“viewname”: “str”,
“args”: [], “query_string”: {“param”: “value” }], E.g. '["Webtest", "webtest_index"] or ["Homepage",
"http://...", {"title": "Homepage", "target": "new"}] or ["Repository", {"viewname":
"webindex", "query_string": {"experimenter": -1}}, {"title": "Repo"}]'

Default: [[\”Data\”, \”webindex\”, {\”title\”: \”Browse Data via Projects, Tags etc\”}],[\”History\”, \”history\”,
{\”title\”: \”History\”}],[\”Help\”, \”https://help.openmicroscopy.org/\”,{\”title\”:\”Open OMERO user guide in a
new tab\”, \”target\”:\”new\”}]]

property omero.web.use_x_forwarded_host

omero.web.use_x_forwarded_host

Specifies whether to use the X-Forwarded-Host header in preference to the Host header. This should only be enabled
if a proxy which sets this header is in use.

Default: false

property omero.web.user_dropdown

omero.web.user_dropdown

Whether or not to include a user dropdown in the base template. Particularly useful when used in combination with
the OMERO.web public user where logging in may not make sense.

Default: true

property omero.web.viewer.view

omero.web.viewer.view

Django view which handles display of, or redirection to, the desired full image viewer.

Default: omeroweb.webclient.views.image_viewer

property omero.web.webgateway_cache

284 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

omero.web.webgateway_cache

Default: None

property omero.web.wsgi_args

omero.web.wsgi_args

A string representing Gunicorn additional arguments. Check Gunicorn Documentation https://docs.gunicorn.org/en/
latest/settings.html

Default: None

property omero.web.wsgi_timeout

omero.web.wsgi_timeout

Workers silent for more than this many seconds are killed and restarted. Check Gunicorn Documentation https://docs.
gunicorn.org/en/stable/settings.html#timeout

Default: 60

property omero.web.wsgi_workers

omero.web.wsgi_workers

The number of worker processes for handling requests. Check Gunicorn Documentation https://docs.gunicorn.org/en/
stable/settings.html#workers

Default: 5

property omero.web.x_frame_options

omero.web.x_frame_options

Whether to allow OMERO.web to be loaded in a frame.

Default: SAMEORIGIN

2.5.8 Syslog configuration

syslog is a standard for message logging over networks. OMERO.server supports logging to either a local or remote
syslog service.

This allows all logs of the OMERO.server to be routed to a central location instead of (or as well as) to a file.

Note: It is important to note that this applies only to the OMERO.server itself, not to components like OMERO.web.

2.5. Optimizing Server Configuration 285

https://docs.gunicorn.org/en/latest/settings.html
https://docs.gunicorn.org/en/latest/settings.html
https://docs.gunicorn.org/en/stable/settings.html#timeout
https://docs.gunicorn.org/en/stable/settings.html#timeout
https://docs.gunicorn.org/en/stable/settings.html#workers
https://docs.gunicorn.org/en/stable/settings.html#workers
https://en.wikipedia.org/wiki/Syslog

OMERO, Release 5.6.5-SNAPSHOT-1

How it works

Whenever a log message is generated, OMERO’s logging framework will forward that message to any configured
appenders.

By default, OMERO is configured to log everything to files.

Note: OMERO is configured to log a record of events for operations such as import. These are written directly to the
Managed Repository. It is very likely that even if replacing file logging with syslog, this aspect should be retained in
files. This is easily achieved by not changing any loggers using SIFT.

Configuration

To configure OMERO to be able to log to syslog, it is necessary to modify the file OMERO.server/current/etc/
logback.xml. It is possible to do all the configuration changes in this file alone, but for ease of config management, it is
demonstrated here where an additional OMERO.server/current/etc/logback_syslog.xml file is used in addition.

The following information is required to configure OMERO to log to syslog.

• The host on which syslog is running: e.g. localhost

• The port number on which syslog is running on that host: e.g. 514

• The facility (RFC 3164) that OMERO should be handled as: e.g. user or local6

Note: The facility is important because it determines how syslog will handle the messages it receives. It is unlikely
that OMERO’s log output will be desired in a local systems primary message log for example. On Linux this is often
/var/log/messages. Remember to configure the syslog configuration to avoid this. This is also where configuration
of onward forwarding can be configured (to a service such as splunk). Finally, syslog can be configured to specifically
output this facility output to a file such as /var/log/omero.

Create the new file OMERO.server/current/etc/logback_syslog.xml:

<?xml version="1.0" encoding="UTF-8"?>
<included>
<!-- syslog -->
<appender name="SYSLOG" class="ch.qos.logback.classic.net.SyslogAppender">

<!-- Exclude debug level logging from ome.services.blitz.repo.ManagedImportRequestI -
→˓->

<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator> <!-- defaults to type ch.qos.logback.classic.boolex.

→˓JaninoEventEvaluator -->
<expression>return Level.DEBUG.equals(Level.toLevel(level)) && logger.

→˓equals("ome.services.blitz.repo.ManagedImportRequestI");</expression>
</evaluator>
<OnMismatch>NEUTRAL</OnMismatch>
<OnMatch>DENY</OnMatch>

</filter>
<!-- Exclude debug level logging from omero.* (except allow omero.cmd.*) -->
<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator> <!-- defaults to type ch.qos.logback.classic.boolex.

→˓JaninoEventEvaluator -->
(continues on next page)

286 Chapter 2. System Administrator Documentation

https://tools.ietf.org/html/rfc3164
https://www.splunk.com/

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

<expression>return Level.DEBUG.equals(Level.toLevel(level)) && logger.
→˓startsWith("omero.") && !logger.startsWith("omero.cmd.");</expression>

</evaluator>
<OnMismatch>NEUTRAL</OnMismatch>
<OnMatch>DENY</OnMatch>

</filter>

<syslogHost>localhost</syslogHost>
<facility>local6</facility>
<suffixPattern>OMERO [%level] [%thread] %logger %msg</suffixPattern>

</appender>

</included>

This creates an appender that sends messages to syslog. syslogHost is the host on which syslog is running. No port is
specified as 514 is the default. The suffixPattern is customizable. In this instance it is identical to OMERO’s file logger
except an added “OMERO” identifier has been added for clarity. The name of the appender has been set to SYSLOG.
The filters replicate the same behaviour from the default FILE appender.

Note: If configuring the appender directly in the OMERO.server/current/etc/logback.xml file, then the included
tag should not be used.

Within the configuration tag of OMERO.server/current/etc/logback.xml add:

<include file="/path/to/OMERO.server/etc/logback_syslog.xml"/>

Note: The included file path can be relative, but note that it is NOT relative to the OMERO.server/current/etc/
logback.xml file, but to the current directory set by OMERO. It is highly recommended to use a full path.

Finally, also within OMERO.server/current/etc/logback.xml modify the root tag to include a second appender-
ref (It can also be replaced if the file logs are not desired or syslog will handle writing those to a file on OMERO’s
behalf):

<root level="OFF">
<appender-ref ref="SYSLOG"/>
<appender-ref ref="FILE"/>

</root>

Note: A restart of OMERO will be necessary before this takes effect.

2.5. Optimizing Server Configuration 287

OMERO, Release 5.6.5-SNAPSHOT-1

2.6 Managing OMERO

This section contains details on how to manage users, groups and data access in OMERO. New in OMERO 5.4.0, full
administrators can now create restricted administrators to allow facility managers or other trusted users to carry out
tasks on behalf of all users.

2.6.1 Groups and permissions system

See also:
OMERO permissions querying, usage and history

Summary

A user may belong to one or more groups, and the data in a group may at most be shared with users in the same group
on the same OMERO server. The degree to which their data is available to other members of the group depends on
the permissions settings for that group. Whenever a user logs on to an OMERO server, they are connected under one
of their groups. All data they import and any work that is done is assigned to the current group, however the user can
move their data into another group.

Users

Administrator Your OMERO server will have one or more administrators. Each group can be administrated by any
of your server administrators. The administrators control all settings for groups.

Group owner Your group may have one or more owners. The group owner has some additional rights within each
group compared to a standard group member, including the ability to add other members to the group.

Group member This is the standard user.

Restricted Administrators New in OMERO 5.4.0, these administrators can be created with a subset of privileges
allowing trusted users to act on behalf of all other OMERO users for a defined set of tasks. See Administrators
with restricted privileges for further information.

Groups and users must be created by the server administrator or a restricted administrator with the correct privileges.
Users can then be added by the administrator (either a full admin or a restricted admin with the correct privileges) or
by one of the group owners assigned by the administrator (group owners would typically include the PI of the lab). The
group’s owners or administrators can also choose the permission level for that group. See the Help guide for managing
groups for more information about how to administrate them in OMERO.

Group permission levels

The various permission levels are:

Private This group is the most restrictive:

• A private Group owner can see and control who the group members are and can view their data.

• As a Group member, you will only ever be able to see your own data.

• This can be used for general data storage, access and analysis, but has very limited collaboration potential
other than for the Group owner to see other group members’ data.

Potential use cases of Private group:

288 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/sharing-data.html#owner
https://help.openmicroscopy.org/sharing-data.html#owner

OMERO, Release 5.6.5-SNAPSHOT-1

• A PI as Group owner and their student, as a Group member, can access the student’s data. A student might
use this to store all of their data and from here, the PI and/or student might decide which data could/should
be moved into a more collaborative group where additional members would also be able to view the data.

• An institutional repository type structure where data are being archived, but not necessarily open for general
viewing.

Read-only This group allows visibility of other users and their data, but minimal ability to annotate their data:

• The Group owner can control group members as above and can perform annotations on the other group
members data.

• Group member can see who other members are and view their data, but cannot annotate another members’
data at all.

Potential use cases of Read-only group:
• A scientist might move data into a read-only group when they want other group members to access and

view their data. Their PI, as a group owner could then annotate and/or add Regions of Interest (ROIs) to
their images.

• Scientists submitting a publication could move data to a read-only group as part of the publication workflow,
making them publicly available via a URL for reviewers and readers (see the Help guide for public data).

• For an institutional repository where data are being archived and then available for other users in the institute
to view; this could be standard storage of all original data, or for data that is included in publications.

Read-annotate This group allows some collaboration on other members’ data for all members:

• Group member can view other members, their data and can make annotations on those other members’
data.

Potential use cases of Read-annotate group:
• This could be used by a group of scientists working together with data for a publication.

Read-write This group essentially allows all the group members to behave as if they co-own all the data:

• Group member can view, annotate, edit and delete all data; the only restriction is that they cannot move
other members’ data into another group.

Potential use cases of Read-write group:
• A group of scientists working in a completely collaborative way, trusting every member of the group to

have equal rights and access to all the data.

Note: Restricted administrators are designed to work independently of group permissions. They act as full adminis-
trators when using their subset of privileges, allowing them to perform actions on data belonging to other users even
in private groups (see the permissions tables below).

See also:
Help guide for sharing data Workflow guide covering the groups and permissions system

2.6. Managing OMERO 289

https://help.openmicroscopy.org/publish.html#public
https://help.openmicroscopy.org/sharing-data.html

OMERO, Release 5.6.5-SNAPSHOT-1

Changing group permissions

It is possible for the Group owner or server Administrator to change the permissions level on a group after it has been
created and filled with data, with the following limitations:

• It is not possible to ‘reduce’ permissions to Private if the group contains a projection made by one member
from data owned by another user. In other circumstances, reducing permissions to private will warn of loss of
annotations etc. as noted below, but will still be possible.

• Only Administrator can promote a group to Read-write permissions. Make certain all the members understand
that this allows anyone in the group to permanently delete any of the data before performing this action.

Warning: Please be very careful before downgrading a group’s permission level. If a user has annotated other
users’ data and the group is downgraded, any links to annotations that are not permitted by the new permissions
level will be lost.

Permissions on your and other users’ data

What can you do with your data?
All OMERO users in all groups can perform all actions on their own data (with the exception of changing the ownership
of the data).

The main actions available include, but are not limited to:

• create projects and/or datasets

• import data

• delete data

• edit names and descriptions of images

• change rendering settings on images

• annotate images (rate, tag, add attachments and comments)

• de-annotate (remove annotations that you have added)

• use Regions of Interest (ROIs) (add, import, edit, delete, save and analyze them)

• run scripts

• move data between groups, if you belong to more than one group

What can you do with someone else’s data in your group?
Actions available for you on someone else in your group’s data will depend both on the permissions of the group you
are working in, and what sort of user you are. See the table below for a quick reference guide to permissions available
on other people’s data.

Some of these policies may evolve as the permissions functionality matures in response to user feedback. Please let us
know any comments or suggestions you have via our mailing lists or forums.

290 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/support/

OMERO, Release 5.6.5-SNAPSHOT-1

Permissions tables

The following are the permissions valid for users working on data belonging to other group members. These permis-
sions depend on the group permissions and on the type of the user performing the action.

Restricted administrators act as full administrators when using their subset of privileges. For all actions which
are not covered by their privileges subset, they act as standard group members. For example, a data analyst with
write data privileges can edit data even in a private group (without having to be a member of that group) but without
the delete privilege they cannot delete data belonging to another user unless that data is in a read-write group they are
a member of. All restricted administrators can view and download any data regardless of group type and their subset
of privileges. See Administrators with restricted privileges for further information.

Administrator

This table covers both full server administrators and restricted administrators with the privileges required for these
actions. Restricted administrators act as group members for any actions that are not covered by their subset of privileges.

Action Private Read-only Read-annotate Read-write
View Y Y Y Y
Annotate N Y Y Y
Delete Y Y Y Y
Edit Y Y Y Y
Move between groups Y Y Y Y
Remove annotations Y Y Y Y
Mix data N Y Y Y
Change ownership Y Y Y Y

Group owner

2.6. Managing OMERO 291

OMERO, Release 5.6.5-SNAPSHOT-1

Action Private Read-only Read-annotate Read-write
View Y Y Y Y
Annotate N Y Y Y
Delete Y Y Y Y
Edit Y Y Y Y
Move between groups N N N N
Remove annotations Y Y Y Y
Mix data N Y Y Y
Change ownership Y Y Y Y

Group member

Action Private Read-only Read-annotate Read-write
View N Y Y Y
Annotate N N Y Y
Delete N N N Y
Edit N N N Y
Move between groups N N N N
Remove annotations N N N Y
Mix data N N N Y
Change ownership N N N N

Key

Action Action on other users’ data.

Annotate Add annotations (rating, tag, attachment, comment, ROI) to another users’ data. Also create & save ROIs
(save ROIs that you draw on another users’ data).

Change ownership Assign ownership of the data to a different user. The target user should be a member of the group
the data belongs to.

Delete Delete data such as images or ROIs. ROIs may have been added by others or yourself.

Edit Modify the name or description of other users’ objects such as images.

Mix data Copy, Move or Remove other users’ data to or from your Projects, Datasets or Screens. Copy, Move or
Remove your or others’ data to or from others’ Projects, Datasets or Screens.

Note: You should always be able to remove annotations (such as tags) that you linked to other users’ data (you
own the link). The link can be deleted, but the tag itself will not be deleted.

Move between groups Only an admin has the right to move other users’ data between groups.

292 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Note: An admin does not have to be a member of either the original or the destination group.

Remove annotations Remove annotations made by others on your data.

Render Create your own rendering settings (this will not modify the settings of the owner).

View View other users’ data such as images. View ROIs added by others. Draw ROIs on other users’ data, but they
cannot be saved.

Issues to be aware of

ROIs

• You can never edit (change text or move) other users’ ROI.

• Any ROIs added to other users’ data will not affect ROIs added by the owner.

Tags and attachments

• A tag or attachment is ‘owned’ by the person who creates it or uploads it to the server.

• The link between a tag or an attachment is ‘owned’ by the person who annotates an image with that tag or
attachment i.e. makes a link between the tag/attachment and the image.

• De-annotation deletes the link between the tag/attachment and image but does not remove/delete the tag or at-
tachment from the system.

Scripts

• Although all users can run scripts on other users’ data, the actions within those scripts will be subject to the
restrictions of the permissions detailed in the tables above.

2.6.2 Administrators with restricted privileges

Summary

OMERO allows you to create administrators with a subset of the full administrator privileges. This is a way to cater
for the need for more powerful users acting on behalf of all other OMERO users, with no group membership but with
access to all groups and data of all users in OMERO. This should be achieved without creating new full administrators in
OMERO. In the real world, these administrators with restricted privileges (restricted admins) will typically be imaging
facility managers, image analysts, or anybody who needs to organize users and data of others in OMERO. Even a
restricted administrator is still a powerful user so each must be a highly trusted individual.

Warning: Restrictions on privileges can communicate an administrator’s intended role and prevent many acci-
dents whose consequences would be severe. However, even a little privilege can go a long way so never grant
administrative powers lightly. These restrictions do not protect against a cunning, malicious user: never elevate a
user even as far as group ownership unless they are truly trusted.

2.6. Managing OMERO 293

OMERO, Release 5.6.5-SNAPSHOT-1

Full administrators in OMERO can create new administrators with restricted privileges using the OMERO.web inter-
face, see the facility managers guide in our Help documentation. OMERO.cli does not yet support easy management
of restrictions nor does it offer the helpful permissions mapping but advanced users may use OMERO.cli to adjust the
restrictions on an administrator.

Four suggested workflows

We suggest here four setups that should cover the four mainstream workflows. Nevertheless, you can combine the
privileges (check the checkboxes in the OMERO.web interface) in any way you see fit. The privileges were designed
in such a way that they still bear useful functionality even when used in isolation. For example, checking the Chown
checkbox will give the new administrator with restricted privileges the power to transfer ownership of other users’ data.
For exact server-side definitions of the privileges displayed in OMERO.web interface see Administrator restrictions:
relating OMERO.webadmin to OMERO.server.

Required Privileges Data Viewer Importer Analyst Group and Data Organizer
Sudo N Y N N
Write Data N N Y Y
Delete Data N N N Y
Chgrp N N N Y
Chown N N Y (O) Y
Create and Edit Groups N N N Y
Create and Edit Users N N N Y
Add Users to Groups N N N Y
Upload Scripts N N Y N

Y privilege required, checkbox in OMERO.web interface is checked

N privilege not required, checkbox is not checked

O privilege optional for the workflow

Note: Restricted admins workflows in OMERO.clients
Please do not expect for any workflows mentioned here that all OMERO.clients OMERO.web, OMERO.insight, com-
mand line interface (CLI) are fully equipped to execute them (see details below). New features will be added in
OMERO.clients in the 5.4.x series of OMERO releases.

Note: Group membership
All the workflows here assume that the administrator with restricted privileges is not a member of any group except
the System group. This does not preclude such administrator from being a member of any number of groups. Inside
the groups the restricted admin is a member of, they have the same privileges as other group members of that group
additionally to their administrative privileges.

Note: Deleting privileges
Sudo privilege includes ability to delete the data of the user whom the administrator is working on behalf of. If you
want to prevent the restricted admin from deleting others’ data entirely, do not give Delete Data and do not give Sudo
privileges.

Note: Privilege escalation

294 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager.html#lightadmin

OMERO, Release 5.6.5-SNAPSHOT-1

The administrators with restricted privileges (restricted admins) are prevented from escalation of their privileges. Cre-
ation of a restricted admin with higher privileges than the creator, and creation of a full administrator, are prevented.
Furthermore, although a restricted admin can Sudo on behalf of a full administrator, their privileges will not expand to
the full administrator privilege set by this action. See also Sudo.

Workflow 1: Data Viewer

If you do not give any explicit privileges to the administrator with restricted privileges, this administrator still has some
useful privileges. These include browsing and viewing all the data of all users in all groups (including the groups
where they are not members). The administrator with restricted privileges is also able to download all the data in all
types of groups. Furthermore, they can view user and group information, such as usernames, e-mail addresses, group
permission levels and lists of all users and groups. They are not able to annotate, edit or delete any of the data or
change any user or group information though. Note that any administrator with restricted privileges described below
or otherwise created combining the privileges at will would be able to perform the Data Viewer workflow as well.

Client Details:

• OMERO.insight: is not designed to show any groups, or data belonging to any groups, you are not a member of.
The Data Viewer workflow is preferably executed using OMERO.web or CLI.

• OMERO.web: allows viewing and downloading the data, see Viewing Data.

• CLI: allows listing all images, groups and users and downloading the data:

List all users on server
$ omero user list
List all groups on server
$ omero group list
List all images on server
$ omero fs images

Workflow 2: Importer

The Importer role is to import images into OMERO for other users, i.e. in such a manner that the imported images are
owned by the users in OMERO, not by the user in the role of the Importer. The Importer role is typically used by an
imaging facility manager who is importing data acquired by users on microscopes into OMERO.

The importer workflow can be achieved with only the Sudo privilege (first line in the above table). This privilege allows
them to “become” the user they are importing the data for. The Importer role may need to reorganize the imported data.
For example, they made a mistake, Sudoed as a wrong user in a wrong group and need to rectify the mistake using the
command line interface (CLI) client. Whilst being sudoed, the Importer role can Delete the wrongly imported data
(even without Delete privilege given, see the Note above), logout, login and Sudo as the correct user and repeat the
import process. In short, whilst Sudoed, Importer role can do any action which the user they are becoming is allowed
to do. In case any more post-import cleaning and data organizing is necessary for Importer, this might be enabled by
giving them also privilege necessary for the Data organizers (see Workflow 4: Group and Data Organizer below).

If you have any doubts about giving the administrators with restricted privilege the Sudo privilege (which implicitly
gives the ability to delete other users’ data), there are two workarounds which enable import for others without Sudo.

The first, simpler, workaround involves importing the data as Importer into the group of the future data owner and then
transferring the ownership of the data (see details in Workflow 3: Analyst). The second workaround involves importing
into the group of the Importer as the importer, then moving the data into the group of the prospective data owner and
then changing the ownership of the data to the owner (necessary tools are described in Workflow 3: Analyst).

Client details:

2.6. Managing OMERO 295

https://help.openmicroscopy.org/viewing-data

OMERO, Release 5.6.5-SNAPSHOT-1

• OMERO.importer or OMERO.insight: you have to be a member of the group you want to import to in
OMERO.importer or OMERO.insight. Login as the administrator with restricted privileges and perform the
import for others as described in the chapter of the Help documentation import for others.

• CLI: documentation is available covering Import images and Import targets (see also the videos on import on
the OME YouTube channel):

Login as the Importer and sudo as the user you want to import for
$ omero --sudo Importer -u user login
Create new containers belonging to the user
$ omero obj new Dataset name=Dataset-of-user
$ omero obj new Project name=Project-of-user
Link the containers
$ omero obj new ProjectDatasetLink parent=Project:17 child=Dataset:13
Import into created Dataset
$ omero import ~/Desktop/CMPO1.png -T Dataset:name:Dataset-of-user

Workflow 3: Analyst

Typically, the Analyst role in OMERO is to

• read the data (always possible, see Workflow 1: Data Viewer: Data Viewer)

• change and save the rendering settings of the images (enabled by Write Data privilege, exception is Private
groups, where they cannot save rendering settings)

• annotate the data (enabled by Write Data privilege, but not possible in Private groups)

• draw and save ROIs on other users’ images (enabled by Write Data privilege, but no saving in Private groups
possible)

• upload and attach result files to the analyzed images (enabled by Write Data privilege, except Private groups,
where attaching is not possible)

• create Projects and Datasets for newly imported images in groups they are not a member of (enabled by Write
Data privilege)

• import new images resulting from image analysis into these Projects and Datasets

• link new images resulting from image analysis to existing Projects and Datasets of the original data owner (en-
abled by Write Data privilege)

• (possibly) changing the ownership of the newly created conainers and contained result images to the users (en-
abled by Chown privilege)

• upload, edit and delete official scripts usable by all OMERO users (enabled by Upload Scripts privilege)

Client details:

• OMERO.insight or Insight-ImageJ plugin: Analyst has to be a member of the group where the data is located.
They can draw ROIs and extract analysis results from the ROIs and data in any type of group. They can save
ROIs except in Private groups. They can upload official scripts in OMERO.insight (any group type, Analyst does
not have to be a member of any particular group for script upload in OMERO.insight).

• OMERO.web, OMERO.insight, Insight-ImageJ plugin: Analyst can adjust rendering settings and save them,
upload attachments with results and annotate (for example tag, key-value pairs, rating, commenting). These
actions are not permitted in Private groups with images belonging to others. See Help guides for rendering,
annotating, attaching files, attaching data.

296 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager#import
https://www.youtube.com/channel/UCyySB9ZzNi8aBGYqcxSrauQ
https://help.openmicroscopy.org/managing-data#rendering
https://help.openmicroscopy.org/managing-data#annotating
https://help.openmicroscopy.org/managing-data#attach
https://help.openmicroscopy.org/managing-data#attach

OMERO, Release 5.6.5-SNAPSHOT-1

• CLI: Upload of official scripts is allowed (in any group type, see OMERO.scripts user guide and below). Upload
of attachments with results, annotating (not in private group), creating containers, import of resulting images into
groups you are not a member of (in private groups these are invisible for the owner of the original data, unless
you transfer their ownership), transferring ownership of these containers (any group type), transferring ownership
of objects (images, annotations, ROIs, uploaded attachments with results) is possible too (see Command Line
Interface as an OMERO client):

Upload an official script
$ omero script upload --official /PATH/TO/YOUR_SCRIPT
Login to the group the original data are in
$ omero -g testgroup login
Create new Dataset
$ omero obj new Dataset name=new-dataset
Import result images into the Dataset
$ omero import -T Dataset:name:new-dataset /PATH/TO/RESULT/IMAGES
Transfer the ownership of the Dataset and
of the contained images to the user with ID:55
$ omero chown 55 Dataset:112

Workflow 4: Group and Data Organizer

Group and Data Organizer role is for creation of new users and groups in OMERO and allocating the users to appropriate
groups. It is also possible to change the users’ information such as e-mail and to change group permissions level. These
tasks are facilitated by the privileges Create and Edit Groups, Create and Edit Users and Add Users to Groups.

The Group and Data Organizer might also be tasked with dealing with data owned by OMERO users who have left the
institution. The Organizer can transfer ownership of the data owned by the leaving person (facilitated by the Chown
privilege) to another user. In cases where the new owner of the data may not be a member of the data group, the
Organizer first moves the data between groups (facilitated by the Chgrp privilege), and then transfers the ownership of
the data. Always try to avoid the situation where owner of the data is not in data group.

For moving data between groups, usage of OMERO.web is highly recommended. The Organizer can create new con-
tainers (Projects, Datasets) on behalf of data owner in OMERO.web conveniently as part of the Move to Group com-
mand in OMERO.web (Move to Group). The containers and links of data to containers will belong to data owner. For
new container creation and linking, the Write Data privilege is necessary. CLI can be used for the move action as well,
see Moving objects between groups.

In case of data owner not being in the group where the data is, the Organizer can also add the data owner to the data
group (facilitated by the Add Users to Groups privilege), instead of moving the data. The Organizer will transfer the
ownership of the data to the new owner only after they have added the new data owner to the data group.

During all data manipulation steps, the Organizer needs the Write Data privilege to create new Projects, Datasets or
Screens for the new owners of the data and to link the data to those containers or to already existing containers owned
by the new owner. Since OMERO 5.4.0, OMERO.web enables Organizers with Write Data privilege to create new
containers belonging to other users, see the OMERO.web in Data structure section of our Help documentation. Except
the links created during creation of new Datasets inside others’ Projects in OMERO.web, any links created by the
Organizer will belong to the Organizer, not the owner of the data. This will be addressed in OMERO.web in the 5.4.x
series. The ownership transfer of the containers and links can be done later on the CLI. Linking of others’ data is never
possible in Private groups.

After the Organizer has dealt with the data, they can remove the leaving person from any group (included in the Add
Users to Groups privilege) and make the user inactive (facilitated by the Create and Edit Users privilege).

Note that the ownership of data of a user can be transferred either piecemeal, i.e. specifying each Project or Dataset
to transfer (using omero chown command of CLI), or all of the data of the user can be transferred in one step. The

2.6. Managing OMERO 297

https://help.openmicroscopy.org/group-owner#move
https://help.openmicroscopy.org/facility-manager#data

OMERO, Release 5.6.5-SNAPSHOT-1

transfer of all the data of the user in one step has to be considered an advanced feature; it may be slow and demanding
of CPU resources in cases of complex data.

Quite naturally the Group and Data Organizer can be easily split into two separate roles, with the Group Organiser role
having Create and Edit Groups, Create and Edit Users, Add Users to Groups privileges, and the Data Organiser role
having Write Data, Delete Data, Chgrp, Chown privileges. It is of course possible to use any combination of these
privileges as you see fit. It is recommended to always grant Create and Edit Users with Add Users to Groups so that
the new restricted administrator is able to deactivate users.

Client Details:

• OMERO.web: all the Data Organizing actions are possible, except transfer of ownership (possible only in CLI,
will be addressed in the 5.4.x series). Creation of Projects, Datasets or Screens for other users in OMERO.web
is possible since OMERO 5.4.0, see Data structure (OMERO.web). All the Group and User Organizing actions
are possible if all Create and Edit Groups, Create and Edit Users and Add Users to Groups privileges are given.
It is also reasonable to give Create and Edit Users and Add Users to Groups or Create and Edit Groups and
Add Users to Groups. These combinations give the restricted adiminstrator good user interface experience in
OMERO.web.

• CLI: see User/group management, Moving objects between groups, Changing ownership of objects and examples
below for CLI features useful for Group and Data Organizing:

Create new user and put them into 2 groups
$ omero user add username firstname lastname group1 group2
Edit login name of a user with ID:55
$ omero obj update Experimenter:55 omeName=new-login-name
Add a user to a group named "testgroup"
$ omero group adduser --name testgroup --user-name newbieingroup
$ omero group removeuser --name testgroup --user-name thegoner
Make a user a group owner. Works also when the owner-to-be
is already a member of the group
$ omero group adduser --name group --user-name ownertobe --as-owner
Remove a group owner from ownership of the group. Does not remove
the formerowner from group, just unsets the ownership.
$ omero user leavegroup testgroup --name formerowner --as-owner
Move a Dataset hierarchy to group 5 and include all annotations
on the Dataset and objects linked to the Dataset
$ omero chgrp 5 Dataset:51 --include Annotation
Transfer ownership to user 55 of the Project 112
$ omero chown 55 Project:112
Transfer the ownership of a Project-Dataset link. Useful in case the
link was created by the Organizer and links objects of others
$ omero chown 55 ProjectDatasetLink:123
Transfer the ownership of Dataset-Image link
$ omero chown 55 DatasetImageLink:154
Transfer all data of user 5 to user 11 (advanced, might be slow)
$ omero chown 11 Experimenter:5

298 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager#data

OMERO, Release 5.6.5-SNAPSHOT-1

Key

Add Users to Groups Administrator can add or remove users to groups. See Workflow 4: Group and Data Organizer
for more details.

Analyst Administrator who performs image analysis on others’ images in OMERO. See more details in Workflow 3:
Analyst.

Chgrp Administrator can move others’ data to a different Group. See Workflow 4: Group and Data Organizer for
more details.

Chown Administrator can transfer others’ data to a different Owner. See Workflow 4: Group and Data Organizer for
more details.

Create and Edit Groups Administrator can create and edit groups (but not add or remove users). See Workflow 4:
Group and Data Organizer for more details.

Create and Edit Users Administrator can create and edit other users (but not add them to groups). See Workflow 4:
Group and Data Organizer for more details.

Data Viewer Administrator who views and downloads data of others. See more details in Workflow 1: Data Viewer.

Delete Data Administrator can delete other users’ data. See Note on Delete for more details. Integral part of Workflow
4: Group and Data Organizer.

Group and Data Organizer Administrator who creates new users and groups in OMERO and allocates or removes
the users to or from appropriate groups. This administrator also deals with data left after OMERO users which
left the institution, or otherwise is tasked with reorganizing of others’ data. See more details in Workflow 4:
Group and Data Organizer.

Importer Administrator who imports images into OMERO for other users. The imported images are owned by the
users in OMERO, not by the Importer. This is typically an imaging facility manager who is importing data
acquired by users on microscopes into OMERO. See more details in Workflow 2: Importer.

Sudo Administrator can log in as another user, with all the permissions of that user. When the restricted admin is
working on behalf of a user and using Sudo, their privileges are a common least denominator of the privileges of
the user and of the restricted admin (i.e. if a restricted administrator is using Sudo on behalf of a full administrator,
they do not have full admin rights to perform actions not covered by their own privileges). See also Note on
privilege escalation, Note on Delete and Workflow 2: Importer for more details.

Upload Scripts Administrator can upload “official” OMERO.scripts to the server. See Workflow 3: Analyst for more
details.

Write Data Administrator can create data in groups of which he/she is not a member. Also allows annotating, adding
attachments to and editing and linking of other users’ data. See Workflow 3: Analyst for more details.

Administrator restrictions: relating OMERO.webadmin to OMERO.server

Summary

OMERO allows you to create administrators with a subset of the full administrator privileges, see Administrators with
restricted privileges. The OMERO.web user interface form for creation and editing of restricted administrators (see
the creating Administrators with restricted privileges section) collates the server-side privileges into fewer options and
gives the options user-friendly names. Here, the mapping of the OMERO.web options to the server-side privileges is
given. The server-side privileges are more granular and direct work with them is possible on the CLI, as described in
Adjusting administrator restrictions.

2.6. Managing OMERO 299

https://help.openmicroscopy.org/facility-manager.html#lightadmin

OMERO, Release 5.6.5-SNAPSHOT-1

Map of the OMERO.web UI options to the server-side privileges

Option in OMERO.web Server-side privilege(s)
Sudo Sudo
Write data WriteOwned, WriteFile, WriteManagedRepo
Delete data DeleteOwned, DeleteFile, DeleteManagedRepo
Chgrp Chgrp
Chown Chown
Create and Edit groups ModifyGroup
Create and Edit Users ModifyUser
Add Users to Groups ModifyGroupMembership
Upload Scripts WriteScriptRepo, DeleteScriptRepo

Note: CLI lists restrictions, OMERO.web lists privileges The lists shown using CLI commands recommended
in Adjusting administrator restrictions will be complementary lists to the ones which can be deduced from the table
above.

Note: ReadSession privilege is never given to restricted admin In OMERO.web, you can never create an adminis-
trator with restricted privileges who has the “ReadSession” privilege.

See also:
• Command Line Interface guides for User/group management and Changing ownership of objects

• Facility Managers help guide

2.7 Data Import and Storage

This section contains details of how OMERO.fs allows you to import and store data with OMERO 5.

2.7.1 OMERO.dropbox

DropBox was originally designed as the first stage of the file system changes referred to as OMERO.fs. It utilizes a file
system monitor to find newly uploaded files and run a fully automatic import on those files if possible. This release of
OMERO.dropbox runs on the same machine as the OMERO.server and watches designated areas of the local filesystem
for new or modified files. If those files are importable, then an automatic import is initiated. OMERO.dropbox is started
automatically when the OMERO.server starts and it will run if the prerequisites below are met.

300 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager.html

OMERO, Release 5.6.5-SNAPSHOT-1

Prerequisites

In addition to the general System requirements OMERO.dropbox has the following more specific requirements:

• OMERO.dropbox is built on underlying OS file-notification system, and so is only available for specific versions
of certain operating systems. OMERO.dropbox has been tested on the following systems:

– Linux with kernel 2.6.13 and higher.

– Mac OS 10.6 and later.

• In addition some platforms require further Python packages to be available:

– Mac OS systems that use a macports install of Python will need to have FSEvents available in
the PYTHONPATH. This will require a path of the form /System/Library/Frameworks/Python.
framework/Versions/3.X/Extras/lib/python/PyObjC/ to be added, according to the version of
Python used.

• The filesystem which OMERO.dropbox watches must be local to the given operating system. Watching a network-
attached share (NAS) is strictly *not* supported.

Installing DropBox

From the OMERO 5.6.0 release, the library omero-dropbox supports Python 3 and is now available on PyPI. We
recommend you use a Python virtual environment to install it. It should be installed in the same virtual environment
where omero-py is installed. See OMERO.server installation.

Activate the environment /opt/omero/server/venv3 where omero-py is installed and install omero-dropbox as
root:
$. /opt/omero/server/venv3/bin/activate
$ pip install omero-dropbox==5.6.2

Enable DropBox as the omero-server system user (su - omero-server):

$ omero admin ice server enable MonitorServer
$ omero admin ice server enable DropBox

Using DropBox

In its default configuration the monitored area of the file system is a DropBox subdirectory of the OmeroBinaryRepos-
itory directory. The system administrator should create DropBox and then under that a directory for each user, using
their omero username. The ownership and permissions should be set so that a user can copy files into their DropBox
directory:

/OMERO/DropBox/amy
/emily
/edgar
/root
/zak

Experimenters can add subdirectories under their named directory for convenience. Copying or moving a file of an
importable file type into a named directory or nested subdirectory will initiate an automatic import of that file for
that user. Multi-file formats will be imported after the last required file of a set is copied into the directory. Images
and plates will be imported into the default group of the user, with images placed into Orphaned images unless the
target option was configured (see below and Import targets).

2.7. Data Import and Storage 301

https://pypi.org

OMERO, Release 5.6.5-SNAPSHOT-1

Acquisition systems can then be configured to drop a user’s images into a given DropBox.

Note:
• The DropBox system is designed for image files to be copied in at normal acquisition rates. Copying many files

en masse may result in files failing to import.

• It is also intended as a write-once system. Modifying an image after it has been imported may result in that
modified image also being imported depending on the operating system and how the image was modified.

• Once directories are created within DropBox or files are copied or moved into DropBox they should not be
moved, renamed or otherwise changed. Images may be imported again or already imported images may become
unreadable.

Permissions

Changing the permissions of a directory within DropBox may result in duplicate imports as a newly readable directory
appears identical to a new directory. If directories need to be modified it is recommended that the DropBox system is
stopped and then restarted around any changes, as below.

As the omero-server system user, run

$ omero admin ice server disable DropBox
$ omero admin ice server stop DropBox
$ omero admin ice server disable MonitorServer
$ omero admin ice server stop MonitorServer

make any directory changes

$ omero admin ice server enable MonitorServer
$ omero admin ice server enable DropBox

Note: Any new files copied into DropBox during this disabled period will not be detected and thus not imported.

Log files

The log files var/log/FileServer.log, var/log/MonitorServer.log and var/log/DropBox.logwill indicate
success or otherwise of start-up of the two components. Once running, var/log/MonitorServer.log will log file
events seen within designated file areas and var/log/DropBox.log will log the progress of any file imports.

Unicode path and file names

If file or path names contain Unicode characters this can cause DropBox to fail. This can be remedied by the use of a
sitecustomize.py or usercustomize.py file containing the following:

import sys
reload(sys)
sys.setdefaultencoding('utf-8')

302 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

For more details on using customization files in Python see: site — Site-specific configuration hook. For more discus-
sion on this issue within OMERO see the forum post: Dropbox halts on certain unicode characters.

Note: If a customization file is used and the OMERO server is upgraded please ensure the file is still available to
DropBox after the upgrade.

Advanced use

OMERO.dropbox can be configured in several ways through etc/grid/templates.xml. In its default configuration,
as detailed above, it monitors the subdirectory DropBox of the OMERO data directory for all users.

A number of the properties in templates.xml accept a semi-colon separated list of values. This extended configura-
tion allows a site to watch multiple directories, and configure each for a different user, a different type of file, etc. Any
value missing from the configuration (e.g. value="1;;2") will be replaced by the default value.

One example alternative configuration would be to watch specific directories for specific users.

Note: Temporarily, the “importUsers” parameter is disabled, because of a bug. You can still configure the DropBox in
a way which gives all the users the same Advanced configs. To achieve this, do not specify the “importUsers” parameter
and always just use the “amy” or just the “zak” part of the other parameters or concatenate the “zak” parameters with
“amy” parameters in the examples below.

In the example below two directories are monitored, one for user amy and one for zak:

<property name="omero.fs.importUsers" value="amy;zak"/>
<property name="omero.fs.watchDir" value="/home/amy/myData;/home/zak/work/data"/>

The remaining properties have been left at their default values for both users.

To limit DropBox to import only files belonging to specific image types the following property can be set,

<property name="omero.fs.readers" value="/home/amy/my_readers.txt;"/>

Here only the image types listed in my_readers.txt will be imported for the user amy while the system-wide
readers.txt will be used for zak.

For a full description of the properties see below.

Properties

Each property takes the form of a single item or a semi-colon separated list of items. Where the item is a list, values
within that list should be comma separated.

• importUsers (temporarily disabled)

The importUsers is either default or a list of OMERO user names. In the case of the value being default,
the same configuration is applied to all users and each subsequent configuration setting should be a single value.
In the case of this value being a list of users, each subsequent value should be a list of the same length as the
number of users. The default value is default.

<property name="omero.fs.importUsers" value="default"/>

2.7. Data Import and Storage 303

https://docs.python.org/2.7/library/site.html
https://www.openmicroscopy.org/community/viewtopic.php?f=4&t=7810#p15910

OMERO, Release 5.6.5-SNAPSHOT-1

• watchDir

The absolute directory path of interest for each user. The default is empty.

<property name="omero.fs.watchDir" value=""/>

• eventTypes

For automatic import Creation and Modification events are monitored. It is also possible to monitor Deletion
events though these are not used by DropBox. The default is Creation,Modification.

<property name="omero.fs.eventTypes" value="Creation,Modification"/>

• pathMode

By default existing and newly created subdirectories are monitored. It is possible to restrict monitoring to a single
directory (“Flat”), only existing subdirectories (“Recurse”), or all subdirectories (“Follow”). For DropBox to
function correctly the mode should be Follow. The default is Follow.

<property name="omero.fs.pathMode" value="Follow"/>

• whitelist

A list of file extensions of interest. An empty list implies all file extensions are monitored. The default is an
empty list.

<property name="omero.fs.whitelist" value=""/>

• blacklist

A list of subdirectories to ignore. Not currently supported.

<property name="omero.fs.blacklist" value=""/>

• timeout

This timeout in seconds is used by one-shot monitors. This property is not used by DropBox.

property name="omero.fs.timeout" value="0.0"/>

• blockSize

The number of events that should be propagated to DropBox in one go. Zero implies all events possible. The
default is zero.

<property name="omero.fs.blockSize" value="0"/>

• ignoreSysFiles

If this is True events concerning system files, such as filenames beginning with a dot or default new folder names,
are ignored. The exact events ignored will be OS-dependent. The default is True.

<property name="omero.fs.ignoreSysFiles" value="True"/>

• ignoreDirEvents

If this is True then the creation and modification of subdirectories is not reported to DropBox. The default is
True.

304 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

<property name="omero.fs.ignoreDirEvents" value="True"/>

• dirImportWait

The time in seconds that DropBox should wait after being notified of a file before starting an import on that file.
This allows for companion files or filesets to be copied. If a new file is added to a fileset during this wait period
DropBox begins waiting again. The default is 60 seconds.

<property name="omero.fs.dirImportWait" value="60"/>

• fileBatch

The number of files that can be copied in before processing the batch. In cases where there are large numbers of
files in a typical file set it may be more efficient to set this value higher. The default is 10.

<property name="omero.fs.fileBatch" value="10"/>

• throttleImport

The time in seconds that DropBox should wait after initiating an import before initiating a second import. If
imports are started too close together connection issues can arise. The default is 10 seconds.

<property name="omero.fs.throttleImport" value="10"/>

• readers

A file of readers. If this is a valid file then it is used to filter those events that are of interest. Only files corre-
sponding to a reader in the file will be imported. The default is empty.

<property name="omero.fs.readers" value=""/>

• importArgs

A string of extra arguments supplied to the importer. This could include, for example, an email address to report
failed imports to: --report --email test@example.com. The default is empty. For details on available
extra arguments see Import images.

<property name="omero.fs.importArgs" value=""/>

Example

Here is a full example of a configuration for two users:

<property name="omero.fs.importUsers" value="amy;zak"/>
<property name="omero.fs.watchDir" value="/home/amy/myData;/home/zak/work/data"/>
<property name="omero.fs.eventTypes" value="Creation,Modification;Creation,
→˓Modification"/>
<property name="omero.fs.pathMode" value="Follow;Follow"/>
<property name="omero.fs.whitelist" value=";"/>
<property name="omero.fs.blacklist" value=";"/>
<property name="omero.fs.timeout" value="0.0;0.0"/>
<property name="omero.fs.blockSize" value="0;0"/>
<property name="omero.fs.ignoreSysFiles" value="True;True"/>
<property name="omero.fs.ignoreDirEvents" value="True;True"/>
<property name="omero.fs.dirImportWait" value="60;60"/>

(continues on next page)

2.7. Data Import and Storage 305

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

<property name="omero.fs.fileBatch" value="10;10"/>
<property name="omero.fs.throttleImport" value="10;10"/>
<property name="omero.fs.readers" value="/home/amy/my_readers.txt;"/>
<property name="omero.fs.importArgs" value="-T \"regex:^.*/(?<Container1>.*?)\";--
→˓report --email zak@example.com"/>

See also:
Import images

Import targets

In-place import

2.7.2 In-place import

In-place import allows files which are accessible from the OMERO.server’s filesystem to be imported into OMERO
without the need to upload them over an OMERO login session. This requires users to have shell (SSH, etc.) access
to the server machine, and so there are a number of limitations to this implementation. Development of this feature
is on-going, with improvements planned to enable a more user-friendly experience. This CLI-based stop-gap is being
made available at this stage because for some users, in-place import is essential for their use of OMERO.

This feature is designed to allow imaging facilities to import large datasets into OMERO while keeping them safely
stored on the file system in a secure location that is read-only for users. Leaving the data in a user’s file system is very
dangerous as they may forget they need to keep it or move to a different institution. Under no circumstances should
in-place import be used with temporary storage.

Warning: The instructions below should help you get started but it is critical that you understand the implica-
tions of using this feature. Please do not just copy commands and hope for the best.

Responsibilities

As a data management platform, OMERO assumes that it is in control of your data in order to help prevent data loss.
It assumes that data was copied into the server and only a server administrator or authorized OMERO user would have
the rights to do anything destructive to that data.

With in-place import, the data either resides completely outside of OMERO or is shared with other users. This means
that the critical, possibly sole, copy of your data must be protected outside of OMERO. This is your responsibility for
the lifetime of the data.

Limitations

In-place import is only available on the OMERO server system itself. In other words, using SSH or similar, you will
need to shell into the server and run the command-line importer directly. If you are uncomfortable with this, you should
let someone else handle in-place importing.

Someone wanting to perform an in-place import MUST have:

• a regular OMERO account

• an OS (Operating System)-account with access to bin/omero

• read access to the location of the data

306 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

• write access to the ManagedRepository or one of its subdirectories

The above means that it may be useful to create a single OS account (e.g. “import_user”) which multiple users can log
into, and then use their own OMERO accounts to import data. Alternatively, each OMERO user can be given an OS
account with access rights to the data storage as well as the managed repository.

Also, there is still some data duplication when pyramids are generated. We are hoping to find a workaround for this in
the future.

For soft linking with --transfer=ln_s it has been noticed that some plate imports run rather more slowly than usual.
Other operations may also be affected. In determining if or how to use in-place import at your high-content screening
facility, we thus recommend time profiling with representative data, and alerting us to any significant disappointments.

Warning: Do not use soft links when pointing to data inside the ManagedRepository. If the originals are deleted,
the data will be lost.

Safety tips

Whether you chose to use the hard- or soft-linking option below, you should take steps to secure files which are in-place
imported to OMERO. The best option is making them read-only for both the OMERO user and also for the owner of
the data. This means the server cannot accidentally modify the files (e.g. if a client mixes up the file IDs and tries to
write to the wrong location) and that the files cannot be removed from the system while OMERO is still using them.
Files may not be renamed or otherwise altered such that the OMERO server user cannot find them at the expected
location.

If possible, all the files should be added to your regular backup process. If the files for imported images are later
removed or corrupted, the result will probably be that while the images remain in their projects or screens with their
annotations and basic metadata, they simply cannot be successfully viewed. However, this behavior is not guaranteed,
so do not assume that the resulting problems will not extend further. Once the problem is noticed, replacing the original
image files from backups, in the same place with the same name, is likely but not guaranteed to fully restore the images
and their associated data in OMERO.

Additional setup requirements

In-place import requires additional user and group setup. As no one should be allowed to log into the account used to
install the server, to permit in-place imports you need to create a different user account, allowing someone to log into
the server but not accidentally delete any files. Therefore, you should set up an ‘in-place’ user and an ‘in-place’ group
and configure a subset of directories under ManagedRepository to let members of that group write to them. Important
criteria include:

• In-place users can write to directories that are newly created for import so that they may link out to the original
file locations.

• In-place users cannot write to directories not required for their imports.

• In-place users cannot corrupt or delete each other’s imports.

• OMERO.server can read and delete all the imported files.

One may achieve the above with careful setting of sticky bits and choice of umasks or use of ACLs. The best approach
depends on the background of your system administrators and the capabilities of the underlying filesystems. The
example below details how this was done for one of our test servers in Dundee which runs with the default setting for
omero.fs.repo.path:

2.7. Data Import and Storage 307

https://docs.openmicroscopy.org/latest/ome-model/omero-pyramid/

OMERO, Release 5.6.5-SNAPSHOT-1

STATUS BEFORE

[sysadmin@ome-server omero_system_user]$ umask
0002

[sysadmin@ome-server omero_system_user]$ ls -ltrad ManagedRepository/
drwxrwxr-x 8 omero_system_user omero_system_user 4096 Apr 24 10:13 ManagedRepository/

[sysadmin@ome-server omero_system_user]$ grep inplace /etc/passwd /etc/group
/etc/passwd:inplace_user:x:501:501::/home/inplace_user:/bin/bash
/etc/group:omero_system_user:x:500:inplace_user
/etc/group:inplace_user:x:501:

[sysadmin@ome-server omero_system_user]$ grep omero_system_user /etc/passwd /etc/group
/etc/passwd:omero_system_user:x:500:500::/home/omero_system_user:/bin/bash
/etc/group:omero_system_user:x:500:inplace_user

[sysadmin@ome-server omero_system_user]$ sudo -u inplace_user -i
[inplace_user@ome-server ~]$ umask
0002

SCRIPT
chgrp inplace_user /repositories/binary-repository/ManagedRepository
chmod g+rws /repositories/binary-repository/ManagedRepository

chmod g+rws /repositories/binary-repository/ManagedRepository/*
chmod g+rws /repositories/binary-repository/ManagedRepository/*/*
chmod g+rws /repositories/binary-repository/ManagedRepository/*/*/*

chgrp inplace_user /repositories/binary-repository/ManagedRepository/*
chgrp inplace_user /repositories/binary-repository/ManagedRepository/*/*
chgrp inplace_user /repositories/binary-repository/ManagedRepository/*/*/*

With the above, newly created directories should be in the inplace group
As long as the file is readable by omero_system_user, then it should work fine!

AFTER SCRIPT

[root@ome-server omero_system_user]# ls -ltrad ManagedRepository/
drwxrwsr-x 8 omero_system_user inplace_user 4096 Apr 24 10:13 ManagedRepository/

TEST

with default umask this likely has to do
[inplace_user@ome-server ~]$ cd /repositories/binary-repository/ManagedRepository/
[inplace_user@ome-server ManagedRepository]$ mkdir inplace.test
[inplace_user@ome-server ManagedRepository]$ ls -ltrad inplace.test/
drwxrwsr-x 2 inplace_user inplace_user 4096 Apr 30 11:35 inplace.test/

[omero_system_user@ome-server omero_system_user]$ cd /repositories/binary-repository/
→˓ManagedRepository/ (continues on next page)

308 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

[omero_system_user@ome-server ManagedRepository]$ rmdir inplace.test/
[omero_system_user@ome-server ManagedRepository]$

If you are controlling OMERO.server with systemd you should add UMask=0002 to the Service section of your
systemd service file.

Getting started

The command-line import client has a help menu which explains the available options:

$ omero import --advanced-help

ADVANCED OPTIONS:

These options are not intended for general use. Make sure you have read the
documentation regarding them. They may change in future releases.

In-place imports:

--transfer=ARG File transfer method

General options:
upload # Default
upload_rm # Caution! File upload followed by source deletion.
some.class.Name # Use a class on the CLASSPATH.

Server-side options:
ln # Use hard-link.
ln_s # Use soft-link.
ln_rm # Caution! Hard-link followed by source deletion.
cp # Use local copy command.
cp_rm # Caution! Copy followed by source deletion.

e.g. $ omero import --transfer=ln_s foo.tiff
$./importer-cli --transfer=ln bar.tiff
$ CLASSPATH=mycode.jar ./importer-cli --transfer=com.example.MyTransfer baz.tiff

Background imports:

--keep-alive=SECS Frequency in seconds for pinging the server.

--auto-close Close completed imports immediately.

--minutes-wait=ARG Choose how long the importer will wait on server-
→˓side processing.

ARG > 0 implies the number of minutes to wait.
ARG = 0 exits immediately. Use a *-completed option␣

→˓to clean up.
(continues on next page)

2.7. Data Import and Storage 309

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

ARG < 0 waits indefinitely. This is the default.

--close-completed Close completed imports.

--wait-completed Wait for all background imports to complete.

e.g. $ omero import -- --minutes-wait=0 file1.tiff file2.tiff file3.tiff
$./importer-cli --minutes-wait=0 some_directory/
$./importer-cli --wait-completed # Waits on all 3 imports.

File exclusion:

--exclude=filename Exclude files based on filename.

--exclude=clientpath Exclude files based on the original path.

e.g. $ omero import --exclude=filename foo.tiff # First-time imports
$ omero import --exclude=filename foo.tiff # Second-time skips

Import speed:

--checksum-algorithm=ARG Choose a possibly faster algorithm for detecting␣
→˓file corruption,

e.g. Adler-32 (fast), CRC-32 (fast), File-Size-64␣
→˓(fast),

MD5-128, Murmur3-32, Murmur3-128,
SHA1-160 (slow, default)

e.g. $ omero import --checksum-algorithm=CRC-32 foo.tiff
$./importer-cli --checksum-algorithm=Murmur3-128 bar.tiff

--no-stats-info Disable calculation of minima and maxima when as part␣
→˓of the Bio-Formats reader metadata

e.g. $ omero import -- --no-stats-info foo.tiff
$./importer-cli --no-stats-info bar.tiff

--no-thumbnails Do not perform thumbnailing after import

e.g. $ omero import -- --no-thumbnails foo.tiff
$./importer-cli --no-thumbnails bar.tiff

--no-upgrade-check Disable upgrade check for each import
e.g. $ omero import -- --no-upgrade-check foo.tiff

$./importer-cli --no-upgrade-check bar.tiff

Feedback:

(continues on next page)

310 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

--qa-baseurl=ARG Specify the base URL for reporting feedback
e.g. $ omero import broken_image.tif -- --email EMAIL --report --upload --logs --qa-

→˓baseurl=http://qa.example.com
$./importer-cli broken_image.tif --email EMAIL --report --upload --logs --qa-

→˓baseurl=http://qa.openmicroscopy.org.uk/qa

Report bugs at https://www.openmicroscopy.org/forums

The option for performing an in-place transfer is --transfer. A new extension point, file transfers allow a choice of
which mechanism is used to get a file into OMERO.

$ omero import --transfer=ln_s my_file.dv

Using session bba923bb-cf0c-4cf0-80c5-a309be523ad8 (root@localhost:4064). Idle timeout:␣
→˓10.0 min. Current group: system
...[main] INFO ome.formats.importer.ImportConfig - OMERO Version: 5.0.0-
→˓rc1-DEV-ice35
...[main] INFO ome.formats.importer.ImportConfig - Bioformats version: 5.
→˓0.0-rc1-DEV-ice35 revision: 101008f date: 31 January 2014
...[main] INFO formats.importer.cli.CommandLineImporter - Setting transfer to ln_
→˓s
...[main] INFO formats.importer.cli.CommandLineImporter - Log levels -- Bio-
→˓Formats: ERROR OMERO.importer: INFO
...[main] INFO ome.formats.importer.ImportCandidates - Depth: 4 Metadata␣
→˓Level: MINIMUM
...[main] INFO ome.formats.importer.ImportCandidates - 1 file(s) parsed into␣
→˓1 group(s) with 1 call(s) to setId in 98ms. (100ms total) [0 unknowns]
...[main] INFO ome.formats.OMEROMetadataStoreClient - Attempting initial SSL␣
→˓connection to localhost:4064
...[main] INFO ome.formats.OMEROMetadataStoreClient - Insecure connection␣
→˓requested, falling back
...[main] INFO ome.formats.OMEROMetadataStoreClient - Server: 5.0.0
...[main] INFO ome.formats.OMEROMetadataStoreClient - Client: 5.0.0-rc1-DEV-
→˓ice35
...[main] INFO ome.formats.OMEROMetadataStoreClient - Java Version: 1.7.0_51
...[main] INFO ome.formats.OMEROMetadataStoreClient - OS Name: Linux
...[main] INFO ome.formats.OMEROMetadataStoreClient - OS Arch: amd64
...[main] INFO ome.formats.OMEROMetadataStoreClient - OS Version: 3.8.0-27-
→˓generic
...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_
→˓PREPARATION
...[main] INFO ome.formats.importer.ImportConfig - OMERO Version: 5.0.0-
→˓rc1-DEV-ice35
...[main] INFO ome.formats.importer.ImportConfig - Bioformats version: 5.
→˓0.0-rc1-DEV-ice35 revision: 101008f date: 31 January 2014
...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_START
...[main] INFO s.importer.transfers.SymlinkFileTransfer - Transferring /tmp/a.
→˓fake...
...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILE_UPLOAD_STARTED: /
→˓tmp/a.fake

(continues on next page)

2.7. Data Import and Storage 311

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILE_UPLOAD_COMPLETE: /
→˓tmp/a.fake
...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_END
...[l.Client-1] INFO ormats.importer.cli.LoggingImportMonitor - METADATA_IMPORTED␣
→˓Step: 1 of 5 Logfile: 24605
...[l.Client-0] INFO ormats.importer.cli.LoggingImportMonitor - PIXELDATA_PROCESSED␣
→˓Step: 2 of 5 Logfile: 24605
...[l.Client-1] INFO ormats.importer.cli.LoggingImportMonitor - THUMBNAILS_GENERATED␣
→˓Step: 3 of 5 Logfile: 24605
...[l.Client-0] INFO ormats.importer.cli.LoggingImportMonitor - METADATA_PROCESSED␣
→˓Step: 4 of 5 Logfile: 24605
...[l.Client-1] INFO ormats.importer.cli.LoggingImportMonitor - OBJECTS_RETURNED Step:␣
→˓5 of 5 Logfile: 24605
...[l.Client-0] INFO ormats.importer.cli.LoggingImportMonitor - IMPORT_DONE Imported␣
→˓file: /tmp/a.fake
Imported pixels:
5001
Other imported objects:
Fileset:4102
Image:5001
...[l.Client-0] INFO ome.formats.importer.cli.ErrorHandler - Number of errors: 0

The only visible difference here is the line:

...formats.importer.cli.CommandLineImporter - Setting transfer to ln_s

Rather than uploading via the OMERO API, the command-line importer makes a call to the system ln command.

Transfer options

Previously, OMERO only offered the option of uploading via the API. Files were written in blocks via the RawFileStore
interface. With in-place import, several options are provided out of the box as well as the ability to use your own.

“ln_s” - soft-linking

The most flexible option is soft-linking. For each file, it executes ln -s source target on the local file system. This works
across file system boundaries and leaves a clear record of what file was imported:

/OMERO/ManagedRepository/root_0/2014-01/24/10-11-14.947$ ls -ltra
total 8
lrwxrwxrwx 1 omero omero 11 Jan 24 10:11 my-file.dv -> /home/demo/my-file.dv

Here you can see in the imported file set, a soft-link which belongs to the omero user, but which points to a file in the
/home/demo directory.

Deleting the imported images in OMERO will delete the soft link but not the original file under /home. This could
come as a surprise to users, since the deletion will effectively free no space.

Warning: The deletion of the original files under /home (or equivalent) will lead to a complete loss of the data
since no copy is held in OMERO. Therefore, this method should only be used in conjunction with a properly

312 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

managed and backed-up data repository. If the files are corrupted or deleted, there is no way to use OMERO to
retrieve them.

“ln” - hard-linking

The safest option is hard-linking, though it cannot be used across file systems. For each file, it executes ln source target.
Attempting to hard link across file system boundaries will lead to an error:

...[main] INFO ome.formats.importer.ImportConfig - OMERO Version: 5.0.0-
→˓rc1-DEV-ice35
...[main] INFO ome.formats.importer.ImportConfig - Bioformats version: 5.
→˓0.0-rc1-DEV-ice35 revision: 101008f date: 31 January 2014
...[main] INFO formats.importer.cli.CommandLineImporter - Setting transfer to ln
...[main] INFO formats.importer.cli.CommandLineImporter - Log levels -- Bio-
→˓Formats: ERROR OMERO.importer: INFO
...[main] INFO ome.formats.importer.ImportCandidates - Depth: 4 Metadata␣
→˓Level: MINIMUM
...[main] INFO ome.formats.importer.ImportCandidates - 1 file(s) parsed into␣
→˓1 group(s) with 1 call(s) to setId in 96ms. (98ms total) [0 unknowns]
...[main] INFO ome.formats.OMEROMetadataStoreClient - Attempting initial SSL␣
→˓connection to localhost:4064
...[main] INFO ome.formats.OMEROMetadataStoreClient - Insecure connection␣
→˓requested, falling back
...[main] INFO ome.formats.OMEROMetadataStoreClient - Server: 5.0.0
...[main] INFO ome.formats.OMEROMetadataStoreClient - Client: 5.0.0-rc1-DEV-
→˓ice35
...[main] INFO ome.formats.OMEROMetadataStoreClient - Java Version: 1.7.0_51
...[main] INFO ome.formats.OMEROMetadataStoreClient - OS Name: Linux
...[main] INFO ome.formats.OMEROMetadataStoreClient - OS Arch: amd64
...[main] INFO ome.formats.OMEROMetadataStoreClient - OS Version: 3.8.0-27-
→˓generic
...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_
→˓PREPARATION
...[main] INFO ome.formats.importer.ImportConfig - OMERO Version: 5.0.0-
→˓rc1-DEV-ice35
...[main] INFO ome.formats.importer.ImportConfig - Bioformats version: 5.
→˓0.0-rc1-DEV-ice35 revision: 101008f date: 31 January 2014
...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_START
...[main] INFO .importer.transfers.HardlinkFileTransfer - Transferring /tmp/a.
→˓fake...
...[main] INFO ormats.importer.cli.LoggingImportMonitor - FILE_UPLOAD_STARTED: /
→˓tmp/a.fake
...[main] ERROR .importer.transfers.HardlinkFileTransfer - transfer process␣
→˓returned 1
...[main] ERROR .importer.transfers.HardlinkFileTransfer - error in closing raw␣
→˓file store
omero.ResourceError: null

at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) ~[na:1.7.0_
→˓51]

at sun.reflect.NativeConstructorAccessorImpl.
→˓newInstance(NativeConstructorAccessorImpl.java:57) ~[na:1.7.0_51]

(continues on next page)

2.7. Data Import and Storage 313

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

at sun.reflect.DelegatingConstructorAccessorImpl.
→˓newInstance(DelegatingConstructorAccessorImpl.java:45) ~[na:1.7.0_51]

at java.lang.reflect.Constructor.newInstance(Constructor.java:526) ~[na:1.7.0_51]
at java.lang.Class.newInstance(Class.java:374) ~[na:1.7.0_51]
at IceInternal.BasicStream.createUserException(BasicStream.java:2615) ~[ice.jar:na]
at IceInternal.BasicStream.access$300(BasicStream.java:12) ~[ice.jar:na]
at IceInternal.BasicStream$EncapsDecoder10.throwException(BasicStream.java:3099) ~

→˓[ice.jar:na]
at IceInternal.BasicStream.throwException(BasicStream.java:2077) ~[ice.jar:na]
at IceInternal.Outgoing.throwUserException(Outgoing.java:538) ~[ice.jar:na]
at omero.api._RawFileStoreDelM.close(_RawFileStoreDelM.java:466) ~[omero-blitz.

→˓jar:na]
at omero.api.RawFileStorePrxHelper.close(RawFileStorePrxHelper.java:1739) ~[omero-

→˓blitz.jar:na]
at omero.api.RawFileStorePrxHelper.close(RawFileStorePrxHelper.java:1701) ~[omero-

→˓blitz.jar:na]
at ome.formats.importer.transfers.AbstractFileTransfer.

→˓cleanupUpload(AbstractFileTransfer.java:123) ~[omero-blitz.jar:na]
at ome.formats.importer.transfers.AbstractExecFileTransfer.

→˓transfer(AbstractExecFileTransfer.java:63) [omero-blitz.jar:na]
at ome.formats.importer.ImportLibrary.uploadFile(ImportLibrary.java:410) [omero-

→˓blitz.jar:na]
at ome.formats.importer.ImportLibrary.importImage(ImportLibrary.java:465) [omero-

→˓blitz.jar:na]
at ome.formats.importer.ImportLibrary.importCandidates(ImportLibrary.java:274)␣

→˓[omero-blitz.jar:na]
at ome.formats.importer.cli.CommandLineImporter.start(CommandLineImporter.java:218)␣

→˓[omero-blitz.jar:na]
at ome.formats.importer.cli.CommandLineImporter.main(CommandLineImporter.java:658)␣

→˓[omero-blitz.jar:na]
2014-01-31 12:59:20,338 3152 [main] ERROR ome.formats.importer.
→˓ImportLibrary - Error on import
java.lang.RuntimeException: transfer process returned 1

at ome.formats.importer.transfers.AbstractExecFileTransfer.
→˓exec(AbstractExecFileTransfer.java:137) ~[omero-blitz.jar:na]

at ome.formats.importer.transfers.AbstractExecFileTransfer.
→˓transfer(AbstractExecFileTransfer.java:57) ~[omero-blitz.jar:na]

at ome.formats.importer.ImportLibrary.uploadFile(ImportLibrary.java:410) ~[omero-
→˓blitz.jar:na]

at ome.formats.importer.ImportLibrary.importImage(ImportLibrary.java:465) ~[omero-
→˓blitz.jar:na]

at ome.formats.importer.ImportLibrary.importCandidates(ImportLibrary.java:274) ~
→˓[omero-blitz.jar:na]

at ome.formats.importer.cli.CommandLineImporter.start(CommandLineImporter.java:218)␣
→˓[omero-blitz.jar:na]

at ome.formats.importer.cli.CommandLineImporter.main(CommandLineImporter.java:658)␣
→˓[omero-blitz.jar:na]
2014-01-31 12:59:20,338 3152 [main] INFO ome.formats.importer.
→˓ImportLibrary - Exiting on error

The safeness of this method comes from the fact that OMERO also has a pointer to the data. Deletion of the original
file under /home would leave data in OMERO in place. Again, this could cause a surprise as the space would not be
properly freed, but at least there cannot be an accidental loss.

314 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Warning: The primary concern with this method is modification of files. If the original data is written by a user,
unexpected results could follow in OMERO. See the Safety tips section above for ways around this.

If you are unclear about how hard-linking works, please see the Hard link article on Wikipedia.

The semantics of hard-linking have changed recently on Linux systems with the “protected hardlinks” feature, which
is enabled by default and is in use on Ubuntu 14.04, CentOS 7 and other contemporary systems. When you create a
hard-link to a file, Linux now requires that you are either the owner of the file, or that you have read-write permissions
to the file. Other Unix systems, and older Linux systems, allow a hard-link to be made if you have search access to the
file (i.e. you have appropriate read and execute permissions on the directory path containing the file), but do not check
the file permissions themselves. See the kernel-hardening mailing list post which describes the change in more detail.
The implication for in-place import is that the user performing the import must own or have read-write permissions on
the data files being imported in-place.

“ln_rm” - moving

Finally, the least favored option is ln_rm. It first performs a hard-link like ln, but once the import is complete it attempts
to delete the original file. This is currently in testing as an option for DropBox but is unlikely to be of use to general
users. Although this option is more limited than the upload_rm option below it will be much faster.

“upload_rm” - uploading and deleting

This option is not strictly an in-place option but is detailed here for convenience. It first performs a file upload like
default import, but once the import is complete it attempts to delete the original files. It deletes the original files if and
only if the import is successful.

“cp” and “cp_rm” variants

The cp and cp_rm commands provide the same functionality as ln and ln_rm but perform a copy rather than a link
operation. The benefit of a copy is that it works over OS filesystem boundaries while still providing the integrity that
ln_s cannot. The primary downside of a raw cp compared to ln is that there is data duplication. cp_rm being very
similar to ln_rm usually works around this downside, except in the case of a failed import. Then the duplicated data
will remain in OMERO and an explicit cleanup step will need to be taken.

Your own file transfer

If none of the above options work for you, it is also possible to write your own im-
plementation of the ome.formats.importer.transfers.FileTransfer class, likely subclassing
ome.formats.importer.transfers.AbstractFileTransfer or ome.formats.importer.transfers.AbstractExecFileTransfer.
If you do so, please let us know how we might improve either the interface or the implementations that we provide.

Once your implementation has been compiled into a jar and placed in the lib/clients directory, you can invoke it using:

$ omero import --transfer=example.package.ClassName ...

2.7. Data Import and Storage 315

https://en.wikipedia.org/wiki/Hard_link
https://www.openwall.com/lists/kernel-hardening/2012/02/21/20

OMERO, Release 5.6.5-SNAPSHOT-1

Related advanced options

In addition to the --transfer option, a number of other advanced options have been added which may be useful
for either tweaking import performance or dealing with complicated situations. Comments and suggestions are very
welcome.

Checksums

If you think that calculating the checksums for your large files is consuming too much time, you might want to configure
the checksum algorithm used. This can be done with the --checksum_algorithm property. Available options are
printed with the --advanced-help option and include Adler-32, CRC-32, MD5-128, Murmur3-32, Murmur3-128,
and the default SHA1-160.

DropBox

As described in the scenarios “DropBox import (automatic delete)” and “In-place DropBox import (automatic delete)”,
DropBox can be configured to use any of the options described above. The configuration property to modify is
omero.fs.importArgs:

$ omero config set -- omero.fs.importArgs "--transfer=upload_rm"

This will move files into OMERO rather than leaving a copy in the DropBox directory.

$ omero config set -- omero.fs.importArgs "--transfer=ln_rm"

This will also move files into OMERO rather than leaving a copy in the DropBox directory. For this to work, the two
directories will need to be on the same file system. This option is much faster than upload_rm. Please read “ln_rm” -
moving carefully to ensure you fully understand the implications of using this option.

For more information on OMERO.fs, please visit Import under OMERO.fs.

Warning: Use at your own risk!

See also:
Advanced import scenarios

OMERO.dropbox

Import under OMERO.fs

Import images

Import targets

Command Line Interface as an OMERO client

316 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

2.7.3 Advanced import scenarios

Increasingly users of OMERO are needing to go beyond the traditional “upload via a GUI”-style import model to more
powerful methods.

There is a set of requirements for getting data into OMERO that is common to many institutions. Some of the require-
ments may be mutually exclusive.

• Users need to get data off microscopes quickly. This likely includes not waiting for import to complete. Users
will often move data immediately, or even save remotely during acquisition.

• Users would like direct access to the binary repository file-system to read original files for analysis.

• Users would like to view and begin working with images as soon as possible after acquisition.

Below we explain which options are available to you, and why there is a trade-off between the above requirements.

Import overview

The “OMERO binary repository” (or repo) is the directory belonging to the OMERO user where files are imported:

• The ManagedRepository directory inside of the repo is where files go during import into OMERO. Each user
receives a top-level directory inside of “ManagedRepository” which fills with timestamped directories as imports
accrue.

• Depending on the permissions of this directory, users may or may not be able to see their imported files. Man-
aging the permissions is the responsibility of the system administrator.

In “normal import”, files are copied to the OMERO binary repo via the API and so can work remotely or locally. In
“in-place import”, files are “linked” into place.

Warning: In-place import is a new, powerful feature - it is critical that you read and understand the documentation
before you consider using it.

Traditional import

Manual import (GUI)

This is the standard workflow and the one currently used at the University of Dundee. Users dump data to a shared
file-system from the acquisition system, and then use the OMERO.insight client from the lab to import.

Advantages

• Users can validate that import worked.

• Failed imports can be repeated and/or reported to QA etc.

• Users do not have to wait for import to be scheduled.

• Import destination is known: Project/Dataset etc.

2.7. Data Import and Storage 317

OMERO, Release 5.6.5-SNAPSHOT-1

Disadvantages

• Imports can be slow due to the data transfer from file-system to OMERO via the client.

• Users must remember to delete data from the shared file-system to avoid data duplication.

• Users cannot access the OMERO binary repo directly and must download original data via clients for local
analysis.

Manual import (CLI)

Another typical workflow is that rather than using the GUI, users perform the same procedure as under “Manual import”
but with the command-line (CLI) importer.

Advantages

• With a CLI workflow, it may be easier for users to connect remotely to kick off an import and to leave it running
in the background for a long period of time.

Disadvantages

All the same disadvantages apply as under “Manual import (GUI)”.

Cronjob import (manual delete)

For importing via cron, users still dump their data to a shared file-system from the acquisition system. They must have
permissions to write to “their” directory which is mapped to a user in OMERO.

A cronjob starts a CLI import, possibly at night. The cronjob could be given admin rights in OMERO to perform an
“Import As” for a particular user.

Disadvantages

• If a normal import is used, the cronjob would have to manually delete imported files from their original location
to avoid duplication.

• Users cannot work with their data in OMERO until some time after acquisition.

• Failed imports are logged within the managed repository but not yet notified. Logs would probably need to be
accessed via a sysadmin/cli. The cronjob could capture stdout and stderr and check for failures.

318 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

DropBox import (manual delete)

Similar to the cronjob scenario, DropBox importing requires that users drop their data in “their” directory which has
special permissions for writing. The DropBox service monitors those directories for modifications and imports the files
on a first-come-first-serve basis.

• OMERO.dropbox

Advantages

• Users should see their data in OMERO quickly.

Disadvantages

• There is a limitation on the rate of new files in monitored locations.

• There is also a limitation on which file systems can be used. A networked file share cannot be monitored by
DropBox.

• Users must manually delete imported files from their DropBox directory to avoid duplication.

• Failed imports are logged within the managed repository but not yet notified. Logs would probably need to be
accessed via a sysadmin or through the CLI and searched by the user and file name.

DropBox import (automatic delete)

One option is to have files removed from DropBox automatically after a successful import. This is achieved by perform-
ing an “upload” import from the DropBox directory to the ManagedRepository then deleting the data from DropBox if
and only if the import was successful. For failed imports, files will remain in the DropBox directories until someone
manually deletes them.

Advantages

• For all successful imports, files will be automatically removed from the DropBox directories thus reducing du-
plication.

In-place import

The following sections outline in-place based scenarios to help you judge if the functionality may be useful for you.

Common advantages

• All in-place import scenarios provide non-copying benefit. Data that is too large to exist in multiple places, or
which is accessed too frequently in its original form to be renamed, remains where it was originally acquired.

2.7. Data Import and Storage 319

OMERO, Release 5.6.5-SNAPSHOT-1

Common disadvantages

• Like the DropBox import scenario above, all in-place imports require the user to have access to the user-based
directories under the ManagedRepository. See limitations for more details.

• Similarly, all the following scenarios carry the same burden of securing the data externally to OMERO. This
is the primary difference between a normal import and an in-place import: backing up OMERO is no longer
sufficient to prevent data loss. The original location must also be secured! This means that users must not
move or alter data once imported.

In-place manual import (CLI)

The in-place version of a CLI manual import is quite similar to the normal CLI import, with the primary difference
being that the data is not transferred from the shared file-system where the data is initially stored after acquisition, but
instead is just “linked” into place.

Advantages

• Local filesystem in-place import is faster than traditional importing, due to the lack of a data transfer.

Disadvantages

• Requires proper security setup as explained above.

In-place Cronjob import

Assuming all the restrictions are met, the cronjob-based workflow above can carry out an in-place import by adding
the in-place transfer flag. The advantages and disadvantages are as above.

In-place DropBox import (manual delete)

Just as with the in-place cronjob import, using in-place import for DropBox is as straight-forward as passing the in-place
flag. The common advantages and disadvantages of in-place import apply.

In-place DropBox import (automatic delete)

An option that also exists in the in-place scenario is to have files removed from DropBox automatically after a suc-
cessful import. This is achieved by first performing a “hardlink in-place import” from the DropBox directory to the
ManagedRepository and then by deleting the data from DropBox if and only if the import was successful. For failed
imports, files will remain in the DropBox directories until someone manually deletes them.

320 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Advantages

• For all successful imports, files will be automatically removed from the DropBox directories.

Disadvantages

• This option is only available if the filesystem which DropBox watches is the same as the file system which the
ManagedRepository lives on. This prevents the use of network file systems and similar remote shares.

Parallel import

Parallel import is a variant of manual CLI import for making large-scale imports considerably faster. It is experimental
and may see extensive changes between patch versions. Use of this feature entails risk: if high thread counts are
specified then the import client or OMERO server may function poorly. New uses of parallel import should be tested
with a non-production server. Experience gained within OME and reported by users will help to make parallel import
more friendly and safe.

omero import --parallel-fileset sets how many filesets are imported at the same time. omero import
--parallel-upload sets how many files are uploaded at the same time. File upload occurs early in import and
the fileset import threads share the same file upload threads among them so it typically makes sense to set the file
upload thread count at least as high as the fileset import thread count. They both default to a value of 1.

These options can provide clear benefits if set even at lower numbers like 4. Do not assume that higher is always better:
more concurrent threads means higher overhead and may severely exhaust resources on the server and the client. Issues
with parallel import include:

• Import can fail when the same repository directory is being created to hold the files from different filesets. An
effective workaround is to set the server’s Template path such that the %thread% term precedes any subdirectories
that may need to be created at import time.

• Import can fail when the same import target is created to contain multiple filesets. An effective workaround is
to create the targets in advance of starting the imports.

• The server’s connections to the database may become saturated, making the server unresponsive. Set the omero.
db.poolsize property higher than the number of filesets that will be imported across all users at any one time.

See also:
In-place import

OMERO.dropbox

Import images

Import targets

2.8 Optimizing OMERO as a Data Repository

This section explains how to customize the appearance and functionality of OMERO clients to host images for groups
or public viewing.

2.8. Optimizing OMERO as a Data Repository 321

OMERO, Release 5.6.5-SNAPSHOT-1

2.8.1 Publishing data using OMERO.web

The OMERO.web framework allows raw data to be published using built-in tools or supplied through web services to
external web pages. Selected datasets can be made visible to a ‘public user’ using the standard OMERO permissions
system, ensuring you always have control over how users can interact with your data.

There are several ways of publishing data using OMERO.web:

• using a URL to launch the web-based Image viewer, as described in Launching OMERO.web viewer, which
can be accompanied by a thumbnail. For more details of how to load the thumbnail, see URLs from within
OMERO.web

• embedding the image viewport directly into other web pages, for more details see Customizing the content of the
embedded OMERO.web viewport

• allowing public access to the OMERO.web data manager

• writing your own app to host your public data (see Creating an app) and then allowing public access to the chosen
URL for that app

The sections below describe how you might use these features and how to set them up.

Configuring public user

The OMERO.web framework supports auto-login for a single username / password. This means that any public visitors
to certain OMERO.web pages will be automatically logged in and will be able to access the data available to the defined
‘public user’.

To set this up on your OMERO.web installation:

• Create a group with read-only permissions (the name can be anything e.g. “public-data”). We recommend read-
only permissions so that the public user will not be able to modify, delete or annotate data belonging to other
members.

• Create a member of this group, noting the username and password (you will enter these below). Again, the First
name, Last name, Username and Password can be anything you like.

Note: If you add this member to other groups, all data in these groups will also become publicly accessible for
as long as this user remains in the group.

• Enable the omero.web.public.enabled property and set omero.web.public.user and omero.web.
public.password:

$ omero config set omero.web.public.enabled True

$ omero config set omero.web.public.user '<username>'

$ omero config set omero.web.public.password '<password>'

• By default the public user is only allowed to perform GET requests. This means that the public user will not be
able to Create, Edit or Delete data, as these require POST requests. If you want to allow these actions from the
public user, you can change the omero.web.public.get_only property:

$ omero config set omero.web.public.get_only false

• Set the omero.web.public.url_filter. This filter is a regular expression that will allow only matching
URLs to be accessed by the public user. If this is not set, no URLs will be publicly available.

322 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

You need to configure the url_filter to allow all URLs that are required for the pages you wish to be public but to
block any URLs that you do not want public users to access.

Some examples are listed below:

– To allow all URLs from a single app, such as ‘webgateway’, use a filter for URLs that start with the app
name. For example:

$ omero config set omero.web.public.url_filter '^/webgateway'

This filter permits all URLs needed for the full image viewer. If you wish to block webgateway URLs for
downloading data, use:

$ omero config set omero.web.public.url_filter '^/webgateway/(?!archived_
→˓files|download_as)'

– You may need to allow access to additional URLs for some apps. For example, the OMERO.iviewer also
uses some webgateway and api URLs:

$ omero config set omero.web.public.url_filter '^/iviewer|webgateway|api'

– You can use the full webclient UI for public browsing of images. Attempts by public user to create, edit
or delete data will fail silently with the default omero.web.public.get_only setting above. You may
also choose to disable various dialogs for these actions such as launching scripts or OME-TIFF export, for
example:

$ omero config set omero.web.public.url_filter '^/(webadmin/myphoto/|webclient/
→˓(?!(script_ui|ome_tiff|figure_script))|webgateway/(?!(archived_files|download_
→˓as))|iviewer|api)'

• Set the omero.web.public.server_id which the public user will be automatically connected to. Default: 1
(the first server in the omero.web.server_list):

$ omero config set omero.web.public.server_id 1

If you enable public access to the main webclient but still wish registered users to be able to log in, the login page can
always be accessed using a link of the form https://your_host/webclient/login/.

Full example of hosting data for a publication

Putting the pieces of this puzzle together, the following describes the steps of a complete workflow for using OMERO
to host public data associated with a publication. It is illustrated using an example publication from the Swedlow lab
in Dundee, Schleicher et al, 2017 with the data hosted at https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017.

Ansible playbooks can be found describing how the production server in Dundee (“nightshade”) was configured in the
prod-playbooks repository on GitHub.

2.8. Optimizing OMERO as a Data Repository 323

https://www.openmicroscopy.org/omero/iviewer/
http://dx.doi.org/10.1098/rsob.170099
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://github.com/ome/prod-playbooks

OMERO, Release 5.6.5-SNAPSHOT-1

Group setup

A group-per-publication allows the public user to be selectively added (or removed) from given publications to decide
their visibility.

1. Create a dedicated read-only group to host the raw data underlying the publication (see User/group management).

2. Add all the authors of the paper to this new group.

3. Once you have configured OMERO.web to create a public user (see below), add the public user as a member of
the newly created read-only group.

Configuring OMERO.web

If you wish to have an automatically logged-in public user while still giving your existing OMERO users an unchanged
user experience (i.e. not automatically logging them in as the public user), a dedicated, separate web server for servicing
the public workflows can be added and configured to point at your existing OMERO.server. This is the workflow
adopted here by adding a public OMERO.web at https://omero.lifesci.dundee.ac.uk, without changing the existing
internal OMERO.web.

1. Follow the steps in Configuring public user above on the chosen OMERO.web.

2. Also configure the filter on the public user on the chosen OMERO.web by setting omero.web.public.
url_filter to allow ‘webclient’ so that the full webclient is visible for the public user, and thus the Data
tree with Projects and Datasets is also browsable, as well as the Tags tab and the full image viewer.

Data migration

The data to be made public will need to be in the publication group to be considered “published”.

1. Move the original images into the dedicated group using OMERO.web or OMERO.cli. The CLI is best used
where Images or Datasets are cross-linked to other Datasets or Projects in the original group. The command
omero chgrp Project:$ID --include Dataset,Image cuts the cross-links in the original group and pre-
serves the Project/Dataset/Image hierarchy prepared for the move by the author.

2. If you have used OMERO.figure to create your figures for publication, you can always find the original data
by using the ‘info’ tab, as shown in the OMERO.figure Help guide (OMERO.figure supports a complete figure
creation workflow, including exporting figures into image processing applications for final adjustments - see the
OMERO.figure Help guide for full details).

3. Having all the data belong to one user simplifies the UI experience for public users. If necessary, ownership of
data can be transferred using the ‘Chown’ privilege (see Administrators with restricted privileges and Changing
ownership of objects).

Data layout

Once the data is in the dedicated read-only group, it can be reorganized and renamed to reflect the publication e.g.
Projects can be renamed according to the corresponding figure panels in the manuscript while the names of the Datasets
could be retained corresponding to different treatment conditions represented in each figure panel. For example, Project
Schleicher_etal_figure7_c contains images underlying the publication Figure panel 7(c). Some Projects underlie two
publication figure panels, such as Project Schleicher_etal_figure2_a_c where representative images are shown in panel
(a) and the corresponding quantification is shown in panel (c) of Figure 2. This makes clear which original images are
underlying which figure panels in the publication.

324 Chapter 2. System Administrator Documentation

https://omero.lifesci.dundee.ac.uk
https://help.openmicroscopy.org/figure.html#info
https://help.openmicroscopy.org/figure.html
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27920
https://royalsocietypublishing.org/cms/attachment/36fd7495-4d87-454f-952e-a581da261f71/rsob170099f07.jpg
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27917
https://royalsocietypublishing.org/cms/attachment/aac23d26-2197-4dc1-8f85-7bb5686f926d/rsob170099f02.jpg

OMERO, Release 5.6.5-SNAPSHOT-1

Data can also be tagged with OMERO tags to enhance the browsing possibilities through these data for any user with
basic knowledge of OMERO. For example, see Tag:Schleicher_etal_figure1_a. The tags are highlighting the images
displayed in the publication figures as images. The other, non-tagged images in the group are the ones used for analysis
which produced the published numerical data.

Key-Value pairs can be used to add more detailed information about the study and publication. For example, go to
Schleicher_etal_figure1_a and expand the ‘Key-Value Pairs’ section in the right-hand pane to display the content (see
the Managing data guide for information on using Key-Value pairs).

Configuring URLs

The URL of the first Project (corresponding to the first figure in the publication) can be used for a DOI and data
landing page. For example, Project ‘Schleicher_etal_figure1_a’ https://omero.lifesci.dundee.ac.uk/webclient/?show=
project-27936 corresponds to http://dx.doi.org/10.17867/10000109.

Optionally, you can decide on a set pattern of URLs for this and future publications. For example, in Dundee we
have established a pattern which supposes every new publication from our institution will be in a separate group,
and this group will be directly navigable by the public user using the syntax: “server-address/pub/publication-
identifier”. This means for example, https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017 is the link where
“omero.lifesci.dundee.ac.uk” is the server address, and “schleicher-et-al-2017” is the publication-identifier.

This makes use of redirects allowing https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017 to link to the correct
group and Project in OMERO, just as the DOI above does. Redirects need to be set in the NGINX component of the
OMERO.web installation dedicated to publication workflows. You can find our configuration for this example here on
GitHub:

location /pub/schleicher-et-al-2017 {
return 307 /webclient/?show=project-27936;

}

2.8.2 OMERO.web UI customization

The OMERO.web offer a flexible user interface that can be customized. The sections below describe how to set up
these features.

Note that depending on the deployment choice, OMERO.web will not activate configuration changes until Gunicorn is
restarted using omero web restart.

Index page

This allows you to add a homepage at <your-omero-server>/index/. Visitors to your root url at <your-omero-server>/
will get redirected here instead of redirecting to <your-omero-server>/webclient/.

Create new custom template in /your/path/to/templates/mytemplate/index.html and add the following:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.index_template 'mytemplate/index.html'

2.8. Optimizing OMERO as a Data Repository 325

https://omero.lifesci.dundee.ac.uk/webclient/?show=tag-364188
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
https://help.openmicroscopy.org/managing-data.html#keyvalue
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
http://dx.doi.org/10.17867/10000109
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://nginx.org/
https://github.com/ome/prod-playbooks/blob/2018-01/nightshade-webclients.yml#L181
https://github.com/ome/prod-playbooks/blob/2018-01/nightshade-webclients.yml#L181

OMERO, Release 5.6.5-SNAPSHOT-1

Login page logo

omero.web.login_logo allows you to customize the webclient login page with your own logo. Logo images should
ideally be 150 pixels high or less and will appear above the OMERO logo. You will need to host the image somewhere
else and link to it with:

$ omero config set omero.web.login_logo 'http://www.url/to/image.png'

Login redirection

omero.web.login_redirect property redirects to the given location after logging in to named pages. In the example
below, a user who tries to visit the "webindex" URL (/webclient/) will be redirected after login to a URL defined
by the viewname "load_template". The "args" are additional arguments to pass to Django’s reverse() function
and the "query_string" will be added to the URL:

$ omero config set omero.web.login_redirect '{"redirect": ["webindex"], "viewname":
→˓"load_template", "args":["userdata"], "query_string": "experimenter=-1"}'

326 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Top links menu

omero.web.ui.top_links adds links to the top header:

$ omero config append omero.web.ui.top_links '["Figure", "figure_index", {"title": "Open␣
→˓Figure in new tab", "target": "_blank"}]'
$ omero config append omero.web.ui.top_links '["GRE", "http://lifesci.dundee.ac.uk/gre"]'

Open With option

omero.web.open_with adds items to the ‘Open with’ options. This allows users to open selected images or other
data with another web app or URL. See Linking from Webclient.

Include template in every page

An HTML template specified by omero.web.base_include_template will be included in every HTML page in
OMERO.web. The template is inserted just before the </body> tag and can be used for adding a <script> such as
Google analytics.

For example, create a file called /your/path/to/templates/base_include.html with:

<script>
console.log("Hello World");

</script>

Set the following:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.base_include_template 'base_include.html'

Group and Users in dropdown menu

Customize the groups and users dropdown menu by changing the labels or hiding the entire list:

$ omero config set omero.client.ui.menu.dropdown.leaders.label "Owners"
$ omero config set omero.client.ui.menu.dropdown.leaders.enabled true
$ omero config set omero.client.ui.menu.dropdown.colleagues.label "Members"
$ omero config set omero.client.ui.menu.dropdown.colleagues.enabled true
$ omero config set omero.client.ui.menu.dropdown.everyone.label "All Members"
$ omero config set omero.client.ui.menu.dropdown.everyone.enabled false

2.8. Optimizing OMERO as a Data Repository 327

OMERO, Release 5.6.5-SNAPSHOT-1

Orphaned container

omero.client.ui.tree.orphans.name allows you to change the name of the “Orphaned images” container located
in the client data manager tree:

$ omero config set omero.client.ui.tree.orphans.name "Orphaned images"

Disabling scripts

omero.client.scripts_to_ignore hides the scripts that the clients should not display:

$ omero config append omero.client.scripts_to_ignore "/my_scripts/script.py"

328 Chapter 2. System Administrator Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Download restrictions

omero.policy.binary_access determines whether users can access binary files from disk. Binary access includes
all attempts to download a file from the UI:

$ omero config set -- omero.policy.binary_access +read,+write,+image

or on a specific group with ID 15:

$ omero group info 15
$ omero obj map-set ExperimenterGroup:15 config -- omero.policy.binary_access +read,
→˓+write,+image

2.8. Optimizing OMERO as a Data Repository 329

OMERO, Release 5.6.5-SNAPSHOT-1

330 Chapter 2. System Administrator Documentation

CHAPTER

THREE

DEVELOPER DOCUMENTATION

The following documentation is for developers wishing to write OMERO client code or extend the OMERO server.
Instructions on downloading, installation and administering OMERO can be found under the System Administrator
Documentation of the main site.

OMERO is an open source client/server system written in Java for visualizing, managing, and annotating microscope
images and metadata. The OMERO Application Programming Interface allows clients to be written in Java, Python,
C++ or MATLAB. OMERO releases include a Java client OMERO.insight, a Python-based web client OMERO.web
and the Command Line Interface as an OMERO development tool, which also uses Python. There is also an ImageJ
plugin. OMERO can be extended by modifying these clients or by writing your own in any of the supported languages
(see figure). OMERO also supports a Scripting Service which allows Python scripts to be run on the server and called
from any of the other clients.

OMERO is designed, developed and released by the Open Microscopy Environment, with contributions from Glencoe
Software, Inc. OMERO is released under the GNU General Public License (GPL) with commercial licenses and
customization available from Glencoe Software, Inc.. You can read about how OMERO has developed since the project
started in the CHANGELOGS.

For help with any aspect of OMERO, see details of our forums and mailing lists.

331

https://downloads.openmicroscopy.org/latest/omero5.5/
https://www.openmicroscopy.org
https://www.glencoesoftware.com/
https://www.glencoesoftware.com/
https://www.gnu.org/copyleft/gpl.html
https://www.glencoesoftware.com/
https://www.openmicroscopy.org/support/

OMERO, Release 5.6.5-SNAPSHOT-1

3.1 Introduction to OMERO

3.1.1 What’s new for OMERO 5.6 for developers

This release focuses on migrating all Python components to Python 3, and decoupling them into separate repositories
with the benefit of permitting each to be released to PyPI independently:

• https://github.com/ome/omero-py

• https://github.com/ome/omero-web

• https://github.com/ome/omero-dropbox

• https://github.com/ome/omero-marshal

For details on migrating your own code to Python 3, see Migration from OMERO 5.5 (Python 2) to OMERO 5.6 (Python
3).

You may also find the Sysadmins Migration to Python 3 page useful.

Other changes which you need to be aware of:

• The path module is now named omero_ext.path.

For a full list of api changes, bug fixes and other improvements, see the CHANGELOGS.

3.1.2 Migration from OMERO 5.5 (Python 2) to OMERO 5.6 (Python 3)

This page serves as a collection of recommendations, developed as the OME team went through the migration to Python
3. This is not a complete guide but may serve as a useful starting point.

For more information, please see a dedicated Python 3 page like http://python-future.org/.

Futurize

Installing future from Python 3 is now required for all OMERO Python components. This library comes with the
futurize tool which performs many of the basic transformations needed to migrate Python 2 code to Python 3:

futurize -0 your_file.py

Add -w to update the file in place.

print()

The most common transformation needed is adding parentheses around print statements since print is no longer a
keyword.

332 Chapter 3. Developer Documentation

https://github.com/ome/omero-py
https://github.com/ome/omero-web
https://github.com/ome/omero-dropbox
https://github.com/ome/omero-marshal
http://python-future.org/

OMERO, Release 5.6.5-SNAPSHOT-1

dict.keys()

The return value from the keys() method of dictionaries is of type dict_keys and no longer has methods like sort().
Wrap with a call to list if you need the previous behavior: list(my_dict.keys()).

Strings

Changes to the handling of strings was our major hurdle in upgrading from Python 2 to Python 3. In Python 2, there is
a separation between str and unicode. In Python 3, both of those are like unicode (but called str) and a new type was
introduced: bytes. A good starting places to learn the difference is:

http://python-future.org/compatible_idioms.html?highlight=string#strings-and-bytes

The future library which enables support for Python 2 and Python 3 concurrently has its own str class. It is necessary
to look at the imports for a module to know what str is being used.

Which str is it??

If nothing special is imported, str is the builtin str which in Python 2 is non-unicode and unicode in Python 3. String
literals like “foo” are also of type str.

If unicode_literal is imported, then “foo” is the same as u”foo” and is unicode in Python 2 or just str in Python 3.

If from builtins import str is imported, then str is more like unicode and may fail existing calls to isinstance().

isinstance(x, str)

Since str can change its type, this often will not do what you want. Using past.builtins.basestring is generally a good
solution, e.g. isinstance(x, basestring)

str(some_variable)

If you are trying to turn a variable into a string, this may not do what you want since it might be creating a unicode.

This is especially problematic for passing strings to Ice methods, which are implemented in C++ and fail spectacularly
if they receive non-string objects (like unicode).

future.utils.native_str maintains the previous semantics producing builtin str objects. Native str semantics are especially
important when working with Ice, e.g.

ctx = {'omero.group': native_str(groupId)}
conn.getUpdateService().saveArray(pixels, ctx)

3.1. Introduction to OMERO 333

http://python-future.org/compatible_idioms.html?highlight=string#strings-and-bytes

OMERO, Release 5.6.5-SNAPSHOT-1

StringIO and open(“file”, “r”)

StringIO and open() may need replacing with BytesIO and open(“file”, “rb”) respectively. This depends on whether
or not your code is expecting a stream to be binary.

Regexes

Regexes must start with r”” for raw to prevent escapes from being misinterpreted (e.g. d).

Numerics

long no longer exists. Replace omero.rtypes.wrap(long_value) with omero.rtypes.rlong(long_value).

Division with / now produces a floating point. For example, choice * int(percent) / 100 no longer produces an integer
in Python 3. Use //.

3.1.3 Installing OMERO from source

Warning: Starting from OMERO 5.5, many components have been moved to their own repositories e.g.
OMERO.py, to modernize the application and allow more flexibility.

This page is currently under review.

Using the source code

The source code of each release of OMERO is available for download from the Source code section of the OMERO
download page.

Note: At the moment, this source code bundle does not contain the version of Bio-Formats. To include this version
information, you will need to manually copy the ant/gitversion.xml file included in the source code bundle of
Bio-Formats for the same release under components/bioformats/ant.

Using the Git source repository

To use the Git source repository, you will need to install Git on your system. See the Using Git section of the Con-
tributing documentation for more information on how to install and configure Git.

The main repository for OMERO is available from https://github.com/ome/openmicroscopy. Most OME development
is currently happening on GitHub, therefore it is highly suggested that you become familiar with how it works, if not
create an account for yourself.

Start by cloning the official repository:

git clone https://github.com/ome/openmicroscopy.git

Since the openmicroscopy repository now makes use of submodules, you first need to initialize all the submodules:

cd openmicroscopy
git submodule update --init

334 Chapter 3. Developer Documentation

https://github.com/ome/omero-py
https://downloads.openmicroscopy.org/latest/omero5.5/
https://docs.openmicroscopy.org/contributing/using-git.html
https://github.com/ome/openmicroscopy

OMERO, Release 5.6.5-SNAPSHOT-1

Alternatively, with version 1.6.5 of git and later, you can pass the --recursive option to git clone and initialize all
submodules:

git clone --recursive https://github.com/ome/openmicroscopy.git

See also:
Using Git Section of the contributing documentation explaining how to use Git for contributing to the source code.

Building OMERO

To install the dependencies required to run the OMERO.server on Linux or Mac OS X, take a look at the OMERO.server
installation page where you will also find links to walk-throughs for specific platforms.

Some environment variables may need to be set up before building the server:

• If the system slice files cannot be found you must set SLICEPATH to point to the slice directory of the Ice
installation.

Once all the dependencies and environment variables are set up, you can build the server using:

python build.py

or the clients using:

python build.py release-clients

See also:
Build System Section of the developer documentation detailing the build system

3.1.4 Build System

Overview

The page goes into details about how the build system is configured.

Since 5.5, OMERO decouples many components and uses, for some components, an Gradle-based build. The two
overarching repositories are omero-build and omero-gradle-plugins. See the README of each repository for more
details. OMERO still uses an Ant-based build, for some components, with dependency management provided by Ivy.
C++ code is built using Cmake and Python uses the traditional distutils/setuptools tools.

Structure of the build

This is an (abbreviated) snapshot of the structure of the filesystem for OMERO:

OMERO_SOURCE_PREFIX
|
|-- build.xml Top-level build file
|
|-- build.py Python wrapper to handle OS-specific␣
→˓configuration
|

(continues on next page)

3.1. Introduction to OMERO 335

https://docs.openmicroscopy.org/contributing/using-git.html
https://gradle.org/
https://github.com/ome/omero-build
https://github.com/ome/omero-gradle-plugins
https://ant.apache.org
https://ant.apache.org/ivy

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

|-- omero.class Self-contained Ant launcher
|
|--etc Configuration folder
| |-- grid Deployment files folder
| |-- ivysettings.xml Main Ivy configuration file
| |-- hibernate.properties
| |-- build.properties
| |-- logback.xml
| |-- omero.properties
| \-- profiles
|
|-- examples User examples
|
\components
|
|--<component-name> Each component has this same basic structure.
| |-- build.xml Build file
| |-- ivy.xml Jar dependencies
| |-- test.xml Test dependencies
| |-- src Source code
| |-- resources Other files of interest
| |-- test Test source code and test resources
| \-- target Build output (deleted on clean)
|
| NOTABLE COMPONENTS
|
|--tools Other server-components with special build␣

→˓needs.
| |--build.xml Build scripts
| |
| \--<tool-name>
| |--build.xml Build file
| \--ivy.xml Jar dependencies
|
\--antlib Special component which is not built, but␣

→˓referenced by the build
|
\--resources Build resources

|--global.xml Global build properties
|--hibernate.xml
|--lifecycle.xml Ivy-related targets
\--version.xml Version properties

Note: User examples are explained under Working with OMERO

Unfortunately, just the above snapshot of the code repository omits some of the most important code. Many megabytes
of source code is generated both by our own DSLTask as well as by the Ice slice2java, slice2cpp, and slice2py
code generators. These take an intermediate representation of the OME-Model and generate our OME-Remote Objects.
This code is not available in git, but once built, can be found in all the directories named “generated”.

336 Chapter 3. Developer Documentation

https://github.com/ome/omero-dsl-plugin/tree/v5.5.1/
https://zeroc.com
https://docs.openmicroscopy.org/latest/ome-model/ome-xml/

OMERO, Release 5.6.5-SNAPSHOT-1

Build tools

Ant

./build.py is a complete replacement for your local ant install. In many cases, you will be fine running ant. If you
have any issues (for example OutOfMemory) , please use ./build.py instead. However, only use one or the other;
do not mix calls between the two.
The main build targets are defined in the top-level build.xml file. All available targets can be listed using:

./build.py -p

Ivy

The build system uses Ivy 2.3.0 as the dependency manager. The general Ivy configuration is defined in a settings file
located under etc/ivysettings.xml.

In order to determine the transitive closure of all dependencies, Ivy resolves each ivy.xml file and stores the resolved
artifacts in a cache to speed up other processes. The OMERO build system defines and uses two kinds of caches:

1. the local dependencies cache under lib/cache is used by most resolvers

2. Maven resolvers use the Maven cache under ~/.m2/repository

Note: When the Ivy configuration file or the version number is changed, the cache can become stale. Calling ./
build.py clean from the top-level build will delete the content of the local cache.

Resolvers are key to how Ivy functions. Multiple dependency resolvers can be defined fine-grained enough to resolve
an individual jar in order to pick up the latest version of any library from a repository, a generic URL or from the local
file system. Since OMERO 5.1.3, the remote repository resolvers are set up to resolve transitive dependencies.

The OMERO build system uses by default a chain resolver called omero-resolver which resolves the following
locations in order:

1. target/repository which contains most artifacts published by the build system in the install step of the
lifecycle

2. the local dependency repository under lib/repository

3. the local Maven cache under ~/.m2/repository

4. the Maven central repository

5. the OME artifactory

Bio-Formats dependencies are resolved using a specific chain resolver called ome-resolver which resolves the fol-
lowing locations in order:

1. the local Maven cache under ~/.m2/repository

2. the OME artifactory

To define its dependencies, each component uses a top-level Ivy file, ivy.xml, for the build and optionally another Ivy
file, test.xml, for the tests.

The OMERO build system defines and uses four types of Ivy configurations:

1. build: defines dependencies to be used for building

2. server: defines dependencies to be bundled under lib/server

3.1. Introduction to OMERO 337

https://ant.apache.org/ivy
https://ant.apache.org/ivy/history/2.3.0/settings.html
https://github.com/ome/openmicroscopy/blob/develop/etc/ivysettings.xml
https://ant.apache.org/ivy/history/2.3.0/settings/caches/cache.html
https://ant.apache.org/ivy/history/2.3.0/settings/resolvers.html
https://ant.apache.org/ivy/history/2.3.0/resolver/ibiblio.html
https://ant.apache.org/ivy/history/2.3.0/resolver/url.html
https://ant.apache.org/ivy/history/2.3.0/resolver/filesystem.html
https://ant.apache.org/ivy/history/2.3.0/resolver/filesystem.html
https://ant.apache.org/ivy/history/2.3.0/resolver/chain.html
https://central.sonatype.org
https://artifacts.openmicroscopy.org
https://ant.apache.org/ivy/history/2.3.0/resolver/chain.html
https://artifacts.openmicroscopy.org
https://ant.apache.org/ivy/history/2.3.0/ivyfile.html
https://ant.apache.org/ivy/history/2.3.0/ivyfile/configurations.html

OMERO, Release 5.6.5-SNAPSHOT-1

3. client: defines dependencies to be bundled under lib/client

4. test: defines dependencies to be used for running the tests

While building, most Java components follow the same lifecycle define in lifecycle.xml. The default dist target for each
component calls each of the following steps in order:

1. retrieve: retrieve the resolved dependencies and copy them under target/libs

2. prepare: prepare various resources (property files, lib/logback-build.xml)

3. generate: copy all resources from the previous step for compilation

4. compile: compile the source files into the destination repository

5. package-extra: package the sources and the Javadoc into Jar files for publication

6. package: package the compiled classes into a Jar file for publication

7. install: convert the component Ivy file into a pom file using makepom and publish the component artifacts

Individual components can override the content of this default lifecycle via their build.xml.

OmeroTools

The Ant build alone is not enough to describe all the products which get built. Namely, the builds for the non-Java
components stored under components/tools are a bit more complex. Each tools component installs its artifacts to the
tools/target directory which is copied on top of the dist top-level distribution directory.

Jenkins

The OME project currently uses Jenkins as a continuous integration server available here, so many binary packages can
be downloaded without compiling them yourself. See the Continuous Integration documentation for further details.

Server build

The default ant target (build-default) will build the OMERO system and copy the necessary components for a binary
distribution to the dist directory. Below is a comparison of what is taken from the build, where it is put, and what
role it plays in the distribution.

OMERO_SOURCE_PREFIX OMERO_SOURCE_PREFIX/dist Comments
components/tools/OmeroCpp/lib* lib/ Native shared libraries
lib/repository/<some> lib/client & lib/server Libraries needed for the build
etc/ etc/ Configuration
sql/*.sql sql/ SQL scripts to prepare the database

Note: By default, OMERO C++ language bindings are not built. Use build-all for that.

These files are then zipped to OMERO.server-<version>.zip via release-zip

338 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/components/antlib/resources/lifecycle.xml
https://ant.apache.org/ivy/history/2.3.0/use/retrieve.html
https://github.com/ome/openmicroscopy/blob/develop/lib/logback-build.xml
https://ant.apache.org/ivy/history/2.3.0/use/makepom.html
https://ant.apache.org/ivy/history/2.3.0/use/publish.html
https://ant.apache.org
https://github.com/ome/openmicroscopy/tree/develop/components/tools
https://jenkins.io
https://ci.openmicroscopy.org/
https://docs.openmicroscopy.org/contributing/ci-omero.html

OMERO, Release 5.6.5-SNAPSHOT-1

Coupled development

Since OMERO 5.1.3, Bio-Formats is decoupled from the OMERO build system which consumes Bio-Formats artifacts
from the OME Maven repository via Ivy.

While this decoupling matches most of the development use cases, it is sometimes necessary to work on coupled
Bio-Formats and OMERO branches especially during breaking changes of the OME Data Model or the Bio-Formats
API.

The general rule for coupled branches is to build each component in their dependency order and use the local Maven
repository under ~/.m2/repository to share artifacts.

Building Bio-Formats

From the top-level folder of the Bio-Formats repository,

1. if necessary, adjust the version of Bio-Formats which will be built, installed locally and consumed by OMERO
e.g. for 5.2.0-SNAPSHOT:

$./tools/bump_maven_version.py 5.2.0-SNAPSHOT

2. run the Maven command allowing to build and install the artifacts under the local Maven cache:

$ mvn clean install

Building OMERO

From the top-level folder of the OMERO repository,

1. in omero-model, adjust the version of ome:formats-gpl in build.gradle to the version chosen for the Bio-
Formats build

2. publish locally the change using gradle publishToMavenLocal

3.1.5 Working with OMERO

This page describes various tools and resources useful for working with the OMERO API, as well as some tips on setting
up your working environment. It should be useful to client developers working in any of the supported languages. For
language specific info, see the following links: OMERO Java language bindings, OMERO Python language bindings,
OMERO C++ language bindings, OMERO MATLAB language bindings.

OMERO.clients

The OMERO model is implemented as a relational PostgreSQL database on the OMERO.server and mapped to code-
generated model objects used by the clients in the various supported languages (linked above). The OMERO API
consists of a number of services for working with these objects and associated binary data. Typically, clients will use
various stateless services to query the OMERO model and then use the stateful services for exchange of binary data or
image rendering.

A typical client interaction might have an outline such as:

• Log in to OMERO, obtaining connection and ‘service factory’.

• Use the stateless ‘Query Service’ or ‘Container Service’ to traverse Projects, Datasets and Images.

3.1. Introduction to OMERO 339

https://ant.apache.org/ivy
https://github.com/ome/omero-model
https://github.com/ome/omero-model/blob/v5.6.5/build.gradle

OMERO, Release 5.6.5-SNAPSHOT-1

• Use the stateful ‘Rendering Engine’ or ‘Thumbnail Service’ to view images.

• Use the stateful ‘Raw Pixels Service’ or ‘Raw File Store’ to retrieve pixel or file data for analysis.

• Create new Annotations or other objects and save them with the stateless ‘Update Service’.

• Close stateful services to free resources and close the connection.

OMERO.clients use a common ‘gateway’ to communicate with an OMERO.server installation and allow the user to
import, display, edit, and manage server data. The OMERO team has developed a suite of clients (see OMERO clients
overview), but the open source nature of the OMERO project also allows developers to create their own, customized
clients. If you are interested in doing this, further information is available on Developing OMERO clients.

OMERO server

Although most interactions with OMERO can be achieved remotely, you will generally find it easier to have the server
installed on your development machine, particularly if you are going to be doing a lot of OMERO development. This
gives you local access to the database, binary repository, logs etc. and means you can work ‘off-line’.

Even if the server you are connecting to is remote, you will still want to have the server package available locally, so
as to give you the command line tools, Python libraries, etc. It is important that all OMERO server and client libraries
you use are the same OMERO version.

You may wish to work with the most recent OMERO release, or alternatively you can use the latest development code.
Instructions on how to download or check out the code can be found on the main downloads page.

Regular builds of the server are performed by Jenkins including generated Javadocs. See the contributing developer
continuous integration documentation for more information.

Environment variables

In addition to the install instructions, you might find it useful to set the following variables:

• For Python developers, create a virtual environment and install omero-py.

• Add to your PATH the /bin/ directory of the virtual environment e.g. OMERO_VENV=/opt/omero/server/
venv3 where omero-py is installed - allows you to call the ‘omero’ command from anywhere

export PATH=$PATH:$OMERO_VENV/bin/

Now checkout the CLI.

$ omero -h

Network hopping for laptops

By default OMERO will bind to all available interfaces. On a laptop this has the undesirable effect of requiring an
OMERO restart when changing network connections, e.g. from a home to a work network connection. To avoid this,
it is possible to bind only on the localhost interface which will never change IP address.

$ omero config set Ice.Default.Host 127.0.0.1
Restart to activate the new setting
$ omero admin restart

340 Chapter 3. Developer Documentation

https://downloads.openmicroscopy.org/latest/omero5.5/
https://jenkins.io
https://docs.openmicroscopy.org/contributing/ci-omero.html
https://docs.openmicroscopy.org/contributing/ci-omero.html

OMERO, Release 5.6.5-SNAPSHOT-1

Note: Be warned, if doing this, it will no longer be possible to connect to the OMERO server instance from anywhere
except the local machine.

Database access

It is useful to be able to directly query or browse the OMERO PostgreSQL database, which can be achieved with a
number of tools. E.g.

• psql - this command line tool should already be installed. Depending on your permissions, you may need to
connect as the ‘postgres’ user:

$ sudo -u postgres psql omero
Password: # sudo password
omero=# \d; # give a complete list of tables and views
omero=# \d annotation; # list all the columns in a particular table
omero=# select id, discriminator, ns, textValue, file from annotation order by id␣
→˓desc; # query

• pgAdmin is a free, cross platform GUI tool for working with PostgreSQL

OMERO model

You can browse the OMERO model in a number of ways, one of which is by looking at the database itself (see above).
Another is via the OMERO model API documentation.

However, due to the complexity of the OMERO model, it is helpful to have some starting points (follow links below to
the docs themselves).

Note: These figures show highly simplified outlines of various model objects.

3.1. Introduction to OMERO 341

https://www.pgadmin.org/
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model.html

OMERO, Release 5.6.5-SNAPSHOT-1

Projects, datasets and images

Projects and Datasets are many-to-many containers for Images (linked by ProjectDatasetLinks and DatasetImageLinks
respectively).

Projects, Datasets, Images and a number of other entities can be linked to Annotations (abstract superclass) via spe-
cific links (ProjectAnnotationLink, DatasetAnnotationLink etc). Annotation subclasses such as CommentAnnotation,
FileAnnotation etc. are stored in a single database table in OMERO (all Annotations have unique ID).

Images

Images in OMERO are made up of many entities. These include core image components such as Pixels and Channels,
as well as a large number of additional metadata objects such as Instrument (microscope), Objective, Filters, Light
Sources, and Detectors.

342 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Project.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Dataset.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Image.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/ProjectDatasetLink.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/DatasetImageLink.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Annotation.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/ProjectAnnotationLink.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/DatasetAnnotationLink.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/CommentAnnotation.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/FileAnnotation.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Pixels.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Channel.html

OMERO, Release 5.6.5-SNAPSHOT-1

Working with the OMERO model objects

For detailed information see OME-Remote Objects and Developing OMERO clients pages.

Objects that you wish to work with on the client must be loaded from OMERO, with the query defining the extent of
any data graph that is “fetched”.

The OMERO Application Programming Interface supports two principle ways of querying OMERO and retrieving the
objects. You can write SQL-like queries using the query service (uses “HQL”) or you can use one of the other services
that already has suitable queries. Using the query service is very flexible but it requires detailed knowledge of the
OMERO model (see above) and is susceptible to any change in the model.

For example, to load a specific Project and its linked Datasets you could write a query like this:

queryService = session.getQueryService()
params = omero.sys.Parameters()
params.map = {"pid": rlong(projectId)}
query = "select p from Project p left outer join fetch p.datasetLinks as links left

outer join fetch links.child as dataset where p.id=:pid"
project = queryService.findByQuery(query, params)
for dataset in project.linkedDatasetList:

print(dataset.getName().getValue())

Or use the Container Service like this:

containerService = session.getContainerService()
project = containerService.loadContainerHierarchy("Project", [projectId], True)
for dataset in project.linkedDatasetList:

print(dataset.getName().getValue())

For a list of the available services, see the OMERO Application Programming Interface page.

Examples

HQL examples

HQL is used for Query Service queries (see above). Some examples, coupled with the references for the OMERO
model and HQL syntax should get you going, along with notes about object loading on the OME-Remote Objects page.

Note: If possible, it is advisable to use an existing API method from one of the other services (as for the container
service above).

Although it is possible to place query parameters directly into the string, it is preferable (particularly for type-checking)
to use the omero.sys.Parameters object:

queryService.findByQuery("from PixelsType as p where p.value='%s'" % pType, None)

better to do
params = omero.sys.Parameters()
params.map = {"pType": rstring(pType)}
queryService.findByQuery("from PixelsType as p where p.value=:pType", params)

3.1. Introduction to OMERO 343

https://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/queryhql.html

OMERO, Release 5.6.5-SNAPSHOT-1

psql queries

Below are a number of example psql database queries:

list any images that do not have pixels:
omero=#select id, name from Image i where i.id not in (select image from Pixels where␣
→˓image is not null) order by i.id desc;

omero=# select id, name, ome_perms(permissions) from experimentergroup;
id | name | ome_perms
-----+--+-----------

0 | system | -rw----
1 | user | -rwr-r-
2 | guest | -rw----
3 | JRS-private | -rw----
4 | JRS-read-only | -rwr---

omero=# select id, name, path, owner_id, group_id, ome_perms(permissions) from␣
→˓originalfile order by id desc limit 100;
id | name | path ␣
→˓ | owner_id | group_id | ome_perms
----+-----------------------------------+--
→˓-------+----------+----------+-----------
56 | GFP-FRAP.cpe.xml | /Users/will/omero/editor/GFP-FRAP.cpe.xml ␣
→˓ | 4 | 5 | -rwr---

omero=# \x
Expanded display is on.
omero=# select id, discriminator, ns, textValue, file from annotation where id=369;
-[RECORD 1]-+--
id | 369
discriminator | /type/OriginalFile/
ns | openmicroscopy.org/omero/import/companionFile
textvalue |
file | 570

omero=# \x
Expanded display is off.
omero=# select * from joboriginalfilelink where parent = 7;
id | permissions | version | child | creation_id | external_id | group_id | owner_id |␣
→˓update_id | parent
----+-------------+---------+-------+-------------+-------------+----------+----------+--
→˓---------+--------
14 | -103 | | 110 | 891 | | 208 | 207 | ␣
→˓ 891 | 7
17 | -103 | | 113 | 926 | | 208 | 207 | ␣
→˓ 926 | 7
(2 rows)

omero=# select id, name, path, owner_id, group_id, ome_perms(permissions) from␣
→˓originalfile where id in (110,113) order by id desc limit 100;
id | name | path ␣
→˓| owner_id | group_id | ome_perms

(continues on next page)

344 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

-----+-------------------+--
→˓+----------+----------+-----------
113 | stdout | /Users/will/omero/tmp/omero_will/75270/processuLq8fd.dir/out␣
→˓| 207 | 208 | -rw----
110 | imagesFromRois.py | ScriptName061ea79c-f98c-447b-b720-d17003d6a72f ␣
→˓| 0 | 0 | -rw----
(2 rows)

find all annotations on Image ID=2
omero=# select * from annotation where id in (select child from imageannotationlink␣
→˓where parent = 2) ;

trouble-shooting postgres
omero=# select * from pg_stat_activity ;

omero hql

You can use the omero hql command to query a remote OMERO database, entering your login details when requested.

Note: Because you will be querying the database under a particular login, the entries returned will be subject to the
permissions of that login.

omero hql -q --limit=10 "select name from OriginalFile where id=4106"
omero hql -q --limit=10 "select id, textValue, file from Annotation a order by a.id desc"
omero hql -q --limit=10 "select id, textValue from TagAnnotation a order by a.id desc"
omero hql -q --limit=100 "select id, owner.id, started, userAgent from Session where␣
→˓closed is null"

3.1.6 Running and writing tests

The following guidelines apply to tests in both the Java and Python test components. However, some of the presented
options apply to only one or the other.

The default build target does not compile all the required testing resources. You should run test-compile (or build-dev
if you are using Eclipse) first:

./build.py build-default test-compile

You must rebuild the test-compile target if you subsequently modify any of the Java tests.

Note: The OMERO C++ components and tests are under heavy development, and are not compiled or run by the
targets mentioned on this page.

3.1. Introduction to OMERO 345

OMERO, Release 5.6.5-SNAPSHOT-1

Running tests

Running unit tests

Starting from version 5.5, components have been migrated to their own repository.

The following repositories use Gradle to run the unit tests:
• omero-model

• omero-common

• omero-romio

• omero-renderer

• omero-server

• omero-blitz

• omero-gateway-java

The following repositories use pytest to run the unit tests:
• omero-py

• omero-web

Running integration tests

Integration testing is a bit more complex because of the reliance on a database, which is not easily mockable. All
Hibernate-related classes are tested in integration mode.

The tests require a fast computer. Running all the integration tests places several restrictions on the environment:

• There must be a running OMERO database.

• An OMERO.server instance must be running.

Integration tests assume that:

• ICE_CONFIG has been properly set. The contents of the etc/ice.config file should be enough to configure a
running server for integration testing. This means that code creating a client connection as outlined in Developing
OMERO clients should execute without errors.

• An OMERO.server instance is running on the host and port specified in the ICE_CONFIG file.

If any of the tests fail with a user authentication exception (or omero.client throws an exception), a new ice.config
file can be created and pointed to by the ICE_CONFIG environment variable. Most likely the first settings that will have
to be put there will be omero.user and omero.pass.

346 Chapter 3. Developer Documentation

https://gradle.org/
https://github.com/ome/omero-model
https://github.com/ome/omero-common
https://github.com/ome/omero-romio
https://github.com/ome/omero-renderer
https://github.com/ome/omero-server
https://github.com/ome/omero-blitz
https://github.com/ome/omero-gateway-java
https://docs.pytest.org/en/latest/
https://github.com/ome/omero-py
https://github.com/ome/omero-web

OMERO, Release 5.6.5-SNAPSHOT-1

Running all tests

To run all the integration tests, use

./build.py test-integration

Note that some Python tests are excluded by default, see Using markers in OmeroPy tests for more details.

Component tests

Running an integration test suite for an individual component can be done explicitly via:

./build.py -f components/<component>/build.xml integration

Results are placed in components/<component>/target/reports.

Individual tests

Warning: Some integration tests leak file descriptors. If many tests are run then they may start to fail after the
system’s open files limit is reached. Depending on your system the limit may be checked or adjusted using ulimit
-n and /etc/login.conf or /etc/security/limits.conf.

Running Java tests

Individual tests

Alternatively, you can run individual tests which you may currently be working on using the --tests parameter. The
test class must be provided in the fully qualified name form.

cd components/tools/OmeroJava
gradle test --tests "integration.gateway.AdminFacilityTest"

Individual test class methods

Individual OmeroJava test class methods can be run using the --tests parameter. The test method must be provided
in the fully qualified name form.

cd components/tools/OmeroJava
gradle test --tests "integration.chgrp.AnnotationMoveTest.testMoveTaggedImage"

3.1. Introduction to OMERO 347

OMERO, Release 5.6.5-SNAPSHOT-1

Individual test groups

To run individual OmeroJava test groups the --tests parameter.

cd components/tools/OmeroJava
gradle test --tests "integration.*"

Using Eclipse to run tests

To facilitate importing OMERO components into Eclipse, there are .project and .classpath-template files stored
in each component directory (e.g. tools/OmeroJava’s .project and .classpath-template).

There are also top-level .classpath and .project files which allow for importing all components as a single project,
but this approach requires more memory and does not clearly differentiate the classpaths, and so can lead to confusion.

Before importing any component as a project into Eclipse, a successful build has to have taken place:

./build.py

This is for two reasons. Firstly, the Eclipse projects are not configured to perform the code generation needed. The
build.py command creates the directory:

<component>/target

which will be missing from any Eclipse project you open before building the source.

Secondly, Ivy is used to copy all the jar dependencies from OMERO_SOURCE_PREFIX/lib/repository to
<component>/target/libs, which is then used in the Eclipse .classpath files.

If Eclipse ever gets out of sync after the first build, ./build.py build-eclipse can be used to quickly synchronize.

A prerequisite of running unit and integration tests in the Eclipse UI is having the TestNG plug-in installed and working
(help available on the TestNG site).

Running the unit tests under Eclipse requires no extra settings and is as easy as navigating to the package or class
context menu Run As or Debug As, then selecting TestNG.

Integration tests require the ICE_CONFIG environment variable to be available for the Eclipse-controlled JVM. This
can be done by editing Debug/Run configurations in Eclipse. After navigating to the Debug (or Run) Configurations
window, the Environment tab needs to be selected. After clicking New, ICE_CONFIG can be defined as a path to the
ice.config file. This setting needs to be defined per package, class or method.

By using the “debug” target from templates.xml, it is possible to have OMERO listen on port 8787 for a debugging
connection.

omero admin stop
omero admin start debug

Then in Eclipse, you can create a new “Debug” configuration by clicking on Remote Java Application, and setting the
port to 8787. These values are arbitrary and can be changed locally.

Keep in mind:

• The server will not start up until you have connected with Eclipse. This is due to the “suspend=y” clause in
templates.xml. If you would like the server to start without you connecting, use “suspend=n”.

• If you take too much time examining your threads, your calls may throw timeout exceptions.

348 Chapter 3. Developer Documentation

https://testng.org/doc/eclipse.html

OMERO, Release 5.6.5-SNAPSHOT-1

Running Python tests

Using markers in OmeroPy tests

Tests under OmeroPy can be included or excluded according to markers defined in the tests. This can be done by using
the -DMARK option. For example, to run all the integration tests marked as broken:

./build.py -f components/tools/OmeroPy/build.xml integration -DMARK=broken

By default tests marked as broken are excluded so the following two builds are equivalent:

./build.py -f components/tools/OmeroPy/build.xml integration

./build.py -f components/tools/OmeroPy/build.xml integration -DMARK="not broken"

In order to run all tests, including broken, an empty marker must be used:

./build.py -f components/tools/OmeroPy/build.xml integration -DMARK=

See also:
Marking OmeroPy tests

Running tests directly

When writing tests it can be more convenient, flexible and powerful to run the tests from components/tools/OmeroPy
or components/tools/OmeroWeb using pytest. Since Python is interpreted, tests can be written and then run without
having to rebuild or restart the server. A few basic options are shown below.

First create a python virtual environment as described on the OMERO Python page, including omero-py and
omero-web if you want to run OmeroWeb tests. Some tests also require the installation of PyTables.

Then install some additional test dependencies:

$ pip install pytest mox3 pyyaml tables

for Omeroweb tests
$ pip install pytest-django

Run tests directly with pytest, setting the ICE_CONFIG as described above. Also set OMERODIR to point to the
OMERO.server:

export ICE_CONFIG=/path/to/openmicroscopy/etc/ice.config
export OMERODIR=/path/to/OMERO.server-x.x.x-ice36-bxx

cd components/tools/OmeroPy
pytest test/integration/test_admin.py

OR for OmeroWeb tests:
cd components/tools/OmeroWeb

pytest test/integration/test_annotate.py

-k <string>

This option will run all integration tests containing the given string in their names. For example, to run all the
tests under test/integration with permissions in their names:

3.1. Introduction to OMERO 349

https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroWeb

OMERO, Release 5.6.5-SNAPSHOT-1

pytest test/integration -k permissions

This option can also be used to run a named test within a test module:

pytest test/integration/test_admin.py -k testGetGroup

-m <marker>

This option will run integration tests depending on the markers they are decorated with. Available markers can be
listed using the pytest --markers option. For example, to run all integration tests excluding those decorated
with the marker broken:

pytest test/integration -m "not broken"

--markers

This option lists available markers for decorating tests:

pytest --markers

-s

This option allows the standard output to be shown on the console:

pytest test/integration/test_admin.py -s

-h, --help

This option displays the full list of available options:

pytest -h

See https://docs.pytest.org/en/latest/how-to/usage.html for more help in running tests.

Failing tests

The test.with.fail ant property is set to false by default, which prevents test failures from failing the build.
However, it can instead be set to true to allow test failures to fail the build. For example:

./build.py -Dtest.with.fail=true integration

Some components might provide individual targets for specific tests (e.g. OmeroJava provides the broken target for
running broken tests). The build.xml file is the reference in each component.

Writing tests

Writing Java tests

For more information on writing tests in general see https://testng.org/. For a test to be an “integration” test, place it in
the “integration” TestNG group. If a test is temporarily broken, add it to the “broken” group:

@Test(groups = {"integration", "broken"}
public void testMyStuff() {

}

350 Chapter 3. Developer Documentation

https://docs.pytest.org/en/latest/how-to/usage.html
https://testng.org/

OMERO, Release 5.6.5-SNAPSHOT-1

Tests should be of the Acceptance Test form. The ticket number for which a test is being written should be added in
the TestNG annotation:

@Test(groups = "ticket:60")

This works at either the method level (see SetsAndLinksTest.java) or the class level (see UniqueResultTest.java).

The tests under components/tools/OmeroJava/test will be the starting point for most Java-client developers coming to
OMERO. An example skeleton for an integration test looks similar to

@Test(groups = "integration")
public class MyTest {

omero.client client;

@BeforeClass
protected void setup() throws Exception {
client = new omero.client();
client.createSession();

}

@AfterClass
protected void tearDown() throws Exception {
client.closeSession();

}

@Test
public void testSimple() throws Exception {
client.getSession().getAdminService().getEventContext();

}

}

Writing Python tests

To write and run Python tests you first need to install pytest:

pip install pytest

For more information on writing tests in general see https://pytest.org/.

Unit tests can be found in various repositories such as omero-py, omero-web, and omero-dropbox.

Integration tests which require OMERO.server to run are found in the openmicroscopy repository. See: compo-
nents/tools/OmeroPy/test, components/tools/OmeroWeb/test and components/tools/OmeroFS/test.

The file names must begin with test_ for the tests to be found by pytest.

import omero.clients

class TestExample(object)

def setup_method(self, method):
client = new omero.client()

(continues on next page)

3.1. Introduction to OMERO 351

https://github.com/ome/omero-model/blob/v5.6.5/src/test/java/ome/model/utests/SetsAndLinksTest.java
https://github.com/ome/omero-server/blob/v5.6.3/src/test/java/ome/server/itests/query/UniqueResultTest.java
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroJava/test
https://pytest.org/
https://github.com/ome/omero-py/tree/v5.11.2/test/unit
https://github.com/ome/omero-web/tree/v5.14.0/test/unit
https://github.com/ome/omero-dropbox/tree/v5.6.2/test/unit
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroWeb/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroFS/test

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

client.createSession()

def teardown_method(self, method):
client.closeSession()

def testSimple():
ec = client.getSession().getAdminService().getEventContext()
assert ec, "No EventContext!"

Marking OmeroPy tests

Methods, classes and functions can be decorated with pytest markers to allow for the selection of tests. pytest provides
some predefined markers and markers can be simply defined as they are used. However, to centralize the use of custom
markers they should be defined in components/tools/pytest.ini.

To view all available markers the pytest --markers option can be used with pytest or py.test as detailed in
Running tests directly.

There is one custom marker defined:

broken Used to mark broken tests. These are tests that fail consistently with no obvious quick fix. Broken tests are
excluded from the main integration builds and instead are run in a separate daily build. broken markers should
have a reason, an associated Trac ticket number or both. If there are multiple associated tickets then a comma-
separated list should be used.

import pytest

class TestExample2(object):

@pytest.mark.broken(reason="Asserting false", ticket="12345,67890")
def testBroken():

assert False, "Bound to fail"

Using the Python test library

The OMERO Python test library defines an abstract ITest class that implements the connection set up as well as many
methods shared amongst all Python integration tests.

Each concrete instance of the ITest will initiate a connection to the server specified by the ICE_CONFIG environment
variable at the setup_class() level. The following objects are created by ITest.setup_class() and shared by all
test methods of this class:

• self.root is a client for the root user

• self.group is a new group which permissions are set to ITest.DEFAULT_PERMS by default. Overriding
DEFAULTS_PERMS in a subclass of ITest means the group will be created with the new permissions.

• self.user is a new user and member of self.group

• self.client is a client for the self.user created at class setup.

Additionally, for the self.client object, different shortcuts are available:

• self.sf is the non-root client session

352 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/tree/develop/components/tools/pytest.ini
https://github.com/ome/omero-py/blob/master/src/omero/testlib/__init__.py

OMERO, Release 5.6.5-SNAPSHOT-1

• self.update is the update service for the non-root client session

• self.query is the query service for the non-root client session

• self.ctx is the event context for the non-root client session. Note this corresponds to the context at creation
time and should be refreshed if the context is modified.

The example below inherits the ITest class and would create a read-write group by default

from omero.testlib import ITest

class TestExample(ITest):

DEFAULT_PERMS = 'rwrw--' # Override default permissions
def test1():

doAction(self.sf)

New user and groups can be instantiated by individual tests using the ITest.new_user() and ITest.new_group()
methods:

def testNewGroupOwner():
new_group = self.new_group(perms='rwa---')
new_owner = self.new_use(group=new_group, owner=True)
assert new_owner.id.val, "No EventContext!"

New clients can be instantiated by individual tests using the ITest.new_client() or ITest.
new_client_and_user() methods:

def testNewClient():
new_client = self.new_user_and_client()
ec = new_client.getSession().getAdminService().getEventContext()
assert ec, "No EventContext!"

Images can be imported using the ITest.import_fake_file() method:

def testFileset():
2 images sharing a fileset
images = self.import_fake_file(2)
assert len(images) == 2

Writing OMERO.web tests

For OMERO.web integration tests, the OMERO.web test library defines an abstract IWebTest class that inherits from
ITest and also implements Django clients at the class setup using the Django testing tools.

On top of the elements created by ITest.setup_class(), the IWebTest class creates:

• self.django_root_client is a Django test client for the root user

• self.django_client is a client for the new user created at the class setup.

from omeroweb.testlib import IWebTest

class TestExample(IWebTest):
def testSimple():

self.django_client.post('/login/', {'username': 'john'})

3.1. Introduction to OMERO 353

https://github.com/ome/omero-web/blob/master/omeroweb/testlib/__init__.py
https://docs.djangoproject.com/en/1.11/topics/testing/tools

OMERO, Release 5.6.5-SNAPSHOT-1

New Django test clients can be instantiated by individual tests using the IWebTest.new_django_client() method:

def testNewDjangoClient():
new_user = self.new_user()
omeName = new_user.omeName.val
new_django_client = self.new_django_client(omeName, omeName)

See also:
test_simple.py Example test class using the OMERO.web test library methods

3.2 Using the OMERO API

3.2.1 OMERO Python language bindings

To access the OMERO.server Python API, you need to install the Python client libraries.

From OMERO 5.6.0 release, the client library omero-py supports Python 3 and is now available on PyPI and Conda.
We recommend you use a Python virtual environment to install the client library. You can create one using either venv
or conda (preferred). If you opt for Conda, you will need to install it first, see miniconda for more details.

To install omero-py using venv:

$ python3 -m venv myenv
$. myenv/bin/activate
$ pip install omero-py==5.11.2

To install omero-py using conda (preferred):

conda create -n myenv -c conda-forge python=3.8 omero-py
conda activate myenv

You can then start using the library in the terminal where the environment has been activated:

$ python
>>> from omero.gateway import BlitzGateway
>>> conn = BlitzGateway('username', 'password', host='omero.server', port=4064)
>>> conn.connect()

In addition to the auto-generated Python libraries of the core OMERO Application Programming Interface, omero-py
includes a more user-friendly Python module ‘BlitzGateway’ that facilitates several aspects of working with the Python
API, such as connection handling, object graph traversal and lazy loading.

Building on the ‘BlitzGateway’, the Jackson Laboratory has created a module of convenience functions called ezomero.

This page gives you a large number of code samples to get you started. Then we describe a bit more about Blitz Gateway
documentation.

All the code examples below can be found at examples/Training/python.

354 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/components/tools/OmeroWeb/test/integration/test_simple.py
https://pypi.org
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/miniconda.html
https://github.com/TheJacksonLaboratory/ezomero
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/python

OMERO, Release 5.6.5-SNAPSHOT-1

Code samples

Connect to OMERO

• Import OMERO and the BlitzGateway

import omero.clients
from omero.gateway import BlitzGateway

• Create a connection

conn = BlitzGateway(USERNAME, PASSWORD, host=HOST, port=PORT)
conn.connect()

• Create a secure-only connection
By default, once we have logged in, data transfer is not encrypted. To ensure all data is transferred securely pass
the secure flag.

conn = BlitzGateway(USERNAME, PASSWORD, host=HOST, port=PORT, secure=True)
conn.connect()

• Create a connection using a context manager
The BlitzGateway should be closed after use to free up server resources. This can be automatically done by using
it as a context manager. This also automatically calls connect().

with BlitzGateway(USERNAME, PASSWORD, host=HOST, port=PORT, secure=True) as conn:
for p in conn.getObjects('Project'):

print(p.name)
...

conn.close() is automatically called

• Create a connection using an existing session
The BlitzGateway can also be initialized from an existing omero.client object.

>>> client = omero.client(HOST, PORT)
>>> session = client.createSession(USERNAME, PASSWORD)
>>> conn = BlitzGateway(client_obj=client)

In this example the BlitzGateway and client will not be closed automatically. If nothing else is using the client object
you could use with BlitzGateway(client_obj=client) as conn.

• Current session details

By default, you will have logged into your 'current' group in OMERO. This
can be changed by switching group in the OMERO.insight or OMERO.web clients.

user = conn.getUser()
print("Current user:")
print(" ID:", user.getId())
print(" Username:", user.getName())
print(" Full Name:", user.getFullName())

Check if you are an Administrator
(continues on next page)

3.2. Using the OMERO API 355

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

print(" Is Admin:", conn.isAdmin())
if not conn.isFullAdmin():

If 'Restricted Administrator' show privileges
print(conn.getCurrentAdminPrivileges())

print("Member of:")
for g in conn.getGroupsMemberOf():

print(" ID:", g.getName(), " Name:", g.getId())
group = conn.getGroupFromContext()
print("Current group: ", group.getName())

List the group owners and other members
owners, members = group.groupSummary()
print(" Group owners:")
for o in owners:

print(" ID: %s %s Name: %s" % (
o.getId(), o.getOmeName(), o.getFullName()))

print(" Group members:")
for m in members:

print(" ID: %s %s Name: %s" % (
m.getId(), m.getOmeName(), m.getFullName()))

print("Owner of:")
for g in conn.listOwnedGroups():

print(" ID: ", g.getName(), " Name:", g.getId())

Added in OMERO 5.0
print("Admins:")
for exp in conn.getAdministrators():

print(" ID: %s %s Name: %s" % (
exp.getId(), exp.getOmeName(), exp.getFullName()))

The 'context' of our current session
ctx = conn.getEventContext()
print(ctx) # for more info

• Close connection
If you did not use the context manager close the session to free up server resources.

conn.close()

Read data

def print_obj(obj, indent=0):
"""
Helper method to display info about OMERO objects.
Not all objects will have a "name" or owner field.
"""
print("""%s%s:%s Name:"%s" (owner=%s)""" % (

" " * indent,
(continues on next page)

356 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

obj.OMERO_CLASS,
obj.getId(),
obj.getName(),
obj.getOwnerOmeName()))

• List all Projects available to me, and their Datasets and Images

Load first 5 Projects, filtering by default group and owner
my_exp_id = conn.getUser().getId()
default_group_id = conn.getEventContext().groupId
for project in conn.getObjects("Project", opts={'owner': my_exp_id,

'group': default_group_id,
'order_by': 'lower(obj.name)',
'limit': 5, 'offset': 0}):

print_obj(project)
We can get Datasets with listChildren, since we have the Project already.
Or conn.getObjects("Dataset", opts={'project', id}) if we have Project ID
for dataset in project.listChildren():

print_obj(dataset, 2)
for image in dataset.listChildren():

print_obj(image, 4)

• Get Objects by their ID or attributes
The first argument for conn.getObjects() or conn.getObject() is the object type. This is not case sensitive.
Supported types are project, dataset, image, screen, plate, plateacquisition, acquisition, well,
roi, shape, experimenter, experimentergroup, originalfile, fileset, annotation. You can find
attributes of these objects at OMERO model API.

Find objects by ID. NB: getObjects() returns a generator, not a list
projects = conn.getObjects("Project", [1, 2, 3])

Get a single object by ID. Can use "Annotation" for all types of annotations by ID
annotation = conn.getObject("Annotation", 1)

Find an Object by attribute. E.g. 'name'
images = conn.getObjects("Image", attributes={"name": name})

• Get different types of Annotations*
Supported types are: tagannotation, longannotation, booleanannotation, fileannotation,
doubleannotation, termannotation, timestampannotation, mapannotation

List All Tags that you have permission to access
conn.getObjects("TagAnnotation")

Find Tags with a known text value
tags = conn.getObjects("TagAnnotation", attributes={"textValue": text})

• Retrieve ‘orphaned’ objects

We can use the 'orphaned' filter to find Datasets, Images
or Plates that are not in any parent container
print("\nList orphaned Datasets: \n", "=" * 50)

(continues on next page)

3.2. Using the OMERO API 357

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model.html

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

datasets = conn.getObjects("Dataset", opts={'orphaned': True})
for dataset in datasets:

print_obj(dataset)

• Retrieve objects in a container

We can filter Images by their parent Dataset
We can also filter Datasets by 'project', Plates by 'screen',
Wells by 'plate'
print("\nImages in Dataset:", datasetId, "\n", "=" * 50)
for image in conn.getObjects('Image', opts={'dataset': datasetId}):

print_obj(image)

• Retrieve an image by Image ID

Pixels and Channels will be loaded automatically as needed
image = conn.getObject("Image", imageId)
print(image.getName(), image.getDescription())
Retrieve information about an image.
print(" X:", image.getSizeX())
print(" Y:", image.getSizeY())
print(" Z:", image.getSizeZ())
print(" C:", image.getSizeC())
print(" T:", image.getSizeT())
List Channels (loads the Rendering settings to get channel colors)
for channel in image.getChannels():

print('Channel:', channel.getLabel())
print('Color:', channel.getColor().getRGB())
print('Lookup table:', channel.getLut())
print('Is reverse intensity?', channel.isReverseIntensity())

render the first timepoint, mid Z section
z = image.getSizeZ() / 2
t = 0
rendered_image = image.renderImage(z, t)
rendered_image.show() # popup (use for debug only)
rendered_image.save("test.jpg") # save in the current folder

• Get Pixel Sizes for the above Image

size_x = image.getPixelSizeX() # e.g. 0.132
print(" Pixel Size X:", size_x)
Units support, new in OMERO 5.1.0
size_x_obj = image.getPixelSizeX(units=True)
print(" Pixel Size X:", size_x_obj.getValue(), "(%s)" % size_x_obj.getSymbol())
To get the size with different units, e.g. Angstroms
size_x_ang = image.getPixelSizeX(units="ANGSTROM")
print(" Pixel Size X:", size_x_ang.getValue(), "(%s)" % size_x_ang.getSymbol())

• Retrieve Screening data

for screen in conn.getObjects("Screen"):
print_obj(screen)

(continues on next page)

358 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

for plate in screen.listChildren():
print_obj(plate, 2)
plateId = plate.getId()

• Retrieve Wells and Images within a Plate

plate = conn.getObject("Plate", plateId)
print("\nNumber of fields:", plate.getNumberOfFields())
print("\nGrid size:", plate.getGridSize())
print("\nWells in Plate:", plate.getName())
for well in plate.listChildren():

index = well.countWellSample()
print(" Well: ", well.row, well.column, " Fields:", index)
for index in range(0, index):

print(" Image: ", \
well.getImage(index).getName(),\
well.getImage(index).getId())

• List all annotations on an object. Filter for Tags and get textValue

for ann in project.listAnnotations():
print(ann.getId(), ann.OMERO_TYPE)
print(" added by ", ann.link.getDetails().getOwner().getOmeName())
if ann.OMERO_TYPE == omero.model.TagAnnotationI:

print("Tag value:", ann.getTextValue())

• Get Links between Objects and Annotations

Find Images linked to Annotation(s), unlink Images from these annotations
and link them to another Tag Annotation
annotation_ids = [1, 2, 3]
tag_id = 4
for link in conn.getAnnotationLinks('Image', ann_ids=annotation_ids):

print("Image ID:", link.getParent().id)
print("Annotation ID:", link.getChild().id)
Update the child of the underlying omero.model.ImageAnnotationLinkI
link._obj.child = omero.model.TagAnnotationI(tag_id, False)
link.save()

Find Annotations linked to Object(s), filter by namespace (optional)
for link in conn.getAnnotationLinks('Image', parent_ids=image_ids, ns=namespace):

print("Annotation ID:", link.getChild().id)

3.2. Using the OMERO API 359

OMERO, Release 5.6.5-SNAPSHOT-1

Groups and permissions

• We are logged in to our ‘default’ group

group = conn.getGroupFromContext()
print("Current group: ", group.getName())

• Each group has defined Permissions set

group_perms = group.getDetails().getPermissions()
perm_string = str(group_perms)
permission_names = {

'rw----': 'PRIVATE',
'rwr---': 'READ-ONLY',
'rwra--': 'READ-ANNOTATE',
'rwrw--': 'READ-WRITE'}

print("Permissions: %s (%s)" % (permission_names[perm_string], perm_string))

• By default, any query applies to ALL data that we can access in our Current group.
This will be determined by group permissions e.g. in Read-Only or Read-Annotate groups, this will include other
users’ data - see Groups and permissions system.

projects = conn.listProjects() # may include other users' data
for p in projects:

print(p.getName(), "Owner: ", p.getDetails().getOwner().getFullName())

Will return None if Image is not in current group
image = conn.getObject("Image", imageId)
print("Image: ", image)

• For cross-group querying, use ``-1``

conn.SERVICE_OPTS.setOmeroGroup('-1')
image = conn.getObject("Image", imageId) # Will query across all my groups
print("Image: ", image)
if image is not None:

print("Group: ", image.getDetails().getGroup().getName())
print(image.getDetails().getGroup().getId()) # access groupId without loading␣

→˓group

• To query only a single group (not necessarily your ‘current’ group)

group_id = image.getDetails().getGroup().getId()
This is how we 'switch group' in webclient
conn.SERVICE_OPTS.setOmeroGroup(group_id)
projects = conn.listProjects()
image = conn.getObject("Image", imageId)
print("Image: ", image)

• To set (or change) the owner of an object (Admins only)

tag_ann = omero.gateway.TagAnnotationWrapper(conn)
tag_ann.setTextValue("Not owned by me")

(continues on next page)

360 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

update details of the wrapped omero.model.AnnotationI _obj
tag_ann._obj.details.owner = ExperimenterI(userId, False)
tag_ann.save()

If we want to perform multiple tasks it may be more convenient to
connect as another user. We can use 'user_conn' exactly as for 'conn'
user = conn.getObject("Experimenter", userId).getName()
user_conn = conn.suConn(user)
This annotation will be owned by user
map_ann = omero.gateway.MapAnnotationWrapper(user_conn)
map_ann.setNs(namespace)
map_ann.setValue(key_values)
map_ann.save()
Link will be owned by the user
project.linkAnnotation(map_ann)
user_conn.close()

Raw data access

• Retrieve a given plane

Use the pixelswrapper to retrieve the plane as
a 2D numpy array see [https://github.com/scipy/scipy]
#
Numpy array can be used for various analysis routines
#
image = conn.getObject("Image", imageId)
size_z = image.getSizeZ()
size_c = image.getSizeC()
size_t = image.getSizeT()
z, t, c = 0, 0, 0 # first plane of the image
pixels = image.getPrimaryPixels()
plane = pixels.getPlane(z, c, t) # get a numpy array.
print("\nPlane at zct: ", z, c, t)
print(plane)
print("shape: ", plane.shape)
print("min:", plane.min(), " max:", plane.max(),\

"pixel type:", plane.dtype.name)

• Retrieve a given stack

Get a Z-stack of tiles. Using getTiles or getPlanes (see below) returns
a generator of data (not all the data in hand) The RawPixelsStore is
only opened once (not closed after each plane) Alternative is to use
getPlane() or getTile() multiple times - slightly slower.
c, t = 0, 0 # First channel and timepoint
tile = (50, 50, 10, 10) # x, y, width, height of tile

list of [(0,0,0,(x,y,w,h)), (1,0,0,(x,y,w,h)), (2,0,0,(x,y,w,h))...]
zct_list = [(iz, c, t, tile) for iz in range(size_z)]
print("\nZ stack of tiles:")

(continues on next page)

3.2. Using the OMERO API 361

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

planes = pixels.getTiles(zct_list)
for i, p in enumerate(planes):

print("Tile:", zct_list[i], " min:", p.min(),\
" max:", p.max(), " sum:", p.sum())

• Retrieve a given hypercube

zct_list = []
for z in range(size_z / 2, size_z): # get the top half of the Z-stack

for c in range(size_c): # all channels
for t in range(size_t): # all time-points

zct_list.append((z, c, t))
print("\nHyper stack of planes:")
planes = pixels.getPlanes(zct_list)
for i, p in enumerate(planes):

print("plane zct:", zct_list[i], " min:", p.min(), " max:", p.max())

• Retrieve a histogram

Get a 256 bin histogram for channel 0 and plane z=0/t=0:
hist = image.getHistogram([0], 256, False, 0, 0)
print(hist)

Write data

• Create a new Dataset

Use omero.gateway.DatasetWrapper:
new_dataset = DatasetWrapper(conn, omero.model.DatasetI())
new_dataset.setName('Scipy_Gaussian_Filter')
new_dataset.save()
print("New dataset, Id:", new_dataset.id)
Can get the underlying omero.model.DatasetI with:
dataset_obj = new_dataset._obj

OR create the DatasetI directly:
dataset_obj = omero.model.DatasetI()
dataset_obj.setName(rstring("New Dataset"))
dataset_obj = conn.getUpdateService().saveAndReturnObject(dataset_obj, conn.SERVICE_OPTS)
dataset_id = dataset_obj.getId().getValue()
print("New dataset, Id:", dataset_id)

• Link to Project

link = omero.model.ProjectDatasetLinkI()
We can use a 'loaded' object, but we might get an Exception
link.setChild(dataset_obj)
Better to use an 'unloaded' object (loaded = False)
link.setChild(omero.model.DatasetI(dataset_obj.id.val, False))
link.setParent(omero.model.ProjectI(projectId, False))
conn.getUpdateService().saveObject(link)

362 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

• Annotate Project with a new Tag

tag_ann = omero.gateway.TagAnnotationWrapper(conn)
tag_ann.setValue("New Tag")
tag_ann.setDescription("Add optional description")
tag_ann.save()
project = conn.getObject("Project", projectId)
project.linkAnnotation(tag_ann)

• Add a Map Annotation (list of key: value pairs)

key_value_data = [["Drug Name", "Monastrol"], ["Concentration", "5 mg/ml"]]
map_ann = omero.gateway.MapAnnotationWrapper(conn)
Use 'client' namespace to allow editing in Insight & web
namespace = omero.constants.metadata.NSCLIENTMAPANNOTATION
map_ann.setNs(namespace)
map_ann.setValue(key_value_data)
map_ann.save()
project = conn.getObject("Project", projectId)
NB: only link a client map annotation to a single object
project.linkAnnotation(map_ann)

• Count the number of annotations on one or many objects

print(conn.countAnnotations('Project', [projectId]))

• List all annotations on an object. Get text from tags

for ann in project.listAnnotations():
print(ann.getId(), ann.OMERO_TYPE)
print(" added by ", ann.link.getDetails().getOwner().getOmeName())
if ann.OMERO_TYPE == omero.model.TagAnnotationI:

print("Tag value:", ann.getTextValue())

• How to create a file annotation and link to a Dataset

dataset = conn.getObject("Dataset", dataset_id)
Specify a local file e.g. could be result of some analysis
file_to_upload = "README.txt" # This file should already exist
with open(file_to_upload, 'w') as f:

f.write('annotation test')
create the original file and file annotation (uploads the file etc.)
namespace = "my.custom.demo.namespace"
print("\nCreating an OriginalFile and FileAnnotation")
file_ann = conn.createFileAnnfromLocalFile(

file_to_upload, mimetype="text/plain", ns=namespace, desc=None)
print("Attaching FileAnnotation to Dataset: ", "File ID:", file_ann.getId(), \

",", file_ann.getFile().getName(), "Size:", file_ann.getFile().getSize())
dataset.linkAnnotation(file_ann) # link it to dataset.

• Download a file annotation linked to a Dataset

make a location to download the file. "download" folder.
path = os.path.join(os.path.dirname(__file__), "download")

(continues on next page)

3.2. Using the OMERO API 363

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

if not os.path.exists(path):
os.makedirs(path)

Go through all the annotations on the Dataset. Download any file annotations
we find. Filter by namespace is optional
print("\nAnnotations on Dataset:", dataset.getName())
namespace = "my.custom.demo.namespace"
for ann in dataset.listAnnotations(ns=namespace):

if isinstance(ann, omero.gateway.FileAnnotationWrapper):
print("File ID:", ann.getFile().getId(), ann.getFile().getName(), \

"Size:", ann.getFile().getSize())
file_path = os.path.join(path, ann.getFile().getName())

with open(str(file_path), 'wb') as f:
print("\nDownloading file to", file_path, "...")
for chunk in ann.getFileInChunks():

f.write(chunk)
print("File downloaded!")

• Load all the file annotations with a given namespace

ns_to_include = [namespace]
ns_to_exclude = []
metadataService = conn.getMetadataService()
annotations = metadataService.loadSpecifiedAnnotations(

'omero.model.FileAnnotation', ns_to_include, ns_to_exclude, None)
for ann in annotations:

print(ann.getId().getValue(), ann.getFile().getName().getValue())

• Get first annotation with specified namespace

ann = dataset.getAnnotation(namespace)
print("Found Annotation with namespace: ", ann.getNs())

OMERO tables

• Create a name for the Original File (should be unique)

from random import random
table_name = "TablesDemo:%s" % str(random())
col1 = omero.grid.LongColumn('Uid', 'testLong', [])
col2 = omero.grid.StringColumn('MyStringColumnInit', '', 64, [])
columns = [col1, col2]

• Create and initialize a new table.

resources = conn.c.sf.sharedResources()
repository_id = resources.repositories().descriptions[0].getId().getValue()
table = resources.newTable(repository_id, table_name)
table.initialize(columns)

• Add data to the table

364 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

ids = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
strings = ["one", "two", "three", "four", "five",

"six", "seven", "eight", "nine", "ten"]
data1 = omero.grid.LongColumn('Uid', 'test Long', ids)
data2 = omero.grid.StringColumn('MyStringColumn', '', 64, strings)
data = [data1, data2]
table.addData(data)
orig_file = table.getOriginalFile()
table.close() # when we are done, close.

• Load the table as an original file

orig_file_id = orig_file.id.val
...so you can attach this data to an object e.g. Dataset
file_ann = omero.model.FileAnnotationI()
use unloaded OriginalFileI
file_ann.setFile(omero.model.OriginalFileI(orig_file_id, False))
file_ann = conn.getUpdateService().saveAndReturnObject(file_ann)
link = omero.model.DatasetAnnotationLinkI()
link.setParent(omero.model.DatasetI(datasetId, False))
link.setChild(omero.model.FileAnnotationI(file_ann.getId().getValue(), False))
conn.getUpdateService().saveAndReturnObject(link)

• Table API
See also:
:slicedoc_blitz:` OMERO Tables <omero/grid/Table.html>`

open_table = resources.openTable(orig_file)
print("Table Columns:")
for col in open_table.getHeaders():

print(" ", col.name)
rowCount = open_table.getNumberOfRows()
print("Row count:", rowCount)

• Get data from every column of the specified rows

row_numbers = [3, 5, 7]
print("\nGet All Data for rows: ", row_numbers)
data = open_table.readCoordinates(range(rowCount))
for col in data.columns:

print("Data for Column: ", col.name)
for v in col.values:

print(" ", v)

• Get data from every column of the specified rows with slice

row_numbers = [3, 5, 7]
print("\nGet All Data for rows with slice: ", row_numbers)
data = open_table.slice(range(len(open_table.getHeaders())), row_numbers)
for col in data.columns:

print("Data for Column: ", col.name)
for v in col.values:

print(" ", v)

3.2. Using the OMERO API 365

OMERO, Release 5.6.5-SNAPSHOT-1

• Get data from specified columns of specified rows

col_numbers = [1]
start = 3
stop = 7
print("\nGet Data for cols: ", col_numbers,\

" and between rows: ", start, "-", stop)
data = open_table.read(col_numbers, start, stop)
for col in data.columns:

print("Data for Column: ", col.name)
for v in col.values:

print(" ", v)

• Get data from specified columns of specified rows with slice

col_numbers = [1]
start = 3
stop = 7
print("\nGet Data for cols: ", col_numbers,

" and between rows: ", start, "-", stop,
" with slice")

data = open_table.slice(col_numbers, range(start, stop))
for col in data.columns:

print("Data for Column: ", col.name)
for v in col.values:

print(" ", v)

• Query the table for rows where the ‘Uid’ is in a particular range

query_rows = open_table.getWhereList(
"(Uid > 2) & (Uid <= 8)", variables={}, start=0, stop=rowCount, step=0)

data = open_table.readCoordinates(query_rows)
for col in data.columns:

print("Query Results for Column: ", col.name)
for v in col.values:

print(" ", v)
open_table.close() # we're done

• In future, to get the table back from Original File

orig_table_file = conn.getObject(
"OriginalFile", attributes={'name': table_name}) # if name is unique

saved_table = resources.openTable(orig_table_file._obj)
print("Opened table with row-count:", saved_table.getNumberOfRows())
saved_table.close()

366 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

ROIs

• Initialize service

updateService = conn.getUpdateService()
from omero.rtypes import rdouble, rint, rstring

• Create ROI

We are using the core Python API and omero.model objects here, since ROIs
are not yet supported in the Python Blitz Gateway.
#
First we load our image and pick some parameters for shapes
x = 50
y = 200
width = 100
height = 50
image = conn.getObject("Image", imageId)
z = image.getSizeZ() / 2
t = 0

We have a helper function for creating an ROI and linking it to new shapes
def create_roi(img, shapes):

create an ROI, link it to Image
roi = omero.model.RoiI()
use the omero.model.ImageI that underlies the 'image' wrapper
roi.setImage(img._obj)
for shape in shapes:

roi.addShape(shape)
Save the ROI (saves any linked shapes too)
return updateService.saveAndReturnObject(roi)

Another helper for generating the color integers for shapes
see https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.
→˓html#Color for background
def rgba_to_int(red, green, blue, alpha=255):

""" Return the color as an Integer in RGBA encoding """
return int.from_bytes([red, green, blue, alpha],

byteorder='big', signed=True)

create a rectangle shape (added to ROI below)
print(("Adding a rectangle at theZ: %s, theT: %s, X: %s, Y: %s, width: %s, " +

"height: %s") % (z, t, x, y, width, height))
rect = omero.model.RectangleI()
rect.x = rdouble(x)
rect.y = rdouble(y)
rect.width = rdouble(width)
rect.height = rdouble(height)
rect.theZ = rint(z)
rect.theT = rint(t)
rect.textValue = rstring("test-Rectangle")
rect.fillColor = rint(rgba_to_int(255, 255, 255, 255))
rect.strokeColor = rint(rgba_to_int(255, 255, 0, 255))

3.2. Using the OMERO API 367

OMERO, Release 5.6.5-SNAPSHOT-1

create an Ellipse shape (added to ROI below)
ellipse = omero.model.EllipseI()
ellipse.x = rdouble(y)
ellipse.y = rdouble(x)
ellipse.radiusX = rdouble(width)
ellipse.radiusY = rdouble(height)
ellipse.theZ = rint(z)
ellipse.theT = rint(t)
ellipse.textValue = rstring("test-Ellipse")

Create an ROI containing 2 shapes on same plane
NB: OMERO.insight client doesn't support display
of multiple shapes on a single plane.
Therefore the ellipse is removed later (see below)
create_roi(image, [rect, ellipse])

create an ROI with single line shape
line = omero.model.LineI()
line.x1 = rdouble(x)
line.x2 = rdouble(x+width)
line.y1 = rdouble(y)
line.y2 = rdouble(y+height)
line.theZ = rint(z)
line.theT = rint(t)
line.textValue = rstring("test-Line")
create_roi(image, [line])

def create_mask(mask_bytes, bytes_per_pixel=1):
if bytes_per_pixel == 2:

divider = 16.0
format_string = "H" # Unsigned short
byte_factor = 0.5

elif bytes_per_pixel == 1:
divider = 8.0
format_string = "B" # Unsigned char
byte_factor = 1

else:
message = "Format %s not supported"
raise ValueError(message)

steps = math.ceil(len(mask_bytes) / divider)
mask = []
for i in range(int(steps)):

binary = mask_bytes[
i * int(divider):i * int(divider) + int(divider)]

format = str(int(byte_factor * len(binary))) + format_string
binary = struct.unpack(format, binary)
s = ""
for bit in binary:

s += str(bit)
mask.append(int(s, 2))

return bytearray(mask)

368 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

mask_x = 50
mask_y = 50
mask_h = 100
mask_w = 100
Create [0, 1] mask
mask_array = numpy.fromfunction(

lambda x, y: (x * y) % 2, (mask_w, mask_h))
Set correct number of bytes per value
mask_array = mask_array.astype(numpy.uint8)
Convert the mask to bytes
mask_array = mask_array.tostring()
Pack the bytes to a bit mask
mask_packed = create_mask(mask_array, 1)

Define mask's fill color
from omero.gateway import ColorHolder
mask_color = ColorHolder()
mask_color.setRed(255)
mask_color.setBlue(0)
mask_color.setGreen(0)
mask_color.setAlpha(100)

create an ROI with a single mask
mask = omero.model.MaskI()
mask.setTheC(rint(0))
mask.setTheZ(rint(0))
mask.setTheT(rint(0))
mask.setX(rdouble(mask_x))
mask.setY(rdouble(mask_y))
mask.setWidth(rdouble(mask_w))
mask.setHeight(rdouble(mask_h))
mask.setFillColor(rint(mask_color.getInt()))
mask.setTextValue(rstring("test-Mask"))
mask.setBytes(mask_packed)
create_roi(image, [mask])

create an ROI with single point shape
point = omero.model.PointI()
point.x = rdouble(x)
point.y = rdouble(y)
point.theZ = rint(z)
point.theT = rint(t)
point.textValue = rstring("test-Point")
create_roi(image, [point])

create an ROI with a single polygon, setting colors and lineWidth
polygon = omero.model.PolygonI()
polygon.theZ = rint(z)
polygon.theT = rint(t)
polygon.fillColor = rint(rgba_to_int(255, 0, 255, 50))
polygon.strokeColor = rint(rgba_to_int(255, 255, 0))
polygon.strokeWidth = omero.model.LengthI(10, UnitsLength.PIXEL)

(continues on next page)

3.2. Using the OMERO API 369

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

points = "10,20, 50,150, 200,200, 250,75"
polygon.points = rstring(points)
create_roi(image, [polygon])

• Retrieve ROIs linked to an Image

roi_service = conn.getRoiService()
result = roi_service.findByImage(imageId, None)
for roi in result.rois:

print("ROI: ID:", roi.getId().getValue())
for s in roi.copyShapes():

shape = {}
shape['id'] = s.getId().getValue()
shape['theT'] = s.getTheT().getValue()
shape['theZ'] = s.getTheZ().getValue()
if s.getTextValue():

shape['textValue'] = s.getTextValue().getValue()
if type(s) == omero.model.RectangleI:

shape['type'] = 'Rectangle'
shape['x'] = s.getX().getValue()
shape['y'] = s.getY().getValue()
shape['width'] = s.getWidth().getValue()
shape['height'] = s.getHeight().getValue()

elif type(s) == omero.model.EllipseI:
shape['type'] = 'Ellipse'
shape['x'] = s.getX().getValue()
shape['y'] = s.getY().getValue()
shape['radiusX'] = s.getRadiusX().getValue()
shape['radiusY'] = s.getRadiusY().getValue()

elif type(s) == omero.model.PointI:
shape['type'] = 'Point'
shape['x'] = s.getX().getValue()
shape['y'] = s.getY().getValue()

elif type(s) == omero.model.LineI:
shape['type'] = 'Line'
shape['x1'] = s.getX1().getValue()
shape['x2'] = s.getX2().getValue()
shape['y1'] = s.getY1().getValue()
shape['y2'] = s.getY2().getValue()

elif type(s) == omero.model.MaskI:
shape['type'] = 'Mask'
shape['x'] = s.getX().getValue()
shape['y'] = s.getY().getValue()
shape['width'] = s.getWidth().getValue()
shape['height'] = s.getHeight().getValue()

elif type(s) in (
omero.model.LabelI, omero.model.PolygonI):

print(type(s), " Not supported by this code")
Do some processing here, or just print:
print(" Shape:",)
for key, value in shape.items():

print(" ", key, value,)
(continues on next page)

370 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

print("")

• Get Pixel Intensities for ROIs

result = roi_service.findByImage(imageId, None)
shape_ids = []
for roi in result.rois:

for s in roi.copyShapes():
shape_ids.append(s.id.val)

ch_index = 0
Z/T will only be used if a shape doesn't have Z/T set
the_z = 0
the_t = 0
stats = roi_service.getShapeStatsRestricted(shape_ids, the_z, the_t, [ch_index])
for s in stats:

print("Points", s.pointsCount[ch_index])
print("Min", s.min[ch_index])
print("Mean", s.mean[ch_index])
print("Max", s.max[ch_index])
print("Sum", s.max[ch_index])
print("StdDev", s.stdDev[ch_index])

• Remove shape from ROI

result = roi_service.findByImage(imageId, None)
for roi in result.rois:

for s in roi.copyShapes():
Find and remove the Shape we added above
if s.getTextValue() and s.getTextValue().getValue() == "test-Ellipse":

print("Removing Shape from ROI...")
roi.removeShape(s)
roi = updateService.saveAndReturnObject(roi)

Delete data

• Delete Project

You can delete a number of objects of the same type at the same
time. In this case 'Project'. Use deleteChildren=True if you are
deleting a Project and you want to delete Datasets and Images.
obj_ids = [project_id]
delete_children = False
conn.deleteObjects(

"Project", obj_ids, deleteAnns=True,
deleteChildren=delete_children, wait=True)

• Retrieve callback and wait until delete completes

This is not necessary for the Delete to complete. Can be used
if you want to know when delete is finished or if there were any errors
handle = conn.deleteObjects("Project", [project_id])

(continues on next page)

3.2. Using the OMERO API 371

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

cb = omero.callbacks.CmdCallbackI(conn.c, handle)
print("Deleting, please wait.")
while not cb.block(500):

print(".")
err = isinstance(cb.getResponse(), omero.cmd.ERR)
print("Error?", err)
if err:

print(cb.getResponse())
cb.close(True) # close handle too

• Delete Annotations on an Object

i = conn.getObject("Image", image_id)
to_delete = []
Optionally to filter by namespace
for ann in i.listAnnotations(ns=namespace):

to_delete.append(ann.id)
conn.deleteObjects('Annotation', to_delete, wait=True)

• Remove Annotations from an Object (unlink but don’t delete)

i = conn.getObject("Image", image_id)
to_delete = []
for ann in i.listAnnotations():

to_delete.append(ann.link.id)
conn.deleteObjects("ImageAnnotationLink", to_delete, wait=True)

Render Images

• Get thumbnail
:: from PIL import Image from io import BytesIO # Thumbnail is created using the current rendering

settings on the image image = conn.getObject(“Image”, imageId) img_data = image.getThumbnail()
rendered_thumb = Image.open(BytesIO(img_data)) # rendered_thumb.show() # shows a pop-up ren-
dered_thumb.save(“thumbnail.jpg”)

• Get current settings

print("Channel rendering settings:")
for ch in image.getChannels():

if no name, get emission wavelength or index
print("Name: ", ch.getLabel())
print(" Color:", ch.getColor().getHtml())
print(" Active:", ch.isActive())
print(" Levels:", ch.getWindowStart(), "-", ch.getWindowEnd())

print("isGreyscaleRenderingModel:", image.isGreyscaleRenderingModel())
print("Default Z/T positions:")
print(" Z = %s, T = %s" % (image.getDefaultZ(), image.getDefaultT()))

• Show the saved rendering settings on this image

372 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

print("Rendering Defs on Image:")
for rdef in image.getAllRenderingDefs():

img_data = image.getThumbnail(rdefId=rdef['id'])
print(" ID: %s (owner: %s %s)" % (

rdef['id'], rdef['owner']['firstName'], rdef['owner']['lastName']))

• Render each channel as a separate grayscale image

image.setGreyscaleRenderingModel()
size_c = image.getSizeC()
z = image.getSizeZ() / 2
t = 0
for c in range(1, size_c + 1): # Channel index starts at 1

channels = [c] # Turn on a single channel at a time
image.setActiveChannels(channels)
rendered_image = image.renderImage(z, t)
renderedImage.show() # popup (use for debug only)
rendered_image.save("channel%s.jpg" % c) # save in the current folder

• Turn 3 channels on, setting their colors

image.setColorRenderingModel()
channels = [1, 2, 3]
color_list = ['F00', None, 'FFFF00'] # do not change color of 2nd channel
image.setActiveChannels(channels, colors=color_list)
max intensity projection 'intmean' for mean-intensity
image.setProjection('intmax')
rendered_image = image.renderImage(z, t) # z and t are ignored for projections
renderedImage.show()
rendered_image.save("all_channels.jpg")
image.setProjection('normal') # turn off projection

• Turn 2 channels on, setting levels of the first one

channels = [1, 2]
range_list = [[100.0, 120.2], [None, None]]
image.setActiveChannels(channels, windows=range_list)
Set default Z and T. These will be used as defaults for further rendering
image.setDefaultZ(0)
image.setDefaultT(0)
default compression is 0.9
rendered_image = image.renderImage(z=None, t=None, compression=0.5)
rendered_image.show()
rendered_image.save("two_channels.jpg")

• Save the current rendering settings & default Z/T

image.saveDefaults()

• Reset to settings at import time, and optionally save

image.resetDefaults(save=True)

3.2. Using the OMERO API 373

OMERO, Release 5.6.5-SNAPSHOT-1

Create Image

• Create an image from scratch

This example demonstrates the usage of the convenience method
createImageFromNumpySeq() Here we create a multi-dimensional image from a
hard-coded array of data.
from numpy import array, int8
import omero
size_x, size_y, size_z, size_c, size_t = 5, 4, 1, 2, 1
plane1 = array(

[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [0, 1, 2, 3, 4], [5, 6, 7, 8, 9]],
dtype=int8)

plane2 = array(
[[5, 6, 7, 8, 9], [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [0, 1, 2, 3, 4]],
dtype=int8)

planes = [plane1, plane2]

def plane_gen():
"""generator will yield planes"""
for p in planes:

yield p

desc = "Image created from a hard-coded arrays"
i = conn.createImageFromNumpySeq(

plane_gen(), "numpy image", size_z, size_c, size_t, description=desc,
dataset=None)

print('Created new Image:%s Name:"%s"' % (i.getId(), i.getName()))

• Set the pixel size using units (added in 5.1.0)
Lengths are specified by value and a unit enumeration Here we set the pixel size X and Y to be 9.8 Angstroms

from omero.model.enums import UnitsLength
Re-load the image to avoid update conflicts
i = conn.getObject("Image", i.getId())
u = omero.model.LengthI(9.8, UnitsLength.ANGSTROM)
p = i.getPrimaryPixels()._obj
p.setPhysicalSizeX(u)
p.setPhysicalSizeY(u)
conn.getUpdateService().saveObject(p)

• Create an Image from an existing image

We are going to create a new image by passing the method a 'generator' of 2D
planes This will come from an existing image, by taking the average of 2
channels.
zct_list = []
image = conn.getObject('Image', imageId)
size_z, size_c, size_t = image.getSizeZ(), image.getSizeC(), image.getSizeT()
dataset = image.getParent()
pixels = image.getPrimaryPixels()
new_size_c = 1

374 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

def plane_gen():
"""
set up a generator of 2D numpy arrays.

The createImage method below expects planes in the order specified here
(for z.. for c.. for t..)
"""
for z in range(size_z): # all Z sections

Illustrative purposes only, since we only have 1 channel
for c in range(new_size_c):

for t in range(size_t): # all time-points
channel0 = pixels.getPlane(z, 0, t)
channel1 = pixels.getPlane(z, 1, t)
Here we can manipulate the data in many different ways. As
an example we are doing "average"
average of 2 channels
new_plane = (channel0 + channel1) / 2
print("newPlane for z,t:", z, t, new_plane.dtype, \

new_plane.min(), new_plane.max())
yield new_plane

desc = ("Image created from Image ID: %s by averaging Channel 1 and Channel 2"
% imageId)

i = conn.createImageFromNumpySeq(
plane_gen(), "new image", size_z, new_size_c, size_t, description=desc,
dataset=dataset)

Filesets - added in OMERO 5.0

• Get the ‘Fileset’ for an Image

A Fileset is a collection of the original files imported to
create an image or set of images in OMERO.
image = conn.getObject("Image", imageId)
fileset = image.getFileset() # will be None for pre-FS images
fs_id = fileset.getId()
List all images that are in this fileset
for fs_image in fileset.copyImages():

print(fs_image.getId(), fs_image.getName())
List original imported files
for orig_file in fileset.listFiles():

name = orig_file.getName()
path = orig_file.getPath()
print(path, name)

• Get Original Imported Files directly from the image

this will include pre-FS data IF images were archived on import
print(image.countImportedImageFiles())
specifically count Fileset files
file_count = image.countFilesetFiles()

(continues on next page)

3.2. Using the OMERO API 375

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

list files
if file_count > 0:

for orig_file in image.getImportedImageFiles():
name = orig_file.getName()
path = orig_file.getPath()
print(path, name)

• Can get the Fileset using conn.getObject()

fileset = conn.getObject("Fileset", fs_id)

Python OMERO.scripts

It is relatively straightforward to take the code samples above and re-use them in OMERO.scripts. This allows the code
to be run on the OMERO server and called from either the OMERO.insight client or OMERO.web by any users of the
server. See OMERO.scripts user guide.

3.2.2 Blitz Gateway documentation

This page provides some background information on the OMERO Python client ‘gateway’ (omero.gateway module).

The Blitz Gateway is a Python client-side library that facilitates working with the OMERO API, handling connection to
the server, loading of data objects and providing convenience methods to access the data. It was originally designed as
part of the OMERO.web framework, to provide connection and data retrieval services to various web clients. However,
we encourage its use for all access to the OMERO Python API.

Connection wrapper

The BlitzGateway class (see API of development code) is a wrapper for the OMERO client and session objects. It
provides various methods for connecting to the OMERO server, querying the status or context of the current connection
and retrieving data objects from OMERO.

BlitzGateway can be used as a context manager to ensure the underlying client connection is automatically closed.

For examples see Code samples.

Model object wrappers

OMERO model objects, e.g. omero.model.Project, omero.model.Pixels etc. (see full list) are code-generated and
mapped to the OMERO database schema. They are language agnostic and their data is in the form of omero.rtypes as
described in about model objects.

To facilitate work in Python, particularly in web page templates, these Python model objects are wrapped in Blitz Object
Wrappers. This hides the use of rtypes.

import omero
from omero.model import ProjectI
from omero.rtypes import rstring
p = ProjectI()
p.setName(rstring("Omero Model Project")) # attributes are all rtypes
print(p.getName().getValue()) # getValue() to unwrap the rtype

(continues on next page)

376 Chapter 3. Developer Documentation

https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html#omero.gateway._BlitzGateway
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model.html

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

print(p.name.val) # short-hand

from omero.gateway import ProjectWrapper
project = ProjectWrapper(obj=p) # wrap the model.object
project.setName("Project Wrapper") # Don't need to use rtypes
print(project.getName())
print(project.name)

print(project._obj) # access the wrapped object with ._obj

These wrappers also have a reference to the BlitzGateway connection wrapper, so they can make calls to the server and
load more data when needed (lazy loading).

>>> from omero.gateway import BlitzGateway

>>> conn = BlitzGateway("username", "password", host="localhost", port=4064)
>>> conn.connect()

>>> for p in conn.listProjects(): # Initially we just load Projects
... print(p.getName())
... for dataset in p.listChildren(): # lazy-loading of Datasets here
... print(" ", dataset.getName())
...
TestProject

Aurora-B
tiff stacks

newTimeStack
test

siRNAi
CENP
live-cell
survivin

>>> conn.close()

Wrapper coverage

The OMERO data model has a large number of objects, not all of which are used by the OMERO.web framework.
Therefore, the Blitz gateway (which was originally built for this framework) has not yet been extended to wrap every
omero.model object with a specific Blitz Object Wrapper. The current list of object wrappers can be found in the
omero.gateway module API. As more functionality is provided by the Blitz Gateway, the coverage of object wrappers
will increase accordingly.

3.2. Using the OMERO API 377

https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html

OMERO, Release 5.6.5-SNAPSHOT-1

Access to the OMERO API services

If you need access to API methods that are not provided by the gateway library, you can get hold of the OMERO
Application Programming Interface.

Note: These services will always work with omero.model objects and not the gateway wrapper objects.

The gateway handles creation and reuse of the API services, so that new ones are not created unnecessarily. Services
can be accessed using the methods of the underlying Service Factory with the Gateway handling reuse as needed.
Stateless services (those retrieved with getXXX methods e.g. getQueryService) are always reused for each call, e.g.
conn.getQueryService() whereas stateful services e.g. createRenderingEngine may be created each time.

Not all methods of the service factory are currently supported in the gateway. You can get an idea of the currently
supported services by looking at the source code under the _createProxies method.

Example: ContainerService can load Projects and Datasets in a single call to server (no lazy loading)

cs = conn.getContainerService()
projects = cs.loadContainerHierarchy("Project", None, None)
for p in projects: # omero.model.ProjectI

print(p.getName().getValue()) # need to 'unwrap' rstring
for d in p.linkedDatasetList():

print(d.getName().getValue())

Stateful services, reconnection, error handling etc.

The Blitz gateway was designed for use in the OMERO.web framework and it is not expected that stateful services will
be maintained on the client for significant time. There are various error-handling functionalities in the Blitz gateway
that will close existing services and recreate them in order to maintain a working connection. If this happens then any
stateful services that you have on the client-side will become stale. Our general advice is to create, use and close the
stateful services in the shortest practicable time.

try:
image = conn.getObject("Image", image_id)
Initializes the Rendering engine and sets rendering settings
image.setActiveChannels([1, 2], [[20, 300], [50, 500]], ['00FF00', 'FF0000'])
pil_image = image.renderImage(0, 0)
Now we close the rendering engine
image._re.close

Can continue to use the connection until done,
then close ALL services:
finally:

conn.close()

378 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ServiceFactory.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ServiceFactory.html#getQueryService
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ServiceFactory.html#createRenderingEngine
https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html#omero.gateway._BlitzGateway._createProxies

OMERO, Release 5.6.5-SNAPSHOT-1

Overwriting and extending omero.gateway classes

When working with omero.gateway or wrapper classes such as omero.gateway.ImageWrapper you might want to add
your own functionality or customize an existing one. N.B. The call to omero.gateway.refreshWrappers() is
important to update the dictionary of classes used by conn.getObjects(). This will ensure that instances of your class
are returned by conn.getObjects().

class MyBlitzGateway (omero.gateway.BlitzGateway):

def __init__ (self, *args, **kwargs):
super(MyBlitzGateway, self).__init__(*args, **kwargs)

...do something, e.g. add new field...
self.new_field = 'foo'

def connect (self, *args, **kwargs):

rv = super(MyBlitzGateway, self).connect(*args,**kwargs)
if rv:

...do something, e.g. modify new field...
self.new_field = 'bla'

return rv

omero.gateway.BlitzGateway = MyBlitzGateway

class MyBlitzObjectWrapper (object):

annotation_counter = None

def countAnnotations (self):
"""
Count on annotations linked to the object and set the value
on the custom field 'annotation_counter'.

@return Counter
"""

if self.annotation_counter is not None:
return self.annotation_counter

else:
container = self._conn.getContainerService()
m = container.getCollectionCount(self._obj.__class__.__name__, type(self._

→˓obj).ANNOTATIONLINKS, [self._oid], None)
if m[self._oid] > 0:

self.annotation_counter = m[self._oid]
return self.annotation_counter

else:
return None

class ImageWrapper (MyBlitzObjectWrapper, omero.gateway.ImageWrapper):
"""
omero_model_ImageI class wrapper overwrite omero.gateway.ImageWrapper

(continues on next page)

3.2. Using the OMERO API 379

https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html
https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html#omero.gateway.ImageWrapper

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

and extends MyBlitzObjectWrapper.
"""

def __prepare__ (self, **kwargs):
if kwargs.has_key('annotation_counter'):

self.annotation_counter = kwargs['annotation_counter']

omero.gateway.ImageWrapper = ImageWrapper

IMPORTANT to update the map of wrappers for 'Image' etc. returned by getObjects("Image")
omero.gateway.refreshWrappers()

3.2.3 Command Line Interface as an OMERO development tool

Working with objects

The omero obj command allows to create and update OMERO objects. More information can be displayed using
omero obj -h.

A complete Glossary of all OMERO Model Objects is available for reference.

Object creation

The omero obj new subcommand allows to create new objects:

$ omero obj new Object field=value

where Object is the type of object to create, e.g. Dataset or ProjectDatasetLink and field/value is a valid key/value pair
for the type of object. For example, the following command creates a new screen with a name and a description:

$ omero obj new Screen name=Screen001 description="screen description"

Object update

The omero obj update subcommand allows to update existing objects:

$ omero obj update Object:ID field=value

where Object:ID is the type and the ID of object to update, e.g. Image:1 or PlateDatasetLink:10 and field/value is a
valid key/value pair to update for the specified object.

For example, the following command updates the existing screen of ID 2 with a name and a description:

$ omero obj update Screen:2 name=Screen001 description="screen description"

380 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Piping output

The output of each omero obj command is formatted as Object:ID so that the CLI commands can be redirected and
piped together. For example, the following set of commands creates a dataset and a project and links them together:

$ dataset=$(omero obj new Dataset name=dataset-1)
$ project=$(omero obj new Project name=project-1)
$ omero obj new ProjectDatasetLink parent=$project child=$dataset

Extensions

Plugins can be written and put in the lib/python/omero/plugins directory. On execution, all plugins in that direc-
tory are registered with the CLI.

For testing purposes the --path argument can be used to point to other plugin files or directories, too.

Alternatively, plugins can be added to any directory ending with omero/plugins. If this directory is part of the
PYTHONPATH the CLI will automatically include them. An example of such a plugin is omero-cli-render.

Team-supported CLI plugins will be pip-installable. Search for “omero cli” on PyPI.

Thread-safety

The omero.cli.CLI should be considered not thread-safe. A single connection object is accessible from all plugins
via self.ctx.conn(args), and it is assumed that changes to this object will only take place in the current thread.
The CLI instance itself, however, can be passed between multiple threads, as long as only one accesses it sequentially,
possibly via locking.

See also:
Extending OMERO.server Other extensions to OMERO

Help for any specific CLI command can be displayed using the -h argument. See Command line help for more infor-
mation.

General notes

• For installation notes see Installation.

• Any command can be produced by symlinking bin/omero to a file of the form “omero-command-arg1-arg2”.
This is useful under /etc/rc.d to have a startup script.

• All commands respond to omero help.

See also:
Command Line Interface as an OMERO client User documentation on the Command Line Interface

OMERO.cli as an OMERO admin tool System Administrator documentation for the Command Line Interface

3.2. Using the OMERO API 381

https://github.com/ome/omero-cli-render/
https://pypi.org/search/?q=omero+cli
https://pypi.org

OMERO, Release 5.6.5-SNAPSHOT-1

3.2.4 OMERO Java language bindings

Using the Ice Java language mapping from ZeroC, OMERO provides access to your data within an OMERO.blitz server
from Java code.

All the code examples below can be found at examples/Training/java/src/training.

Writing client apps

To make use of the OMERO Java API and interact with OMERO.blitz from your code, a client application needs the
Java bindings available on the classpath.

The required .jar files can be obtained in a number of ways:

• from the OME artifactory where all available artifacts and their POM files can be searched using the Web interface

• using the OMERO.java ZIP file downloaded from the Java section of the OMERO download page. The libs
directory can then be used on the Java classpath (or attached to a project in Eclipse).

• following the example in minimal-omero-client. Please make sure you are using the proper branch of the repos-
itory, as that influences the versions of dependencies defined in the Maven POM file.

Extended classpath

To use the importer, you will need more jar files. To see all the current requirements, take a look at the builds on
Jenkins, or alternatively examine the dependencies in the build.gradle files (e.g. build.gradle).

Java Gateway

The Java Gateway is a wrapper around the Ice Java language mapping and the OMERO Application Programming
Interface which makes it easier to interact with an OMERO server in Java.

The Gateway is the central object for maintaining the connection to the server, see Connect to OMERO

Functionality for interacting with the server is encapsulated into different facilities. For an example using the Browse-
Facility to access Projects, Datasets, etc. see Read data.

As the plain Ice objects can be a bit ‘bulky’ to handle, they are usually wrapped into Java DataObjects.

All the code examples below can be found at examples/Training/java/src/training.

Connect to OMERO

• Connect to the server. Remember to close the session.

LoginCredentials cred = new LoginCredentials(userName, password, host, port);

// Alternative using args array:
// args = new String[] { "--omero.host=" + hostName, "--omero.port=" + port,
// "--omero.user=" + userName, "--omero.pass=" + password };
// LoginCredentials cred = new LoginCredentials(args);

// If you want to join an existing session you can use the session ID as
// user name and a 'null' password:
// LoginCredentials cred = new LoginCredentials(sessionID, null, host, port);

(continues on next page)

382 Chapter 3. Developer Documentation

https://doc.zeroc.com/display/Ice/Hello+World+Application
https://zeroc.com
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/java/src/training
https://artifacts.openmicroscopy.org
https://downloads.openmicroscopy.org/latest/omero5.5/
https://github.com/ome/minimal-omero-client
https://ci.openmicroscopy.org/
https://github.com/ome/omero-insight/blob/master/build.gradle
https://docs.openmicroscopy.org/omero-gateway/5.6.9/javadoc/omero/gateway/Gateway.html
https://doc.zeroc.com/display/Ice/Hello+World+Application
https://docs.openmicroscopy.org/omero-gateway/5.6.9/javadoc/omero/gateway/Gateway.html
https://docs.openmicroscopy.org/omero-gateway/5.6.9/javadoc//omero/gateway/facility/package-summary.html
https://docs.openmicroscopy.org/omero-gateway/5.6.9/javadoc/omero/gateway/facility/BrowseFacility.html
https://docs.openmicroscopy.org/omero-gateway/5.6.9/javadoc/omero/gateway/facility/BrowseFacility.html
https://docs.openmicroscopy.org/omero-gateway/5.6.9/javadoc/omero/gateway/model/DataObject.html
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/java/src/training

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

//Create a simple Logger object which just writes
//to System.out or System.err
Logger simpleLogger = new SimpleLogger();

Gateway gateway = new Gateway(simpleLogger);
ExperimenterData user = gateway.connect(cred);

//for every subsequent call to the server you'll need the
//SecurityContext for a certain group; in this case create
//a SecurityContext for the user's default group.
SecurityContext ctx = new SecurityContext(user.getGroupId());

• Close connection. IMPORTANT

gateway.disconnect();

Read data

The BrowseFacility offers methods for browsing within the data hierarchy. A list of examples follows, indicating how
to load Project, Dataset, Screen, etc.

• Retrieve the projects owned by the user currently logged in.

If a Project contains Datasets, the Datasets will automatically be loaded.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);

Collection<ProjectData> projects = browse.getProjects(ctx);

Iterator<ProjectData> i = projects.iterator();
ProjectData project;
Set<DatasetData> datasets;
Iterator<DatasetData> j;
DatasetData dataset;
while (i.hasNext()) {

project = i.next();
String name = projet.getName();
long id = project.getId();
datasets = project.getDatasets();
j = datasets.iterator();
while (j.hasNext()) {

dataset = j.next();
// Do something here
// If images loaded.
// dataset.getImages();

}
}

• Retrieve the Datasets owned by the user currently logged in.

3.2. Using the OMERO API 383

OMERO, Release 5.6.5-SNAPSHOT-1

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<DatasetData> datasets = browse.getDatasets(ctx);

Iterator<DatasetData> i = datasets.iterator();
DatasetData dataset;
Set<ImageData> images;
Iterator<ImageData> j;
ImageData image;
while (i.hasNext()) {

dataset = i.next();
images = dataset.getImages();
j = images.iterator();
while (j.hasNext()) {

image = j.next();
//Do something

}
}

• Retrieve the Images contained in a Dataset.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<ImageData> images = browse.getImagesForDatasets(ctx, Arrays.
→˓asList(datasetId));

Iterator<ImageData> j = images.iterator();
ImageData image;
while (j.hasNext()) {

image = j.next();
// Do something

}

• Retrieve an Image if the identifier is known.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
ImageData image = browse.getImage(ctx, imageId);

• Access information about the image for example to draw it.

The model is as follows: Image-Pixels i.e. to access valuable data about the image you need to use the pixels object.
We now only support one set of pixels per image (it used to be more!).

PixelsData pixels = image.getDefaultPixels();
int sizeZ = pixels.getSizeZ(); // The number of z-sections.
int sizeT = pixels.getSizeT(); // The number of timepoints.
int sizeC = pixels.getSizeC(); // The number of channels.
int sizeX = pixels.getSizeX(); // The number of pixels along the X-axis.
int sizeY = pixels.getSizeY(); // The number of pixels along the Y-axis.

• Retrieve Screening data owned by the user currently logged in.
Note that the wells are not loaded.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<ScreenData> screens = browse.getScreens(ctx);

(continues on next page)

384 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

Iterator<ScreenData> i = screens.iterator();
ScreenData screen;
Set<PlateData> plates;
Iterator<PlateData> j;
PlateData plate;
while (i.hasNext()) {

screen = i.next();
plates = screen.getPlates();
j = plates.iterator();
while (j.hasNext()) {

plate = j.next();
}

}

• Retrieve Wells within a Plate.
Given a plate ID, load the wells.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<WellData> wells = browse.getWells(ctx, plateId);

Iterator<WellData> i = wells.iterator();
WellData well;
while (i.hasNext()) {

well = i.next();
//Do something

}

• Retrieve Annotations.
Load the MapAnnotations (Key-Value pairs) for the logged-in user.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
ImageData image = browse.getImage(ctx, imageId);

// load only this user's annotations
List<Long> userIds = new ArrayList<Long>();
userIds.add(this.user.getId());

// load only MapAnnotations
List<Class<? extends AnnotationData>> types = new ArrayList<Class<? extends␣
→˓AnnotationData>>();
types.add(MapAnnotationData.class);

MetadataFacility metadata = gateway.getFacility(MetadataFacility.class);
List<AnnotationData> annotations = metadata.getAnnotations(ctx, image,

types, userIds);
for (AnnotationData annotation : annotations) {

MapAnnotationData mapAnnotation = (MapAnnotationData) annotation;
List<NamedValue> list = (List<NamedValue>) mapAnnotation

.getContent();
System.out.println("\nMapAnnotation ID: "+mapAnnotation.getId());

(continues on next page)

3.2. Using the OMERO API 385

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

for (NamedValue namedValue : list)
System.out.println(namedValue.name + ": " + namedValue.value);

}

Raw data access

• Retrieve a given plane.
This is useful when you need for example the pixels intensity.

try (RawDataFacility rdf = gateway.getFacility(RawDataFacility.class)) {
PixelsData pixels = image.getDefaultPixels();
int sizeZ = pixels.getSizeZ();
int sizeT = pixels.getSizeT();
int sizeC = pixels.getSizeC();

Plane2D p;
for (int z = 0; z < sizeZ; z++)

for (int t = 0; t < sizeT; t++)
for (int c = 0; c < sizeC; c++) {

p = rdf.getPlane(ctx, pixels, z, t, c);
}

}

• Retrieve a given tile.

try (RawDataFacility rdf = gateway.getFacility(RawDataFacility.class)) {
PixelsData pixels = image.getDefaultPixels();
int sizeZ = pixels.getSizeZ();
int sizeT = pixels.getSizeT();
int sizeC = pixels.getSizeC();
int x = 0;
int y = 0;
int width = pixels.getSizeX()/2;
int height = pixels.getSizeY()/2;
Plane2D p;
for (int z = 0; z < sizeZ; z++) {

for (int t = 0; t < sizeT; t++) {
for (int c = 0; c < sizeC; c++) {

p = rdf.getTile(ctx, pixels, z, t, c, x, y, width, height);
}

}
}

}

• Retrieve a given stack.
This is useful when you need the pixels intensity.

PixelsData pixels = image.getDefaultPixels();
int sizeT = pixels.getSizeT();
int sizeC = pixels.getSizeC();

(continues on next page)

386 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

long pixelsId = pixels.getId();
RawPixelsStorePrx store = null;
try{

store = gateway.getPixelsStore(ctx);
store.setPixelsId(pixelsId, false);
for (int t = 0; t < sizeT; t++) {

for (int c = 0; c < sizeC; c++) {
byte[] plane = store.getStack(c, t);
//Do something

}
}

} finally {
store.close();

}

• Retrieve a given hypercube.
This is useful when you need the pixels intensity.

PixelsData pixels = image.getDefaultPixels();
long pixelsId = pixels.getId();
//offset values in each dimension XYZCT
List<Integer> offset = new ArrayList<Integer>();
int n = 5;
for (int i = 0; i < n; i++) {

offset.add(i, 0);
}

List<Integer> size = new ArrayList<Integer>();
size.add(pixels.getSizeX());
size.add(pixels.getSizeY());
size.add(pixels.getSizeZ());
size.add(pixels.getSizeC());
size.add(pixels.getSizeT());

//indicate the step in each direction, step = 1,
//will return values at index 0, 1, 2.
//step = 2, values at index 0, 2, 4 etc.
List<Integer> step = new ArrayList<Integer>();
for (int i = 0; i < n; i++) {

step.add(i, 1);
}
RawPixelsStorePrx store = null;
try {

store = gateway.getPixelsStore(ctx);
store.setPixelsId(pixelsId, false);
byte[] values = store.getHypercube(offset, size, step);
//Do something

} finally {
store.close();

}

• Retrieve a histogram.

3.2. Using the OMERO API 387

OMERO, Release 5.6.5-SNAPSHOT-1

try (RawDataFacility rdf = gateway.getFacility(RawDataFacility.class)) {
PixelsData pixels = image.getDefaultPixels();
int[] channels = new int[] { 0 };
int binCount = 256;
Map<Integer, int[]> histdata = rdf.getHistogram(ctx, pixels,

channels, binCount, false, null);
int[] histogram = histdata.get(0);
//Do something with the histogram data

}

Write data

• Create a dataset and link it to an existing project.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

//Using IObject directly
Dataset dataset = new DatasetI();
dataset.setName(omero.rtypes.rstring("new Name 1"));
dataset.setDescription(omero.rtypes.rstring("new description 1"));
ProjectDatasetLink link = new ProjectDatasetLinkI();
link.setChild(dataset);
link.setParent(new ProjectI(projectId, false));
IObject r = dm.saveAndReturnObject(ctx, link);

//Using the pojo
DatasetData datasetData = new DatasetData();
datasetData.setName("new Name 2");
datasetData.setDescription("new description 2");
BrowseFacility b = gateway.getFacility(BrowseFacility.class);
ProjectData projectData = b.getProjects(ctx, Collections.singleton(projectId)).
→˓iterator().next();
datasetData.setProjects(Collections.singleton(projectData));
DataObject r2 = dm.saveAndReturnObject(ctx, datasetData);

• Import images into a dataset.
Using the Java API directly:

String[] paths = new String[] {"/pathTo/image1.dv", "/pathTo/image2.dv"};

ImportConfig config = new ome.formats.importer.ImportConfig();

config.email.set("");
config.sendFiles.set(true);
config.sendReport.set(false);
config.contOnError.set(false);
config.debug.set(false);

config.hostname.set("localhost");
config.port.set(4064);
config.username.set("root");

(continues on next page)

388 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

config.password.set("omero");

// the imported image will go into 'orphaned images' unless
// you specify a particular existing dataset like this:
// config.target.set("Dataset:123");

OMEROMetadataStoreClient store;
try {

store = config.createStore();
store.logVersionInfo(config.getIniVersionNumber());
OMEROWrapper reader = new OMEROWrapper(config);
ImportLibrary library = new ImportLibrary(store, reader);

ErrorHandler handler = new ErrorHandler(config);
library.addObserver(new LoggingImportMonitor());

ImportCandidates candidates = new ImportCandidates(reader, paths, handler);
reader.setMetadataOptions(new DynamicMetadataOptions(MetadataLevel.ALL));
library.importCandidates(config, candidates);

store.logout();

} catch (Exception e) {
e.printStackTrace();

}

• Create a tag (tag annotation) and link it to an existing project.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

TagAnnotation tag = new TagAnnotationI();
tag.setTextValue(omero.rtypes.rstring("new tag 1"));
tag.setDescription(omero.rtypes.rstring("new tag 1"));

//Using the model object (recommended)
TagAnnotationData tagData = new TagAnnotationData("new tag 2");
tagData.setTagDescription("new tag 2");

ProjectAnnotationLink link = new ProjectAnnotationLinkI();
link.setChild(tag);
link.setParent(new ProjectI(info.getProjectId(), false));
IObject r = dm.saveAndReturnObject(ctx, link);
//With model object
link = new ProjectAnnotationLinkI();
link.setChild(tagData.asAnnotation());
link.setParent(new ProjectI(info.getProjectId(), false));
r = dm.saveAndReturnObject(ctx, link);

• Create a map annotation (list of key: value pairs) and link it to an existing project.

List<NamedValue> result = new ArrayList<NamedValue>();
result.add(new NamedValue("mitomycin-A", "20mM"));

(continues on next page)

3.2. Using the OMERO API 389

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

result.add(new NamedValue("PBS", "10mM"));
result.add(new NamedValue("incubation", "5min"));
result.add(new NamedValue("temperature", "37"));
result.add(new NamedValue("Organism", "Homo sapiens"));
MapAnnotationData data = new MapAnnotationData();
data.setContent(result);
data.setDescription("Training Example");
//Use the following namespace if you want the annotation to be editable
//in the webclient and insight
data.setNameSpace(MapAnnotationData.NS_CLIENT_CREATED);
DataManagerFacility fac = gateway.getFacility(DataManagerFacility.class);
fac.attachAnnotation(ctx, data, new ProjectData(new ProjectI(projectId, false)));

• Create a file annotation and link to an image.
To attach a file to an object e.g. an image, few objects need to be created:

1. an OriginalFile

2. a FileAnnotation

3. a link between the Image and the FileAnnotation.

int INC = 262144;
DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

//To retrieve the image see above.
File file = File.createTempFile("temp-file-name_", ".tmp");
String name = file.getName();
String absolutePath = file.getAbsolutePath();
String path = absolutePath.substring(0,

absolutePath.length()-name.length());

//create the original file object.
OriginalFile originalFile = new OriginalFileI();
originalFile.setName(omero.rtypes.rstring(name));
originalFile.setPath(omero.rtypes.rstring(path));
originalFile.setSize(omero.rtypes.rlong(file.length()));
final ChecksumAlgorithm checksumAlgorithm = new ChecksumAlgorithmI();
checksumAlgorithm.setValue(omero.rtypes.rstring(ChecksumAlgorithmSHA1160.value));
originalFile.setHasher(checksumAlgorithm);
originalFile.setMimetype(omero.rtypes.rstring(fileMimeType)); // or "application/octet-
→˓stream"
//Now we save the originalFile object
originalFile = (OriginalFile) dm.saveAndReturnObject(ctx, originalFile);

//Initialize the service to load the raw data
RawFileStorePrx rawFileStore = gateway.getRawFileService(ctx);

long pos = 0;
int rlen;
byte[] buf = new byte[INC];
ByteBuffer bbuf;
//Open file and read stream

(continues on next page)

390 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

try (FileInputStream stream = new FileInputStream(file)) {
rawFileStore.setFileId(originalFile.getId().getValue());
while ((rlen = stream.read(buf)) > 0) {

rawFileStore.write(buf, pos, rlen);
pos += rlen;
bbuf = ByteBuffer.wrap(buf);
bbuf.limit(rlen);

}
originalFile = rawFileStore.save();

} finally {
rawFileStore.close();

}
//now we have an original File in DB and raw data uploaded.
//We now need to link the Original file to the image using
//the File annotation object. That's the way to do it.
FileAnnotation fa = new FileAnnotationI();
fa.setFile(originalFile);
fa.setDescription(omero.rtypes.rstring(description)); // The description set above e.g.␣
→˓PointsModel
fa.setNs(omero.rtypes.rstring(NAME_SPACE_TO_SET)); // The name space you have set to␣
→˓identify the file annotation.

//save the file annotation.
fa = (FileAnnotation) dm.saveAndReturnObject(ctx, fa);

//now link the image and the annotation
ImageAnnotationLink link = new ImageAnnotationLinkI();
link.setChild(fa);
link.setParent(image.asImage());
//save the link back to the server.
link = (ImageAnnotationLink) dm.saveAndReturnObject(ctx, link);
// o attach to a Dataset use DatasetAnnotationLink;

• Load all the file annotations with a given namespace.

long userId = gateway.getLoggedInUser().getId();
List<String> nsToInclude = new ArrayList<String>();
nsToInclude.add(NAME_SPACE_TO_SET);
List<String> nsToExclude = new ArrayList<String>();
ParametersI param = new ParametersI();
param.exp(omero.rtypes.rlong(userId)); //load the annotation for a given user.
IMetadataPrx proxy = gateway.getMetadataService(ctx);
List<Annotation> annotations = proxy.loadSpecifiedAnnotations(

FileAnnotation.class.getName(), nsToInclude, nsToExclude, param);
//Do something with annotations.

• Read the attachment.
First load the annotations, cf. above.

Iterator<Annotation> j = annotations.iterator();
Annotation annotation;
FileAnnotationData fa;

(continues on next page)

3.2. Using the OMERO API 391

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

RawFileStorePrx store = gateway.getRawFileService(ctx);
File file = File.createTempFile("temp-file-name_", ".tmp");
int index = 0;

OriginalFile of;
IQueryPrx svc = gateway.getQueryService(ctx);

try (FileOutputStream stream = new FileOutputStream(file)) {
while (j.hasNext()) {

annotation = j.next();
if (annotation instanceof FileAnnotation && index == 0) {

fa = new FileAnnotationData((FileAnnotation) annotation);
//Load the original file
of = (OriginalFile) svc.get("OriginalFile", fa.getFileID());
store.setFileId(fa.getFileID());
int offset = 0;
long size = of.getSize().getValue();
//name of the file
String fileName = of.getName().getValue();
try {

for (offset = 0; (offset+INC) < size;) {
stream.write(store.read(offset, INC));
offset += INC;

}
} finally {

stream.write(store.read(offset, (int) (size-offset)));
}
index++;

}
}

} finally {
store.close();

}
file.delete();

How to use OMERO tables

• Create and read a table.
In the following example, we create a table with 2 columns.

TableDataColumn[] columns = new TableDataColumn[3];
columns[0] = new TableDataColumn("ID", 0, Long.class);
columns[1] = new TableDataColumn("Name", 1, String.class);
columns[2] = new TableDataColumn("Value", 2, Double.class);

Object[][] data = new Object[3][5];
data[0] = new Long[] {1l, 2l, 3l, 4l, 5l};
data[1] = new String[] {"one", "two", "three", "four", "five"};
data[2] = new Double[] {1d, 2d, 3d, 4d, 5d};

(continues on next page)

392 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

TableData tableData = new TableData(columns, data);

TablesFacility fac = gateway.getFacility(TablesFacility.class);

// Attach the table to the image
tableData = fac.addTable(ctx, image, "My Data", tableData);

// Find the table again
Collection<FileAnnotationData> tables = fac.getAvailableTables(ctx, image);
long fileId = tables.iterator().next().getFileID();

// Request second and third column of the first three rows
TableData tableData2 = fac.getTable(ctx, fileId, 0, 2, 1, 2);

// do something, e.g. print to System.out
int nRows = tableData2.getData()[0].length;
for (int row = 0; row < nRows; row++) {

for (int col = 0; col < tableData2.getColumns().length; col++) {
Object o = tableData2.getData()[col][row];
System.out.print(o + " ["

+ tableData2.getColumns()[col].getType() + "]\t");
}
System.out.println();

}

ROIs

To learn about the model see the ROI Model documentation. Note that annotations can be linked to ROI or shape.

• Create ROI.
In this example, we create an ROI with a rectangular shape and attach it to an image.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);
ROIFacility roifac = gateway.getFacility(ROIFacility.class);

//To retrieve the image see above.
ROIData data = new ROIData();
data.setImage(image);
//Create a rectangle.
RectangleData rectangle = new RectangleData(10, 10, 10, 10);
rectangle.setZ(0);
rectangle.setT(0);
data.addShapeData(rectangle);

//Add a mask
PixelsData pixels = image.getDefaultPixels();
long pixelsId = pixels.getId();
RawPixelsStorePrx store = gateway.getPixelsStore(ctx);
try {

store.setPixelsId(pixelsId, false);
byte[] mask = store.getStack(0, 0);

(continues on next page)

3.2. Using the OMERO API 393

https://docs.openmicroscopy.org/latest/ome-model/developers/roi.html

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

MaskData maskData = new MaskData(10, 10, 100.0, 100.0, mask);
maskData.setZ(0);
maskData.setT(0);
data.addShapeData(maskData);

} finally {
store.close();

}

//Create an ellipse.
EllipseData ellipse = new EllipseData(10, 10, 10, 10);
//Not setting the Z and T for this shape object, this is also allowed in the model.
//set angle of rotation
double theta = 10;
//create transform object
AffineTransformI newTform = omero.model.AffineTransformI();
newTform.setA00(omero.rtypes.rdouble(cos(theta)));
newTform.setA10(omero.rypes.rdouble(-sin(theta)));
newTform.setA01(omero.rypes.rdouble(sin(theta)));
newTform.setA11(omero.rypes.rdouble(cos(theta)));
newTform.setA02(omero.rypes.rdouble(0));
newTform.setA12(omero.rypes.rdouble(0));
//add transform
ellipse.setTransform(newTform);
data.addShapeData(ellipse);

// Save ROI and shape
ROIData roiData = roifac.saveROIs(ctx, image.getId(), Arrays.asList(data)).iterator().
→˓next();

//now check that the shape has been added.
//Retrieve the shape on plane (z, t) = (0, 0)
List<ShapeData> shapes = roiData.getShapes(0, 0);
Iterator<ShapeData> i = shapes.iterator();
while (i.hasNext()) {

ShapeData shape = i.next();
// plane info
int z = shape.getZ();
int t = shape.getT();
long id = shape.getId();
if (shape instanceof RectangleData) {

RectangleData rectData = (RectangleData) shape;
//Insert code to handle rectangle

} else if (shape instanceof EllipseData) {
EllipseData ellipseData = (EllipseData) shape;
//Insert code to handle ellipse

} else if (shape instanceof LineData) {
LineData lineData = (LineData) shape;
//Insert code to handle line

} else if (shape instanceof PointData) {
PointData pointData = (PointData) shape;
//Insert code to handle point

} else if (shape instanceof MaskData) {

(continues on next page)

394 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

MaskData maskData1 = (MaskData) shape;
//Insert code to handle mask

}

//Check if the shape has transform
//https://blog.openmicroscopy.org/data-model/future-plans/2016/06/20/shape-transforms/
AffineTransformI transform = shape.getTransform();
if (transform != null){

double xScaling = transform.getA00.getValue();
double xShearing = transform.getA01.getValue();
double xTranslation = transform.getA02.getValue();

double yScaling = transform.getA11.getValue();
double yShearing = transform.getA10.getValue();
double yTranslation = transform.getA12.getValue();
//Insert code to handle transforms

}
}

• Retrieve ROIs linked to an Image.

ROIFacility roifac = gateway.getFacility(ROIFacility.class);

//Retrieve the roi linked to an image
List<ROIResult> roiresults = roifac.loadROIs(ctx, image.getId());
ROIResult r = roiresults.iterator().next();
if (r == null) return;
Collection<ROIData> rois = r.getROIs();
List<Shape> list;
Iterator<Roi> j = rois.iterator();
while (j.hasNext()) {

roi = j.next();
list = roi.copyShapes();
// Do something

}

• Remove a shape from ROI.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);
ROIFacility roifac = gateway.getFacility(ROIFacility.class);

//Retrieve the roi linked to an image
List<ROIResult> roiresults = roifac.loadROIs(ctx, image.getId());
ROIResult r = roiresults.iterator().next();
List<Roi> rois = r.rois;
List<Shape> list;
Iterator<Roi> j = rois.iterator();
while (j.hasNext()) {

roi = j.next();
list = roi.copyShapes();
// remove the first shape.

(continues on next page)

3.2. Using the OMERO API 395

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

if (list.size() > 0) {
roi.removeShape(list.get(0));
// update the roi.
dm.saveAndReturnObject(ctx, roi).saveAndReturnObject(roi);

}
}

• Organize ROIs in Folders.

ROIFacility roifac = gateway.getFacility(ROIFacility.class);

Collection<ROIData> rois = ...

// Add each ROI to a different folder
for (ROIData r : rois) {

FolderData folder = new FolderData();
folder.setName("Folder for ROI " + r.getId());
roifac.addRoisToFolders(ctx, image.getId(), Arrays.asList(r),

Arrays.asList(folder));
}

// Get the ROI folders associated with an image
Collection<FolderData> folders = roifac.getROIFolders(ctx, image.getId());
for (FolderData folder : folders) {

Collection<ROIResult> result = roifac.loadROIsForFolder(ctx,
image.getId(), folder.getId());

Collection<ROIData> folderRois = result.iterator().next().getROIs();
// Do something with the ROIs

}

Delete data

It is possible to delete Projects, datasets, images, ROIs etc. and objects linked to them depending on the specified
options (see Deleting in OMERO).

• Delete Image.
In the following example, we create an image and delete it.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

//First create an image.
ImageData image = new ImageData();
image.setName("image1");
image.setDescription("descriptionImage1");
IObject object = dm.saveAndReturnObject(ctx, image.asIObject());

Response rsp = dm.delete(ctx, object).loop(10, 500);

396 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Render Images

• Initialize the rendering engine and render an image.

PixelsData pixels = image.getDefaultPixels();
long pixelsId = pixels.getId();
RenderingEnginePrx proxy = null;
proxy = gateway.getRenderingService(ctx, pixelsId);
ByteArrayInputStream stream = bull;
try {

proxy.lookupPixels(pixelsId);
if (!(proxy.lookupRenderingDef(pixelsId))) {

proxy.resetDefaultSettings(true);
proxy.lookupRenderingDef(pixelsId);

}
proxy.load();
//Now can interact with the rendering engine.
proxy.setActive(0, Boolean.valueOf(false));
PlaneDef pDef = new PlaneDef();
pDef.z = 0;
pDef.t = 0;
pDef.slice = omero.romio.XY.value;
//render the data uncompressed.
int[] uncompressed = proxy.renderAsPackedInt(pDef);
byte[] compressed = proxy.renderCompressed(pDef);
//Create a buffered image
stream = new ByteArrayInputStream(compressed);
BufferedImage image = ImageIO.read(stream);

} finally {
proxy.close();
if (stream != null) stream.close();

}

• Retrieve thumbnails.

ThumbnailStorePrx store = gateway.getThumbnailService(ctx);
ByteArrayInputStream stream = null;
try {

PixelsData pixels = image.getDefaultPixels();
store.setPixelsId(pixels.getId())
//retrieve a 96x96 thumbnail.
byte[] array = store.getThumbnail(

omero.rtypes.rint(96), omero.rtypes.rint(96));
stream = new ByteArrayInputStream(array);
//Create a buffered image to display
ImageIO.read(stream);

} finally {
store.close();
if (stream != null) stream.close();

}

3.2. Using the OMERO API 397

OMERO, Release 5.6.5-SNAPSHOT-1

Create Image

The following example shows how to create an Image from an Image already in OMERO. Similar approach can be
applied when uploading an image.

//See above how to load an image.
PixelsData pixels = image.getDefaultPixels();
int sizeZ = pixels.getSizeZ();
int sizeT = pixels.getSizeT();
int sizeC = pixels.getSizeC();
int sizeX = pixels.getSizeX();
int sizeY = pixels.getSizeY();
long pixelsId = pixels.getId();

//Read the pixels from the source image.
RawPixelsStorePrx store = gateway.getPixelsStore(ctx);
try{

store.setPixelsId(pixelsId, false);

List<byte[]> planes = new ArrayList<byte[]>();

for (int z = 0; z < sizeZ; z++) {
for (int t = 0; t < sizeT; t++) {

planes.add(store.getPlane(z, 0, t));
}

}
} finally {

//Better to close to free space.
store.close();

}

//Now we are going to create the new image.
IPixelsPrx proxy = gateway.getPixelsService(ctx);

//Search for PixelsType object matching the source image.
List<IObject> l = proxy.getAllEnumerations(PixelsType.class.getName());
Iterator<IObject> i = l.iterator();
PixelsType type = null;
String original = pixels.getPixelType();
while (i.hasNext()) {

PixelsType o = (PixelsType) i.next();
String value = o.getValue().getValue();
if (value.equals(original)) {

type = o;
break;

}
}
if (type == null)

throw new Exception("Pixels Type not valid.");

//Create new image.
String name = "newImageFrom"+image.getId();
RLong idNew = proxy.createImage(sizeX, sizeY, sizeZ, sizeT, Arrays.asList(0), type, name,

(continues on next page)

398 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"From Image ID: "+image.getId());
if (idNew == null)

throw new Exception("New image could not be created.");
IContainerPrx proxyCS = entryUnencrypted.getContainerService();
List<Image> results = proxyCS.getImages(Image.class.getName(),

Arrays.asList(idNew.getValue()), new ParametersI());
ImageData newImage = new ImageData(results.get(0));

//Link the new image and the dataset hosting the source image.
DatasetImageLink link = new DatasetImageLinkI();
link.setParent(new DatasetI(datasetId, false));
link.setChild(new ImageI(newImage.getId(), false));
gateway.getUpdateService(ctx).saveAndReturnObject(link);

//Write the data.
try {

store = gateway.getPixelsStore(ctx);
store.setPixelsId(newImage.getDefaultPixels().getId(), false);
int index = 0;
for (int z = 0; z < sizeZ; z++) {

for (int t = 0; t < sizeT; t++) {
store.setPlane(planes.get(index++), z, 0, t);

}
}

//Save the data.
store.save();

} finally {
store.close();

}

Sudo (working within another user’s context)

The next code snippet shows how you can work within another user’s context. This could for example be a data analyst
doing some analysis on behalf of a user and attaching the results to the user’s data. The important point is that the user
will be the owner of these results and can work with them as usual. The user and ‘analyst’ do not have to be member
of a read-annotate group (see OMERO permissions querying, usage and history), but the ‘analyst’ has to be a ‘light
administrator’ with ‘sudo’ permission, see The server’s view of administrator restrictions.

AdminFacility admin = gateway.getFacility(AdminFacility.class);

// Look up the experimenter to sudo for
ExperimenterData sudoUser = admin.lookupExperimenter(ctx, sudoUsername);

// Create a SecurityContext for this user within the user's default group
// and set the 'sudo' flag (i.e. all operations using this context will
// be performed as this user)
SecurityContext sudoCtx = new SecurityContext(sudoUser.getGroupId());
sudoCtx.setExperimenter(sudoUser);
sudoCtx.sudo();

(continues on next page)

3.2. Using the OMERO API 399

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

// Get a sudouser's dataset (assume the user has at least one dataset)
BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<DatasetData> datasets = browse.getDatasets(sudoCtx, sudoUser.getId());
DatasetData sudoDataset = datasets.iterator().next();

// Add a tag to the dataset on behalf of the sudouser (i.e. the sudouser will be
// the owner of tag).
DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);
TagAnnotationData sudoUserTag = new TagAnnotationData(sudoUsername+"'s tag");
dm.attachAnnotation(sudoCtx, sudoUserTag, sudoDataset);
System.out.println("Added '"+sudoUserTag.getContentAsString()+"' "

+ "to dataset "+sudoDataset.getName()+" on behalf of "+sudoUsername);

// Add a tag to the same dataset as logged in user (i. e. the logged in user will be
// the owner of the tag). Note: This only works in a read-annotate group where the
// logged in user is allowed to annotate the sudouser's data, or the logged in user has
// write permission.
TagAnnotationData adminTag = new TagAnnotationData(user.getUserName()+"'s tag");
// Have to use a SecurityContext for the correct group, otherwise this would fail
// with a security violation
SecurityContext groupContext = new SecurityContext(sudoUser.getGroupId());
dm.attachAnnotation(groupContext, adminTag, sudoDataset);
System.out.println("Added '"+adminTag.getContentAsString()+"'"

+ " to dataset "+sudoDataset.getName()+" as admin.");

Further information

For the details behind writing, configuring, and executing a client, please see Working with OMERO.

See also:
ZeroC, OMERO.grid, OmeroTools, OMERO Application Programming Interface

3.2.5 OMERO MATLAB language bindings

See Developing OMERO clients and OME-Remote Objects, for an introduction to Object.

Installing the OMERO.matlab toolbox

• Download the latest released version from the Downloads page.

• Unzip the directory anywhere on your system.

• In MATLAB, move to the newly unzipped directory and run loadOmero;.

• The MATLAB files are now on your path, and the necessary jars are on your Java classpath. You can change
directories and still have access to OMERO.

Once OMERO.matlab is installed, the typical workflow is:

1. Creating a connection

400 Chapter 3. Developer Documentation

https://zeroc.com
https://www.openmicroscopy.org/omero/downloads/

OMERO, Release 5.6.5-SNAPSHOT-1

2. Keeping your session alive

3. Creating an unencrypted session (optional)

4. Do some work (load objects, work with them, upload to the server, etc.)

5. Closing your connection

6. Unloading OMERO (optional)

As a quickstart example, the following lines create a secure connection to a server, read a series of images and close
the connection.

client = loadOmero(servername);
session = client.createSession(user, password);
client.enableKeepAlive(60);
images = getImages(session, ids);
client.closeSession();

Examples of usage of the OMERO.matlab toolbox are provided in the training examples directory.

Configuring the OMERO.matlab connection

Creating a connection

As described under Working with OMERO, there are several ways to configure your connection to an OMERO server.
OMERO.matlab comes with a few conveniences for making this work.

If you run client = loadOmero(); (i.e. loadOmero without an input argument), then OMERO.matlab will try to
configure the omero.client object for you. First, it checks the ICE_CONFIG environment variable. If set, it will let
the omero.client constructor initialize itself. Otherwise, it looks for the file ice.config in the current directory.
The OMERO.matlab toolbox comes with a default ice.config file pointing at localhost. To use this configuration
file, you should replace localhost by your server address.

Alternatively, you can pass the server address to loadOmero; to create a client:

>> client = loadOmero(servername);

Or, if you want a session created directly using the configuration ice.config file:

>> [client, session] = loadOmero('ice.config');

This is equivalent to:

>> client = loadOmero(servername, port);
>> session = client.createSession(username, password)

where the variables servername, port, username and password are the values set in ice.config for the previous
example. The default port will be used if not specified.

3.2. Using the OMERO API 401

https://github.com/ome/omero-matlab/tree/v5.5.4/examples

OMERO, Release 5.6.5-SNAPSHOT-1

Keeping your session alive

For executing any long running task, you will need a background thread which keeps your session alive. If you are
familiar with MATLAB Timers you can use omeroKeepAlive.m directly or modify it to your liking. By default the
function creates a default 60-second timer.

>> [client, session] = loadOmero('ice.config');
>> timer = omeroKeepAlive(client); % Create timer and starts it.
>> ...
>> delete(timer); % Disable the keep-alive

Alternatively, you can use the Java-based enableKeepAlivemethod, but it is not configurable from within MATLAB.
In that case, you will need to specify the time interval:

client.enableKeepAlive(60); % Call session.keepAlive() every 60 seconds
client.closeSession(); % Close session to end the keep-alive

Working in a different group

Each session is created within a given context, defining not only the session user but also the session group. The session
context can be retrieved using the administration service:

eventContext = session.getAdminService().getEventContext();
groupId = eventContext.groupId;

Most read and write operations described below are performed in the context of the session group when using the default
parameters. Since OMERO 5.1.4, it is possible to specify a different context than the session group for reading and
writing data using the group parameter/key value in the OMERO.matlab functions. Retrieving objects by identifiers
is also done across all groups by default.

See also:
OMERO permissions querying, usage and history Developer documentation about the OMERO permissions system

Creating an unencrypted session

Once a session has been created, if you want to speed up the data transfer, you can create and use an unencrypted
session as:

unsecureClient = client.createClient(false);
sessionUnencrypted = unsecureClient.getSession();

Closing your connection

When you are done with OMERO, it is critical that you close your connection to save resources:

client.closeSession();
clear client;
clear session;

If you created an unencrypted session, you will need to close the unsecure session as well:

402 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/omeroKeepAlive.m

OMERO, Release 5.6.5-SNAPSHOT-1

client.closeSession();
unsecureClient.closeSession();
clear client;
clear unsecureClient;
clear session;
clear sessionUnencrypted;

Unloading OMERO

Then if you would like, you can unload OMERO as well:

unloadOmero();

You may see the following warning when unloading OMERO:

>> unloadOmero()
Warning: Objects of omero/client class exist - not clearing java
> In javaclasspath>doclear at 377
In javaclasspath>local_javapath at 194
In javaclasspath at 105
In javarmpath at 48
In unloadOmero at 75

===
While unloading OMERO, found java objects left in workspace.
Please remove with 'clear <name>' and then run 'unloadOmero'
again. Printing all objects...
===

Name Size Bytes Class Attributes

c 1x1 omero.client

Closing session(s) for 1 found client(s): c

This means that there is still an OMERO.matlab object in your workspace. If not listed, use whos to find such objects,
and clear to remove them. After that, run unloadOmero() again:

>> clear c
>> unloadOmero()

Warning: You should also unload OMERO before installing a new version of OMERO.matlab or calling
loadOmero again.

If you need to create another session without unloading/loading OMERO again, use the omero.client object directly:

>> client = loadOmero(servername,port);
>> client = omero.client(username_1, password_1);
>> session = c.createSession();

3.2. Using the OMERO API 403

OMERO, Release 5.6.5-SNAPSHOT-1

Reading data

The IContainer service provides methods to load the data management hierarchy in OMERO – projects, datasets,
etc.. A list of examples follows indicating how to load projects, datasets, screens.

• Projects
The projects owned by the session user in the context of the session group can be retrieved using the getProjects function:

projects = getProjects(session)

If the project identifiers are known, they can be retrieved independently of their owner or group using:

projects = getProjects(session, ids)

If the projects contain datasets, the datasets will automatically be loaded:

for j = 1 : numel(projects) % MATLAB list, index starts at 1
% Get all the datasets in the Project
datasetsList = projects(j).linkedDatasetList; % Java List
% convert it to a MATLAB list for convenience
datasets = toMatlabList(datasetsList);
% Iterate through datasets
for i = 1 : numel(datasets)

d = datasets(i);
end

end

If the datasets contain images, the images are not automatically loaded. To load the whole graph (projects, datasets,
images), pass true as an optional argument:

% Load the specified Projects and the whole graph
loadedProjects = getProjects(session, ids, true)
% Get the first project
project_1 = loadedProjects(1) % MATLAB array, index starts at 1
% Get all the datasets in the Project
datasets = project_1.linkedDatasetList;
% Get the first dataset in the Java list, index starts at 0
dataset_1 = datasets.get(0);
dataset_name = dataset_1.getName().getValue(); % dataset's name
dataset_id = dataset_1.getId().getValue(); % dataset's id
% Retrieve all the images in the datasets as a Java List (index will start at 0)
imageList = dataset_1.linkedImageList;
% convert it to a MATLAB list for convenience
images = toMatlabList(imageList);
% Iterate through the images
for i = 1 : numel(images)

image = images(i);
image_name = image.getName().getValue(); % image's name
image_id = image.getId().getValue(); % image's id

end

Warning: Loading the entire projects/datasets/images graph can be time-consuming and memory-consuming
depending on the amount of data.

404 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/getProjects.m

OMERO, Release 5.6.5-SNAPSHOT-1

To return the orphaned datasets i.e. datasets not in a project, as well as the projects, you can query the second output
argument of getProjects:

[projects, orphanedDatasets] = getProjects(session)

To filter projects by owner, use the owner parameter/key value. A value of -1 means projects are retrieved indepen-
dently of their owner:

% Returns all projects owned by the specified user in the context of the
% session group
projects = getProjects(session, 'owner', ownerId);
% Returns all projects with the input identifiers owned by the specified
% user
projects = getProjects(session, ids, 'owner', ownerId);
% Returns all projects owned by any user in the context of the session
% group
projects = getProjects(session, 'owner', -1);

To filter projects by group, use the group parameter/key value. A value of -1means projects are retrieved independently
of their group:

% Returns all projects owned by the session user in the specified group
projects = getProjects(session, 'group', groupId);
% Returns all projects with the input identifiers in the specified group
projects = getProjects(session, ids, 'group', groupId);
% Returns all projects owned by the session user across groups
projects = getProjects(session, 'group', -1);

• Datasets
The datasets owned by the session user in the context of the session group can be retrieved using the getDatasets
function:

datasets = getDatasets(session)

If the dataset identifiers are known, they can be retrieved independently of their owner or group using:

datasets = getDatasets(session, ids)

If the datasets contain images, the images are not automatically loaded. To load the whole graph (datasets, images),
pass true as an optional argument:

loadedDatasets = getDatasets(session, ids, true);
% Get the first dataset
dataset_1 = loadedDatasets(1); % MATLAB array, index starts at 1
% Get the all the images in the dataset as the Java list, index starts at 0
imageList = dataset_1.linkedImageList;

To filter datasets by owner, use the owner parameter/key value. A value of -1 means datasets are retrieved indepen-
dently of their owner:

% Returns all datasets owned by the specified user in the context of the
% session group
datasets = getDatasets(session, 'owner', ownerId);
% Returns all datasets with the input identifiers owned by the specified

(continues on next page)

3.2. Using the OMERO API 405

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/getProjects.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/getDatasets.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

% user
datasets = getDatasets(session, ids, 'owner', ownerId);
% Returns all datasets owned by any user in the context of the session
% group
datasets = getDatasets(session, 'owner', -1);

To filter datasets by group, use the group parameter/key value. A value of -1means datasets are retrieved independently
of their group:

% Returns all datasets owned by the session user in the specified group
datasets = getDatasets(session, 'group', groupId);
% Returns all datasets with the input identifiers in the specified group
datasets = getDatasets(session, ids, 'group', groupId);
% Returns all datasets owned by the session user across groups
datasets = getDatasets(session, 'group', -1);

• Images
The images owned by the session user in the context of the session group can be retrieved using the getImages function:

images = getImages(session)

If the image identifiers are known, they can be retrieved independently of their owner or group using:

images = getImages(session, ids)

All the images contained in a subset of datasets of known identifiers datasetsIds can be returned independently of
their owner or group using:

datasetImages = getImages(session, 'dataset', datasetsIds)

All the images contained in all the datasets under a subset of projects of known identifiers projectIds can be returned
independently of their owner or group using:

projectImages = getImages(session, 'project', projectIds)

To filter images by owner, use the owner parameter/key value. A value of -1 means images are retrieved independently
of their owner:

% Returns all images owned by the specified user in the context of the
% session group
images = getImages(session, 'owner', ownerId);
% Returns all images with the input identifiers owned by the specified user
images = getImages(session, ids, 'owner', ownerId);
% Returns all images owned by any user in the context of the session
% group
images = getImages(session, 'owner', -1);

To filter images by group, use the group parameter/key value. A value of -1 means images are retrieved independently
of their group:

% Returns all images owned by the session user in the specified group
images = getImages(session, 'group', groupId);
% Returns all images with the input identifiers in the specified group

(continues on next page)

406 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/getImages.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

images = getImages(session, ids, 'group', groupId);
% Returns all images owned by the session user across groups
images = getImages(session, 'group', -1);

The Image-Pixels model (see OME-Remote Objects) implies you need to use the Pixels objects to access valuable
data about the Image:

pixels = image.getPrimaryPixels();
sizeZ = pixels.getSizeZ().getValue(); % The number of z-sections.
sizeT = pixels.getSizeT().getValue(); % The number of timepoints.
sizeC = pixels.getSizeC().getValue(); % The number of channels.
sizeX = pixels.getSizeX().getValue(); % The number of pixels along the X-axis.
sizeY = pixels.getSizeY().getValue(); % The number of pixels along the Y-axis.

• Screens
The screens owned by the session user in the context of the session group can be retrieved using the getScreens function:

screens = getScreens(session)

If the screen identifiers are known, they can be retrieved independently of their owner or group using:

screens = getScreens(session, ids)

Note that the wells are not loaded. The plate objects can be accessed using:

for j = 1 : numel(screens), % MATLAB array, index start at 1
platesList = screens(j).linkedPlateList; % Java List, index start at 0
for i = 0 : platesList.size()-1,

plate = platesList.get(i);
plateAcquisitionList = plate.copyPlateAcquisitions(); % Java List
for k = 0 : plateAcquisitionList.size()-1,

pa = plateAcquisitionList.get(i);
end

end

To return the orphaned plates as well as the screens, you can query the second output argument of getScreens:

[screens, orphanedPlates] = getScreens(session)

To filter screens by owner, use the owner parameter/key value. A value of -1means screens are retrieved independently
of their owner:

% Returns all screens owned by the specified user in the context of the
% session group
screens = getScreens(session, 'owner', ownerId);
% Returns all screens with the input identifiers owned by the specified
% user
screens = getScreens(session, ids, 'owner', ownerId);
% Returns all screens owned by any user in the context of the session
% group
screens = getScreens(session, 'owner', -1);

To filter screens by group, use the group parameter/key value. A value of -1means screens are retrieved independently
of their group:

3.2. Using the OMERO API 407

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/getScreens.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/getScreens.m

OMERO, Release 5.6.5-SNAPSHOT-1

% Returns all screens owned by the session user in the specified group
screens = getScreens(session, 'group', groupId);
% Returns all screens with the input identifiers in the specified group
screens = getScreens(session, ids, 'group', groupId);
% Returns all screens owned by the session user across groups
screens = getScreens(session, 'group', -1);

• Plates
The screens owned by the session user in the context of the session group can be retrieved using the getPlates function:

plates = getPlates(session)

If the plate identifiers are known, they can be retrieved independently of their owner or group using:

plates = getPlates(session, ids)

To filter plates by owner, use the owner parameter/key value. A value of -1 means plates are retrieved independently
of their owner:

% Returns all plates owned by the specified user in the context of the
% session group
plates = getPlates(session, 'owner', ownerId);
% Returns all plates with the input identifiers owned by the specified user
plates = getPlates(session, ids, 'owner', ownerId);
% Returns all plates owned by any user in the context of the session
% group
plates = getPlates(session, 'owner', -1);

To filter plates by group, use the group parameter/key value. A value of -1 means plates are retrieved independently
of their group:

% Returns all plates owned by the session user in the specified group
plates = getPlates(session, 'group', groupId);
% Returns all plates with the input identifiers in the specified group
plates = getPlates(session, ids, 'group', groupId);
% Returns all plates owned by the session user across groups
plates = getPlates(session, 'group', -1);

• Wells
Given a plate identifier, the wells can be loaded using the findAllByQuery method:

wellList = session.getQueryService().findAllByQuery(
['select well from Well as well '...
'left outer join fetch well.plate as pt '...
'left outer join fetch well.wellSamples as ws '...
'left outer join fetch ws.plateAcquisition as pa '...
'left outer join fetch ws.image as img '...
'left outer join fetch img.pixels as pix '...
'left outer join fetch pix.pixelsType as pt '...
'where well.plate.id = ', num2str(plateId)], []);
% wellList is a Java List, index starts at 0
for j = 0 : wellList.size()-1,

well = wellList.get(j);
(continues on next page)

408 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/getPlates.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

wellsSampleList = well.copyWellSamples();
well.getId().getValue()
% The wellList returned from the server is not sorted by wellIds,
% please extract the wellRow and wellColumn for every well,
% to populate your results appropriately
wellRow = well.getRow().getValue();
wellColumn = well.getColumn().getValue();
for i = 0 : wellsSampleList.size()-1,

ws = wellsSampleList.get(i);
ws.getId().getValue()
pa = ws.getPlateAcquisition();

end
end

• Channel
A channel associated to an image has an object called a logicalChannel associated to it. That entity contains valuable
information e.g. emission wavelength, name, etc. Given an Image, retrieve channels associated to an image on the
OMERO server and the name of the channel:

channels = loadChannels(session, image);
for j = 1 : numel(channels) % MATLAB array

channel = channels(j);
channelId = channel.getId().getValue();
lc = channel.getLogicalChannel();
channelName = lc.getName().getValue();

end

Raw data access

You can retrieve data, plane by plane or retrieve a stack. The values are z in [0, sizeZ - 1], c in [0, sizeC - 1]
and t in [0, sizeT - 1].

• Plane
The plane of an input image at coordinates (z, c, t) can be retrieved using the getPlane function:

plane = getPlane(session, image, z, c, t);

Alternatively, the image identifier can be passed to the function:

plane = getPlane(session, imageId, z, c, t);

• Tile
The tile of an input image at coordinates (z, c, t) originated at (x, y) (where x in [0, sizeX - 1], y in [0,
sizeY - 1]) and of dimensions (w, h) can be retrieved using the getTile function:

tile = getTile(session, image, z, c, t, x, y, w, h);

Alternatively, the image identifier can be passed to the function:

tile = getTile(session, imageId, z, c, t, x, y, w, h);

• Stack

3.2. Using the OMERO API 409

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/image/getPlane.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/image/getTile.m

OMERO, Release 5.6.5-SNAPSHOT-1

The stack of an input image at coordinates (c, t) can be retrieved using the getStack function:

stack = getStack(session, image, c, t);

Alternatively, the image identifier can be passed to the function:

stack = getStack(session, imageId, c, t);

All the methods described above will internally initialize a raw pixels store to retrieve the pixels data and close this
store at the end of the call. This is inefficient when multiple planes/tiles/stacks need to be retrieved. For each function,
it is possible to initialize a pixels store and pass this store directly to the pixel retrieval function, e.g.:

[store, pixels] = getRawPixelsStore(session, image);
for z = 0 : sizeZ - 1
for c = 0 : sizeC - 1
for t = 0 : sizeT - 1

plane = getPlane(pixels, store, z, c, t);
end

end
end
store.close();

• Hypercube
This is useful when you need the Pixels intensity.

% Create the store to load the stack. No access via the gateway
store = session.createRawPixelsStore();
% Indicate the pixels set you are working on
store.setPixelsId(pixelsId, false);

% Offset values in each dimension XYZCT
offset = java.util.ArrayList;
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));

size = java.util.ArrayList;
size.add(java.lang.Integer(sizeX));
size.add(java.lang.Integer(sizeY));
size.add(java.lang.Integer(sizeZ));
size.add(java.lang.Integer(sizeC));
size.add(java.lang.Integer(sizeT));

% Indicate the step in each direction,
% step = 1, will return values at index 0, 1, 2.
% step = 2, values at index 0, 2, 4, etc.
step = java.util.ArrayList;
step.add(java.lang.Integer(1));
step.add(java.lang.Integer(1));
step.add(java.lang.Integer(1));
step.add(java.lang.Integer(1));
step.add(java.lang.Integer(1));

(continues on next page)

410 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/image/getStack.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

% Retrieve the data
store.getHypercube(offset, size, step);
% Close the store
store.close();

See also:
RawDataAccess.m Example script showing methods to retrieve the pixel data from an image

Annotations

• Reading annotations by ID
If the identifier of the annotation of a given type is known, the annotation can be retrieved from the server using the
generic getAnnotations function:

tagAnnotations = getAnnotations(session, 'tag', tagIds);

Shortcut functions are available for the main object and annotation types, e.g. to retrieve tag annotations:

tagAnnotations = getTagAnnotations(session, tagIds);

• Reading annotations linked to an object
The annotations of a given type linked to a given object can be retrieved using the generic getObjectAnnotations
function:

tagAnnotations = getObjectAnnotations(session, 'tag', 'image', imageIds);

Shortcut functions are available for the main object and annotation types, e.g. to retrieve the tag annotations linked to
images:

tagAnnotations = getImageTagAnnotations(session, imageIds);

Annotations can be filtered by namespace. To include only annotations with a given namespace ns, use the include
parameter/key value:

tagAnnotations = getImageTagAnnotations(session, imageIds, 'include', ns);

To exclude all annotations with a given namespace ns, use the exclude parameter/key value:

tagAnnotations = getImageTagAnnotations(session, imageIds, 'exclude', ns);

By default, only the annotations owned by the session owner are returned. To specify the owner of the annotations, use
the owner paramter/key value pair. For instance to return all tag annotations owned by user with an identifier equals
to 5:

tagAnnotations = getImageTagAnnotations(session, imageIds, 'owner', 5);

To retrieve all annotations independently of their owner, use -1 as the owner identifier:

tagAnnotations = getImageTagAnnotations(session, imageIds, 'owner', -1);

• Reading file annotations

3.2. Using the OMERO API 411

https://github.com/ome/omero-matlab/blob/v5.5.4/examples/RawDataAccess.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/annotations/getAnnotations.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/annotations/getObjectAnnotations.m

OMERO, Release 5.6.5-SNAPSHOT-1

The content of a file annotation can be downloaded to local disk using the getFileAnnotationContent function. If the
file annotation has been retrieved from the server as fileAnnotation, then the content of its OriginalFile can be
downloaded under target_file using:

getFileAnnotationContent(session, fileAnnotation, target_file);

Alternatively, if only the identifier of the file annotation faId is known:

getFileAnnotationContent(session, faId, target_file);

• Writing and linking annotations
New annotations can be created using the corresponding write*Annotation function:

% Create a comment annotation
commentAnnotation = writeCommentAnnotation(session, 'comment');
% Create a double annotation
doubleAnnotation = writeDoubleAnnotation(session, .5);
% Create a map annotation
mapAnnotation = writeMapAnnotation(session, 'key', value);
% Create a tag annotation
tagAnnotation = writeTagAnnotation(session, 'tag name');
% Create a timestamp annotation
timestampAnnotation = writeTimestampAnnotation(session, now);
% Create an XML annotation
xmlAnnotation = writeXmlAnnotation(session, xmlString);

File annotations can also be created from the content of a local_file_path:

fileAnnotation = writeFileAnnotation(session, local_file_path);

Each annotation creation function uses the context of the session group by default. To create the annotation in a different
group, use the group key/value pair:

commentAnnotation = writeCommentAnnotation(session, 'comment', 'group', groupId);
doubleAnnotation = writeDoubleAnnotation(session, .5, 'group', groupId);
mapAnnotation = writeMapAnnotation(session, 'key', value, 'group', groupId);
tagAnnotation = writeTagAnnotation(session, 'tag name', 'group', groupId);
timestampAnnotation = writeTimestampAnnotation(session, now, 'group', groupId);
xmlAnnotation = writeXmlAnnotation(session, xmlString, 'group', groupId);
fileAnnotation = writeFileAnnotation(session, local_file_path, 'group', groupId);

Existing annotations can be linked to existing objects on the server using the linkAnnotation function. For example, to
link a tag annotation and a file annotation to the image image_id:

link1 = linkAnnotation(session, tagAnnotation, 'image', imageId);
link2 = linkAnnotation(session, fileAnnotation, 'image', imageId);

For existing file annotations, it is possible to replace the content of the original file without having to recreate a new
file annotation using the updateFileAnnotation function. If the file annotation has been retrieved from the server as
fileAnnotation, then the content of its OriginalFile can be replaced by the content of local_file_path using:

updateFileAnnotation(session, fileAnnotation, local_file_path);

See also:
WriteData.m Example script showing methods to write, link and retrieve annotations.

412 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/annotations/getFileAnnotationContent.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/annotations/linkAnnotation.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/annotations/updateFileAnnotation.m
https://github.com/ome/omero-matlab/blob/v5.5.4/examples/WriteData.m

OMERO, Release 5.6.5-SNAPSHOT-1

Writing data

• Projects/Datasets
Projects and datasets can be created in the context of the session group using the createProject and createDataset
functions:

% Create a new project in the context of the session group
newproject = createProject(session, 'project name');
% Create a new dataset in the context of the session group
newdataset = createDataset(session, 'dataset name');

Writing projects/datasets in a different context than the session group can be achieved by passing the group identifier
using the group parameter:

% Create a new project in the specified group
newproject = createProject(session, 'project name', 'group', groupId);
% Create a new dataset in the specified group
newdataset = createDataset(session, 'dataset name', 'group', groupId);

When creating a dataset, it is possible to link it to an existing project using either the project object or its identifier. In
this case, the group context is determined by the parent project:

% Create two new projects in different groups
project1 = createProject(session, 'project name');
project2 = createProject(session, 'project name', 'group', groupId);
% Create new datasets linked to each project
dataset1 = createDataset(session, 'dataset name', project1);
dataset2 = createDataset(session, 'dataset name', project2.getId().getValue());

• Screens/Plates
Screens and plates can be created in the context of the session group using the createScreen and createPlate functions:

% Create a new screen in the context of the session group
newscreen = createScreen(session, 'screen name');
% Create a new plate in the context of the session group
newplate = createPlate(session, 'plate name');

Writing screens/plates in a different context than the session group can be achieved by passing the group identifier using
the group parameter:

% Create a new screen in the specified group
newscreen = createScreen(session, 'screen name', 'group', groupId);
% Create a new plate in the specified group
newplate = createPlate(session, 'plate name', 'group', groupId);

When creating a plate, it is possible to link it to an existing screen using either the screen object or its identifier. In this
case, the group context is determined by the parent screen:

% Create two new projects in different groups
screen1 = createScreen(session, 'screen name');
screen2 = createScreen(session, 'screen name', 'group', groupId);
% Create new datasets linked to each project
plate1 = createPlate(session, 'plate name', screen1);
plate2 = createPlate(session, 'plate name', screen2.getId().getValue());

3.2. Using the OMERO API 413

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/createProject.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/createDataset.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/createScreen.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/io/createPlate.m

OMERO, Release 5.6.5-SNAPSHOT-1

See also:
WriteData.m Example script showing methods to create projects, datasets, plates and screens.

How to use OMERO tables

• Create a table. In the following example, a table is created with 2 columns and is linked to an Image.

name = char(java.util.UUID.randomUUID());
columns = javaArray('omero.grid.Column', 2);
columns(1) = omero.grid.LongColumn('Uid', 'testLong', []);
valuesString = javaArray('java.lang.String', 1);
columns(2) = omero.grid.StringColumn('MyStringColumn', '', 64, valuesString);

% Create a new table.
table = session.sharedResources().newTable(1, name);

% Initialize the table
table.initialize(columns);

% Create and populate omero.grid (The following java wrapping logic is compatible␣
→˓Matlab2014b onwards)
data = javaArray('omero.grid.Column', 2);
data(1) = omero.grid.LongColumn('Uid', 'test Long', [2]);
valuesString = javaArray('java.lang.String', 1);
valuesString(1) = java.lang.String('add');
data(2) = omero.grid.StringColumn('MyStringColumn', '', 64, valuesString);

% Add data to the table.
table.addData(data);
file = table.getOriginalFile(); % if you need to interact with the table

% link table to an Image
fa = omero.model.FileAnnotationI;
fa.setFile(file);
% Currently OMERO.tables are displayed only in OMERO.web and
% for Screen/plate/wells alone. In all cases the file annotation
% needs to contain a namespace.
fa.setNs(rstring(omero.constants.namespaces.NSBULKANNOTATIONS.value));
link = linkAnnotation(session, fa, 'image', imageId);

• Read the contents of the table.

of = omero.model.OriginalFileI(file.getId(), false);
tablePrx = session.sharedResources().openTable(of);

% Read headers
headers = tablePrx.getHeaders();
for i = 1 : size(headers, 1)

headers(i).name; % name of the header
% Do something

end

(continues on next page)

414 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/examples/WriteData.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

% Depending on the size of table, you may only want to read some blocks.
cols = [0:size(headers, 1)-1]; % The number of columns you wish to read.
rows = [0:tablePrx.getNumberOfRows()-1]; % The number of rows you wish to read.
data = tablePrx.slice(cols, rows); % Read the data.
c = data.columns;
for i = 1 : size(c)

column = c(i);
% Do something

end
tablePrx.close(); % Important to close when done.

ROIs

To learn about the model, see the developers guide to the ROI model. Note that annotations can be linked to ROI.

• Creating ROI
This example creates a ROI with shapes, a rectangle, an ellipse and a polygon, and attaches it to an image:

% First create a rectangular shape.
rectangle = createRectangle(0, 0, 10, 20);
% Indicate on which plane (z, c, t) to attach the shape
setShapeCoordinates(rectangle, 0, 0, 0);

% First create an ellipse shape.
ellipse = createEllipse(0, 0, 10, 20);
% Indicate on which plane (z, c, t) to attach the shape
setShapeCoordinates(ellipse, 0, 0, 0);

% First create a polygon shape.
% Specify x-coordinates, y-coordinates
polygon = createPolygon([1 5 10 8], [1 5 5 10]);
% Indicate on which plane (z, c, t) to attach the shape
setShapeCoordinates(polygon, 0, 0, 0);

% Create the roi.
roi = omero.model.RoiI;
% Attach the shapes to the roi, several shapes can be added.
roi.addShape(rectangle);
roi.addShape(ellipse);
roi.addShape(polygon);

% Link the roi and the image
roi.setImage(omero.model.ImageI(imageId, false));
% Save
iUpdate = session.getUpdateService();
roi = iUpdate.saveAndReturnObject(roi);
% Check that the shape has been added.
numShapes = roi.sizeOfShapes;
for ns = 1 : numShapes

shape = roi.getShape(ns-1);
end

3.2. Using the OMERO API 415

https://docs.openmicroscopy.org/latest/ome-model/developers/roi.html

OMERO, Release 5.6.5-SNAPSHOT-1

See also:
ROI utility functions OMERO.matlab functions for creating and managing Shape and ROI objects.

• Retrieving ROIs linked to an image

service = session.getRoiService();
roiResult = service.findByImage(imageId, []);
rois = roiResult.rois;
n = rois.size;
shapeType = '';
for thisROI = 1 : n

roi = rois.get(thisROI-1);
numShapes = roi.sizeOfShapes;
for ns = 1 : numShapes

shape = roi.getShape(ns-1);
if (isa(shape, 'omero.model.Rectangle'))

rectangle = shape;
rectangle.getX().getValue();

elseif (isa(shape, 'omero.model.Ellipse'))
ellipse = shape;
ellipse.getX().getValue();

elseif (isa(shape, 'omero.model.Point'))
point = shape;
point.getX().getValue();

elseif (isa(shape, 'omero.model.Line'))
line = shape;
line.getX1().getValue();

end
end

end

• Adding Transforms to a Shape object

% Apply rotation alone to an ellipse object
% (angle of rotation set to 10 degrees)
% create ellipse (shape object)
ellipse = createEllipse(0, 0, 10, 20);
setShapeCoordinates(ellipse, 0, 0, 0);
% set angle of rotation
theta = 10;
% create transform object
newTform = omero.model.AffineTransformI;
newTform.setA00(rdouble(cos(theta)));
newTform.setA10(rdouble(-sin(theta)));
newTform.setA01(rdouble(sin(theta)));
newTform.setA11(rdouble(cos(theta)));
newTform.setA02(rdouble(0));
newTform.setA12(rdouble(0));
% apply transform
ellipse.setTransform(newTform);
% Create the ROI
roi = omero.model.RoiI;
roi.addShape(ellipse);
roi = session.getUpdateService().saveAndReturnObject(roi);

416 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/tree/v5.5.4/src/main/roi

OMERO, Release 5.6.5-SNAPSHOT-1

• Retrieving Transforms linked to an Image

for i = 1 : nShapes
shape = roi.getShape(i - 1);

%http://blog.openmicroscopy.org/data-model/future-plans/2016/06/20/shape-transforms/
transform = shape.getTransform();
xScaling = transform.getA00().getValue();
xShearing = transform.getA01().getValue();
xTranslation = transform.getA02().getValue();

yScaling = transform.getA11().getValue();
yShearing = transform.getA10().getValue();
yTranslation = transform.getA12().getValue();

%tformMatrix = [A00, A10, 0; A01, A11, 0; A02, A12, 1];
tformMatrix = [xScaling, yShearing, 0; xShearing, yScaling, 0; xTranslation,␣

→˓yTranslation, 1];

fprintf(1, 'Shape Type : %s\n', char(shape.toString));
fprintf(1, 'xScaling : %s\n', num2str(tformMatrix(1,1)));
fprintf(1, 'yScaling : %s\n', num2str(tformMatrix(2,2)));
fprintf(1, 'xShearing : %s\n', num2str(tformMatrix(2,1)));
fprintf(1, 'yShearing : %s\n', num2str(tformMatrix(1,2)));
fprintf(1, 'xTranslation: %s\n', num2str(tformMatrix(3,1)));
fprintf(1, 'yTranslation: %s\n', num2str(tformMatrix(3,2)));

end

• Removing a shape from ROI

// Retrieve the roi linked to an image
service = session.getRoiService();
roiResult = service.findByImage(imageId, []);
n = rois.size;
for thisROI = 1 : n

roi = rois.get(thisROI-1);
numShapes = roi.sizeOfShapes;
for ns = 1:numShapes

shape = roi.getShape(ns-1);
% Remove the shape
roi.removeShape(shape);

end
% Update the roi.
roi = iUpdate.saveAndReturnObject(roi);

end

• Analyzing shapes

// Retrieve the roi linked to an image
service = session.getRoiService();
roiResult = service.findByImage(imageId, []);
n = rois.size;
toAnalyse = java.util.ArrayList;
for thisROI = 1 : n

(continues on next page)

3.2. Using the OMERO API 417

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

roi = rois.get(thisROI-1);
numShapes = roi.sizeOfShapes;
for ns = 1:numShapes

shape = roi.getShape(ns-1);
toAnalyse.add(java.lang.Long(shape.getId().getValue()));

end
end
//For convenience, we assume the shapes are on the first plane
z = 0;
c = 0;
t = 0;
stats = service.getShapeStatsRestricted(toAnalyse, z, t, [c]);
calculated = stats(1,1);
mean = calculated.mean(1,1);

Deleting data

It is possible to delete projects, datasets, images, ROIs, etc. and objects linked to them depending on the specified
options (see Deleting in OMERO). For example, images of known identifiers can be deleted from the server using the
deleteImages function:

deleteImages(session, imageIds);

See also:
deleteProjects, deleteDatasets, deleteScreens, deletePlates Utility functions to delete objects.

Rendering images

The RenderImages.m example script shows how to initialize the rendering engine and render an image.

Creating Image

The CreateImage.m example script shows how to create an image in OMERO. A similar approach can be applied when
uploading an image. To upload individual planes onto the server, the data must be converted into a byte (int8) array
first. If the Pixels object has been created, this conversion can done using the toByteArray function.

3.2.6 OMERO C++ language bindings

Using the Ice C++ language mapping from ZeroC, OMERO provides native access to your data from C++ code. CMake
is used for building the C++ bindings.

Binaries are not provided, therefore it will be necessary for you to compile your own.

418 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/delete/deleteImages.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/delete/deleteProjects.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/delete/deleteDatasets.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/delete/deleteScreens.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/delete/deletePlates.m
https://github.com/ome/omero-matlab/blob/v5.5.4/examples/RenderImages.m
https://github.com/ome/omero-matlab/blob/v5.5.4/examples/CreateImage.m
https://github.com/ome/omero-matlab/blob/v5.5.4/src/main/helper/toByteArray.m
https://doc.zeroc.com/display/Ice/Hello+World+Application
https://zeroc.com
https://www.cmake.org/

OMERO, Release 5.6.5-SNAPSHOT-1

Prerequisites

• The OMERO source code

• A C++ compiler

– GCC is recommended for Linux and MacOS X

– Visual Studio or the Platform SDK for Windows

• The ZeroC Ice libraries, headers and slice definitions

• cmake

• Google Test (optional; needed to build the unit and integration tests)

Note: Users of Visual Studio with Ice 3.6 will encounter this error while building OmeroCpp: LINK : fatal
error LNK1189: library limit of 65535 objects exceeded and will be unable to build OMERO C++ lan-
guage bindings for Windows as a result of a 16-bit limitation in the Windows PE-COFF executable format used for
DLLs, even on 64-bit systems. It is hoped that Ice 3.7 will resolve the problem since it generates far fewer symbols
than 3.6.

Restrictions

If you are restricted to a specific version of GCC or Ice, you may need to obtain or build a compatible version of Ice or
GCC, respectively.

Preparing to build

Begin by following the instructions under Installing OMERO from source to acquire the source code. Be sure that the
git branch you are using matches the version of your server!

The location of your Ice installation should be automatically detected if installed into a standard location. If this is not
the case, set the location of your Ice installation using the ICE_HOME environment variable or the cmake -DIce_HOME
or cmake -DIce_SLICE_DIR cmake options for your Ice installation (see below). Some possible locations for the
3.6.5 version of Ice follow. Note these are just examples; you need to adjust them for the Ice installation path and
version in use on your system.

• Ice built from source and installed into /opt:

export ICE_HOME=/opt/Ice-3.6.5

• Ice installed on Linux using RPM packages:

export ICE_HOME=/usr/share/Ice-3.6.5

• MacOS X with homebrew:

export ICE_HOME=/usr/local/Cellar/ice/3.6.5

• Windows using Visual Studio:

set ICE_HOME=C:\Program Files (x86)\ZeroC\Ice-3.6.5

Note: If the Ice headers and libraries are not automatically discovered, these will need to be specified using appropriate
cmake options (see below).

3.2. Using the OMERO API 419

OMERO, Release 5.6.5-SNAPSHOT-1

Building the library

The shared library and examples are always built by default. The unit and integration tests are built if Google test (gtest)
is detected.

On Linux, Unix or MacOS X with make:

export GTEST_ROOT=/path/to/gtest
mkdir omero-build
cd omero-build
cmake [-Dtest=(TRUE|FALSE)] [cmake options] /path/to/openmicroscopy
make

For example:

cmake "-DCMAKE_CXX_FLAGS=$CMAKE_CXX_FLAGS" \
"-DCMAKE_EXE_LINKER_FLAGS=$CMAKE_LD_FLAGS" \
"-DCMAKE_MODULE_LINKER_FLAGS=$CMAKE_LD_FLAGS" \
"-DCMAKE_SHARED_LINKER_FLAGS=$CMAKE_LD_FLAGS" \
-DCMAKE_VERBOSE_MAKEFILE:BOOL=ON /path/to/openmicroscopy
make -j8

If you would like to build the C++ tests, run the above with the GTEST_ROOT environment variable set.

Note: When cmake is run, it will run ./build.py build-default in the openmicroscopy source tree to generate
some of the C++ and Ice sources. If you have previously done a build by running ./build.py, this step will be skipped.
However, if you have recently switched branches without cleaning the source tree, please run ./build.py clean in
the source tree to clean up all the generated files prior to running cmake.

If the build fails with errors such as

/usr/include/Ice/ProxyHandle.h:176:13: error: ‘upCast’ was not declared in this scope,
and no declarations were found by argument-dependent lookup at the point of
instantiation

this is caused by the Ice headers being buggy, and newer versions of GCC rejecting the invalid code. To compile in
this situation, add -fpermissive to CXXFLAGS to allow the invalid code to be accepted, but do note that this may also
mask other problems so should not be used unless strictly needed.

cmake build configuration

cmake supports configuration of the build using many different environment variables and options; for a full list, see
the cmake reference documentation. The following environment variables are commonly needed:

CMAKE_INCLUDE_PATH Directories to be searched for include files, for example

/opt/Ice-3.6.5/include

A : or ; separator character is used to separate directories, depending on the platform. Note these are used only
for feature tests, not for passing to the compiler when building, for which CMAKE_CXX_FLAGS is needed.

CMAKE_LIBRARY_PATH Directories to be searched for libraries, for example

/opt/Ice-3.6.5/lib

420 Chapter 3. Developer Documentation

https://www.cmake.org/cmake/help/documentation.html

OMERO, Release 5.6.5-SNAPSHOT-1

Directories are separated by : or ; as with CMAKE_INCLUDE_PATH. Note these are used only for feature tests and
finding libraries, not for passing to the linker when building, for which CMAKE_*_LINKER_FLAGS is needed.

CXX C++ compiler executable. Useful with ccache.

CXXFLAGS C++ compiler flags. Use of CMAKE_CXX_FLAGS is preferred.

ICE_HOME The location of the Ice installation. If this is not sufficient to discover the correct binary and library direc-
tories, they may otherwise be manually specified with the options below. Likewise for the include and slice
directories. This may also be set as a cmake cache variable (see below).

VERBOSE If set to 1, show the actual build commands rather than the pretty “Compiling XYZ. . . ” statements.

In addition, cmake options may be defined directly when running cmake. Commonly needed options include:

-DCMAKE_PREFIX_PATH

Search this location when searching for programs, headers and libraries. Use to search /usr/local or /opt/
Ice, for example. More specific search locations may be specified using cmake -DCMAKE_INCLUDE_PATH ,
cmake -DCMAKE_LIBRARY_PATH and cmake -DCMAKE_PROGRAM_PATH separately, if required.

-DCMAKE_INCLUDE_PATH

Search this location when searching for headers. Use to include /usr/local/include or /opt/Ice/include,
for example.

-DCMAKE_LIBRARY_PATH

Search this location when searching for libraries. Use to include /usr/local/lib or /opt/Ice/lib, for ex-
ample.

-DCMAKE_PROGRAM_PATH

Search this location when searching for programs. Use to include /usr/local/bin or /opt/Ice/bin, for
example.

-DCMAKE_CXX_FLAGS

C++ compiler flags. Use to set any additional linker flags desired.

-DCMAKE_EXE_LINKER_FLAGS

Executable linker flags. Use to set any additional linker flags desired.

-DCMAKE_MODULE_LINKER_FLAGS

Loadable module linker flags. Use to set any additional linker flags desired.

-DCMAKE_SHARED_LINKER_FLAGS

Shared library linker flags. Use to set any additional linker flags desired.

-DCMAKE_VERBOSE_MAKEFILE

Default to printing all commands executed by make. This may be overridden with the make VERBOSE variable.

-DIce_HOME

The location of the Ice installation. If this is not sufficient to discover the correct binary and library directo-
ries, they may otherwise be manually specified with the options below. Likewise for the include and slice
directories.

-DIce_SLICE2XXX_EXECUTABLE

Specific location of individual Ice slice2xxx programs, e.g. Ice_SLICE2CPP_EXECUTABLE for slice2cpp
or Ice_SLICE2JAVA_EXECUTABLE for slice2java. These are typically found in ${ICE_HOME}/bin or on the
default PATH. These will not normally require setting.

3.2. Using the OMERO API 421

https://ccache.samba.org/

OMERO, Release 5.6.5-SNAPSHOT-1

-DIce_INCLUDE_DIR

Location of Ice headers. This is typically ${ICE_HOME}/include or on the default include search path. This
will not normally require setting.

-DIce_SLICE_DIR

Location of Ice slice interface definitions. This is typically ${ICE_HOME}/slice. Use for installations
where cmake -DIce_HOME does not contain slice or situations where you wish to build without setting
cmake -DIce_HOME. Note that when building using build.py, rather than building directly with cmake, the
SLICEPATH environment variable should be used instead (the ant build can’t use the cmake variables since it
only runs cmake after a full build of the Java server).

-DIce_<C>_LIBRARIES

Specific libraries for Ice component <C>, where <C> is the uppercased name of the Ice component, e.g. ICE for
the Ice component, ICEUTIL for the IceUtil component or GLACIER2 for the Glacier2 component. These
libraries are typically found in ${ICE_HOME}/lib or on the default library search path. These will not normally
require setting.

-DIce_DEBUG

Set to ON to print detailed diagnostics about the detected Ice installation. Use if there are any problems finding
Ice.

cmake offers many additional options. Please refer to the documentation for further details, in particular to the variables
which change the behavior of the build.

Visual Studio configuration

Warning: OMERO.cpp will not currently build on Windows due to exceeding DLL symbol limits on this platform,
leading to a failure when linking the DLL. It is hoped that this platform limitation can be worked around in a future
OMERO release.

cmake has full support for Visual Studio. Use the cmake -G option to set the generator for your Visual Studio
version, with a Win64 suffix for an x64 build. The correct Ice programs and libraries for your Ice installation should
be automatically discovered.

cmake -G "Visual Studio 11 Win64" [cmake options] /path/to/openmicroscopy

This is for a 64-bit Visual Studio 2012 build. Modify appropriately for other versions and compilers. Running

cmake --help

will list the available generators for your platform (without the Win64 suffix).

Once cmake has finished running, the generated project and solution files may be then opened in Visual Studio, or
built directly using the msbuild command-line tool (make sure that the Visual Studio command prompt matches
the generator chosen) or by running:

cmake --build .

As for the Unix build, above, it is also possible to build on Windows using build.py or ant, providing that you
configure the generator appropriately using the correct cmake options. However, this will not work for all generators
reliably, and the Windows shell quoting makes passing nested quotes to ant quite tricky, so running cmake by hand is
recommended.

422 Chapter 3. Developer Documentation

https://www.cmake.org/cmake/help/v3.0/
https://www.cmake.org/cmake/help/v3.0/manual/cmake-variables.7.html#variables-that-change-behavior
https://www.cmake.org/cmake/help/v3.0/manual/cmake-variables.7.html#variables-that-change-behavior

OMERO, Release 5.6.5-SNAPSHOT-1

Note: It may be necessary to specify /Zm1000 as an additional compiler setting.

Installing the library

If using make, run:

make [DESTDIR=/path/to/staging/directory] install

If using another build system, please invoke the equivalent install target for that system.

Using the library

To use OMERO C++ language bindings it is necessary to point your compiler and linker at the mentioned directories
above. A simple GNU make Makefile might look like this:

1 #
2 # MAKEFILE:
3 #
4 # Where the OMERO distribution was installed
5 OMERO_DIST ?= /opt/omero
6

7 # Where the Ice lib/ and include/ directories are to be found
8 ICE_HOME ?= /usr/share/Ice
9

10 INCLUDES=-I$(OMERO_DIST)/include -I$(ICE_HOME)/include
11

12 LIBS = -L$(OMERO_DIST)/lib -L$(ICE_HOME)/lib -L$(ICE_HOME)/lib64 \
13 -lIce -lIceUtil -lGlacier2 -lomero-client
14

15 LIBPATH = $(LD_LIBRARY_PATH):$(ICE_HOME)/lib:$(ICE_HOME)/lib64:$(OMERO_DIST)/lib
16

17 .PHONY: clean run
18

19 yourcode.o: yourcode.cpp
20 $(CXX) $(CXXFLAGS) -c -o $@ $< $(INCLUDES)
21

22 yourcode: yourcode.o
23 $(CXX) -o $@ $^ $(LIBS)
24

25 run: yourcode
26 LD_LIBRARY_PATH="$(LIBPATH)" ./yourcode --Ice.Config=../etc/ice.config
27

28 clean:
29 rm -f yourcode *.o *~ core

3.2. Using the OMERO API 423

OMERO, Release 5.6.5-SNAPSHOT-1

A trivial example: yourcode.cpp

A simple example might look something like the following:

1 //
2 // yourcode.cpp:
3 //
4

5 // Domain
6 #include <omero/client.h>
7 #include <omero/api/IAdmin.h>
8 // Std
9 #include <iostream>

10 #include <cassert>
11 #include <vector>
12 #include <time.h>
13 #include <map>
14

15 using namespace std;
16

17 /*
18 * Pass "--Ice.Config=your_config_file" to the executable, or
19 * set the ICE_CONFIG environment variable.
20 */
21 int main(int argc, char* argv[])
22 {
23 omero::client_ptr omero = new omero::client(argc, argv);
24 omero::api::ServiceFactoryPrx sf = omero->createSession();
25 sf->closeOnDestroy();
26

27 // IAdmin is responsible for all user/group creation, password changing, etc.
28 omero::api::IAdminPrx admin = sf->getAdminService();
29

30 // Who you are logged in as.
31 cout << admin->getEventContext()->userName << endl;
32

33 // These two services are used for database access
34 omero::api::IQueryPrx query = sf->getQueryService();
35 omero::api::IUpdatePrx update = sf->getUpdateService();
36

37 return 0;
38 }

This code does not do much. It creates a server session, loads a few services, and prints the user’s name. For serious
examples, see Working with OMERO.

424 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Compiling and running your code

To compile and run yourcode, download the two files above (Makefile and yourcode.cpp) and then in a shell:

make OMERO_DIST=dist yourcode
LD_LIBRARY_PATH=dist/lib ./yourcode --Ice.Config=dist/etc/ice.config

where you have edited dist/etc/ice.config to contain the values:

omero.host=localhost
omero.user=your_name
omero.pass=your_password

Alternatively, you can pass these on the command-line:

LD_LIBRARY_PATH=dist/lib ./yourcode omero.host=localhost --omero.user=foo --omero.
→˓pass=bar

Note: This example explains how to run on Linux only. For doing the same on MacOS X, change all instances of
LD_LIBRARY_PATH to DYLD_LIBRARY_PATH.

Further information

For the details behind writing, configuring, and executing a client, please see Working with OMERO.

See also:
Ice, OMERO.grid, OMERO Application Programming Interface, Build System, #1596 which added 64-bit support

3.2.7 JSON API

Overview

The OMERO JSON API described here provides create, read, update and delete access to an underlying OMERO
server. It is implemented as a Django app named api in the OMERO.web framework.

Omero-marshal and Projection-based APIs

The majority of the API URLs use omero-marshal to generate JSON dictionaries from OMERO model objects. All
these URLs are under the m prefix:

<server>/api/v0/m/

The webclient currently uses a small number of URLs to perform customized queries for browsing Project, Dataset and
Image hierarchies. These queries use projections and typically load a subset of fields for OMERO objects in order to
improve performance for large data counts. These will be made available under the p prefix in future releases but are
not yet supported.

<server>/api/v0/p/

3.2. Using the OMERO API 425

https://zeroc.com
https://trac.openmicroscopy.org/ome/ticket/1596
https://github.com/ome/omero-marshal

OMERO, Release 5.6.5-SNAPSHOT-1

Versioning

The JSON API uses major and minor version numbers to reflect breaking and non-breaking changes respectively. Non-
breaking changes include simple addition of attributes to JSON data or addition of new URLs. The API version is not
tied to the version of OMERO.server.

The major version is included in the URL such as /v0/ whereas the full version number can be found in the header:

X-OMERO-ApiVersion : 0.2

JSON format

The JSON objects generated by omero-marshal are defined by the OME-Model. The OMERO model closely follows
the OME schema but is not identical. In the cases where OMERO-specific fields are included, these will be prefixed by
omero:. For example, omero:details specifies the owner, group and permissions of each object in OMERO. JSON
objects also include an @id of the object in the OMERO database and a @type that specifies the OME Schema used to
generate it such as http://www.openmicroscopy.org/Schemas/OME/2016-06#Project.

All the fields of the OMERO model object will be included in the JSON except those that are null, which will be omit-
ted. Where supported, modifying the JSON object and saving this back to OMERO will update the object accordingly.

URLs in JSON

URLs are included in JSON objects using keys with the url: prefix. URLs are added for related objects to facilitate
exploration of the API in a browser. You may find that a JSON formatting plugin for your browser improves both the
presentation and navigation of JSON data.

Pagination

Requests that return a list of items will be paginated, showing a limit of the first 200 objects by default. Pagination
can be specified using the limit and offset query parameters:

List the first 100 Projects (offset=0 by default)
<server>/api/v0/m/projects/?limit=100

List the next 100 Projects
<server>/api/v0/m/projects/?limit=100&offset=100

Pagination details will be returned in a meta JSON object, including the totalCount of objects for that query, the
current offset and limit as well as the maxLimit that you can use.

"meta": {
"totalCount": 13240,
"maxLimit": 500,
"limit": 200,
"offset": 0

},

Sysadmins can configure the default limit and maxLimit settings for their server, for example:

$ omero config set omero.web.api.limit 100
$ omero config set omero.web.api.max_limit 300

426 Chapter 3. Developer Documentation

https://github.com/ome/omero-marshal
https://docs.openmicroscopy.org/latest/ome-model/ome-xml/

OMERO, Release 5.6.5-SNAPSHOT-1

The maxLimit setting prevents API consumers from requesting very large amounts of data by limiting the number of
top-level objects that are loaded.

Loading of linked objects

In most cases the API loads only the requested objects along with their omero:details. For example, /api/v0/
m/projects/ loads Projects but does not also load their child Datasets. However, it is sometimes useful to load a
number of closely related objects. For example, loading Images also loads their Pixels data (but not Channels) and
loading Wells also loads WellSamples (fields) and Images (but not Pixels). The number of objects loaded when listing
Images or Wells is kept to a minimum to avoid requesting too much data. This restriction is relaxed when a single
Image or Well is loaded. For example, loading a single Image will also load Channels.

Normalizing Experimenters and Groups

When returning a list of JSON objects that each contain omero:details with owner and group data, these will
typically be nested many times within the list. In order to avoid this duplication, we can remove objects from within
each omero:details and place them under top-level experimenters and experimenterGroups lists. You can
specify this with the ?normalize=true query parameter. N.B.: Currently this normalizing will only apply to the
top-level objects being listed, such as Projects, Datasets and Images. Where child objects are also loaded (for example
Pixels within an Image), the omero:details of these objects will not be affected by the ?normalize=true parameter.

Child counts

For container objects such as Projects, Datasets and Screens it is often useful to know the number of children within
them. This can be specified with ?childCount=true parameter. This will add an omero:childCount value to the
JSON data.

Filtering by Owner and Group

Most data in OMERO has an Owner and is assigned to a permissions Group. By default, queries will return data from
all owners across all groups that are accessible to the current user. Use the query strings to filter by owner and/or group:

/api/v0/m/projects/?owner=3&group=5

When you are retrieving data using an object ID you will not need to filter by group since all the data will be in the
same group. For example, Datasets in a specified Project will all be in the same group as the Project.

Error handling

Errors will result in responses with an appropriate status and may include JSON content with a message to provide
more information:

• 404 Not Found: Caused by an invalid URL or when a specified object cannot be found in OMERO.

• 400 Bad Request: May be caused by invalid query parameters or submitting invalid JSON content. For example,
?limit=foo will give a response of:

{"message": "invalid literal for int() with base 10: 'foo'"}

• 405 Method Not Allowed: Returned if you try to use the wrong http method for a url, such as POST to /api/
v0/m/projects/. It can also be caused by trying to create or update an unsupported object, such as an Image.

3.2. Using the OMERO API 427

OMERO, Release 5.6.5-SNAPSHOT-1

• 500 Internal Server Error: Generated from any unhandled exceptions. See the message returned and check
whether a stacktrace is also included.

Getting started

You may find this example python script useful. It uses the python requests library to connect to the JSON api, login,
query data, create and delete Projects. These steps are covered in more detail below.

For an example how to use the API with Java, see JSONClient.java.

See the following link for a JSON client example examples/Training/javascript/index.html.

List supported versions

You need to find which versions of the API are supported by your server, as described above. These are provided by
the base URL:

GET /api/

Response

{
"data": [
{
"version": "0",
"url:base": "http://<server>/api/v0/"

}
]

}

List starting URLs

The base URL for the chosen version will list a number of URLs for logging on and getting started.

GET /api/v0/

Response

{
"url:login": "http://<server>/api/v0/login/",
"url:save": "http://<server>/api/v0/m/save/",
"url:projects": "http://<server>/api/v0/m/projects/",
"url:plates": "http://<server>/api/v0/m/plates/",
"url:datasets": "http://<server>/api/v0/m/datasets/",
"url:token": "http://<server>/api/v0/token/",
"url:schema": "http://www.openmicroscopy.org/Schemas/OME/2016-06",
"url:screens": "http://<server>/api/v0/m/screens/",
"url:servers": "http://<server>/api/v0/servers/",
"url:images": "http://<server>/api/v0/m/images/"

}

428 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/Training/python/Json_Api/Login.py
https://github.com/ome/openmicroscopy/blob/develop/examples/Training/javascript/index.html

OMERO, Release 5.6.5-SNAPSHOT-1

List available OMERO servers

Your API may allow you to connect to several different OMERO servers.

GET /api/v0/servers/

Response

{
"data": [
{
"host": "<server>",
"server": "omero",
"id": 1,
"port": 4064

}
]

}

Get CSRF token

In order to prevent CSRF attacks, CSRF tokens are required for any POST, PUT and DELETE requests. You will need
to obtain a CSRF token for your session and use it for all subsequent requests in that session. You can obtain this from
the csrftoken cookie of any request or from the following URL:

GET /api/v0/token/

Response

{
"data": "eNoVq528bOqlhQqbCzKuviODTRX3PUO2"

}

Login

You can login to create an OMERO session. You must also include the CSRF token, either in the POST parameters as
csrfmiddlewaretoken or in the session header as X-CSRFToken.

The EventContext for this session will be returned to you.

POST /api/v0/login/

Parameters

Name Type Description
--
server Number ID of the server
username String User's username
password String User's password
csrfmiddlewaretoken String CSRF token (can be provided in header)

Response

3.2. Using the OMERO API 429

OMERO, Release 5.6.5-SNAPSHOT-1

{
"eventContext": {
"userName": "ben",
"eventId": -1,
"sessionUuid": "0b30ee4a-c0b2-4b0f-9c61-f48b31bcad8c",
"eventType": "User",
"userId": 3,
"sessionId": 171319,
"groupName": "Nevis Lab",
"isAdmin": False,
"memberOfGroups": [5, 1, 4],
"leaderOfGroups": [],
"groupId": 5

},
"success": true

}

Projects, Datasets and Images

OMERO organizes Images in two types of many-to-many hierarchy: screen/plate/[run]/well/image for HCS
data and project/dataset/image for other data. Plates, Datasets and Images can also be Orphaned if not contained
within any parent container.

Parameters
These query parameters are used by many queries below:

Name Type Description
--
offset Number Pagination offset. The default is 0

limit Number The size of each page. The default is 200

normalize Boolean Place Experimenters and Groups into top-level lists instead
of nesting within objects

childCount Boolean Use ?childCount=true to include an omero:childCount attribute
for container objects

owner Number Filter by Experimenter ID

group Number Filter by Group ID

List Projects

Parameters

Name Type Description
--
dataset Number Filter Projects by child Dataset ID

These query parameters are also supported (see above):

430 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

offset, limit, owner, group, childCount, normalize

GET /api/v0/m/projects/

Response

{
"data": [
{
"Name": "New data",
"Description": "Example Project",
"url:project": "https://server.openmicroscopy.org/api/v0/m/projects/11601/",
"url:datasets": "https://server.openmicroscopy.org/api/v0/m/projects/11601/

→˓datasets/",
"@id": 11601,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",
"omero:details": {
"owner": {
"UserName": "ben",
"FirstName": "Ben",
"MiddleName": "",
"omero:details": {
"@type": "TBD#Details",
"permissions": {
"isUserWrite": false,
"isWorldWrite": false,
"canDelete": false,
"isWorldRead": false,
"perm": "------",
"canEdit": false,
"canAnnotate": false,
"isGroupAnnotate": false,
"isGroupWrite": false,
"canLink": false,
"isUserRead": false,
"@type": "TBD#Permissions",
"isGroupRead": false

}
},
"Email": "",
"LastName": "Nevis",
"@id": 0,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Experimenter"

},
"group": {
"omero:details": {
"@type": "TBD#Details",
"permissions": {
"isUserWrite": true,
"isWorldWrite": false,
"canDelete": false,
"isWorldRead": false,
"perm": "rwra--",

(continues on next page)

3.2. Using the OMERO API 431

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"canEdit": false,
"canAnnotate": false,
"isGroupAnnotate": true,
"isGroupWrite": false,
"canLink": false,
"isUserRead": true,
"@type": "TBD#Permissions",
"isGroupRead": true

}
},
"@id": 5,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#ExperimenterGroup",
"Name": "read-ann"

},
"@type": "TBD#Details",
"permissions": {
"isUserWrite": true,
"isWorldWrite": false,
"canDelete": false,
"isWorldRead": false,
"perm": "rwra--",
"canEdit": false,
"canAnnotate": true,
"isGroupAnnotate": true,
"isGroupWrite": false,
"canLink": false,
"isUserRead": true,
"@type": "TBD#Permissions",
"isGroupRead": true

}
}

}
]

}

Get a single Project

GET /api/v0/m/projects/{project_id}/

Response

{
"data": {
"@id": 3872,
"Name": "RNAi experiments",
"Description": "Knockout assays",
"url:datasets": "https://server.openmicroscopy.org/api/v0/m/projects/3872/datasets/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",
"omero:details": {
omitted for brevity

(continues on next page)

432 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

}
}

}

List Datasets

Parameters

Name Type Description
--
project Number Filter Datasets by parent Project ID

image Number Filter Datasets by child Image ID

orphaned Boolean Find Datasets that are not in any Project

These query parameters are also supported (see above):

offset, limit, owner, group, childCount, normalize

GET /api/v0/m/datasets/

Response

{
"data": [
{
"Name": "Test data",
"Description": "This is the Dataset description",
"url:dataset": "https://server.openmicroscopy.org/api/v0/m/dataset/112/",
"url:images": "https://server.openmicroscopy.org/api/v0/m/datasets/112/images/",
"url:projects": "https://server.openmicroscopy.org/api/v0/m/datasets/112/projects/

→˓",
"@id": 112,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",
"omero:details": {
omitted for brevity

}
}

]
}

Datasets in a Project
Datasets can be filtered by parent Project using the ?project=id query string but you can also show Datasets in a
Project using this URL:

GET /api/v0/m/projects/{project_id}/datasets/

3.2. Using the OMERO API 433

OMERO, Release 5.6.5-SNAPSHOT-1

Get a single Dataset

GET /api/v0/m/datasets/{dataset_id}/

Response

{
"data": {
"@id": 9702,
"Name": "My data",
"Description": "An example set",
"url:images": "https://server.openmicroscopy.org/api/v0/m/datasets/9702/images/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Dataset",
"omero:details": {
omitted for brevity

}
}

}

List Images

When Images are listed, their Pixels object is also loaded, which includes dimensions and pixel sizes of the Image.
When a single Image is retrieved, the Channels data is additionally loaded.

Parameters

Name Type Description
--
dataset Number Filter Images by parent Dataset ID

orphaned Boolean Find Images that are not in any Dataset or Well

These query parameters are also supported (see above):

offset, limit, owner, group, normalize

GET /api/v0/m/images/

Response

{
"data": [
{
"@id": 16783,
"Name": "CFP_AurB_R3D.dv",
"AcquisitionDate": 1235730332000,
"omero:details": {
omitted for brevity

},
"url:image": "https://server.openmicroscopy.org/api/v0/m/images/16783/",
"Pixels": {
"@id": 12801,

(continues on next page)

434 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"SizeX": 512,
"SizeY": 512,
"SizeZ": 29,
"SizeC": 2,
"SizeT": 1,
"PhysicalSizeX": {
"Symbol": "µm",
"Value": 0.12698,
"@type": "TBD#LengthI",
"Unit": "MICROMETER"

},
"PhysicalSizeY": {
"Symbol": "µm",
"Value": 0.12698,
"@type": "TBD#LengthI",
"Unit": "MICROMETER"

},
"PhysicalSizeZ": {
"Symbol": "µm",
"Value": 0.2,
"@type": "TBD#LengthI",
"Unit": "MICROMETER"

},
"Type": {
"omero:details": {
omitted for brevity

},
"@id": 6,
"@type": "TBD#PixelsType",
"value": "uint16"

},
"omero:sha1": "eae01c54191fd9cf4b09e3651e1899d677375b7d",
"omero:details": {
omitted for brevity

},
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Pixels",
"SignificantBits": 16

},
"omero:series": 0,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Image"

}
]

}

Images in a Dataset
Images can be filtered by parent Dataset using the ?dataset=id query string but you can also show Images in a Dataset
using this URL:

GET /api/v0/m/datasets/{dataset_id}/images/

3.2. Using the OMERO API 435

OMERO, Release 5.6.5-SNAPSHOT-1

Get a single Image

GET /api/v0/m/images/{image_id}/

Response
The response for a single Image is the same as for listing Images above with the addition of Channels data.

{
"data": [
{
"@id": 16783,
"Name": "CFP_AurB_R3D.dv",
"AcquisitionDate": 1235730332000,
"omero:details": {
omitted for brevity

},
"Pixels": {
"@id": 12801,
"Channels": [
{
"omero:photometricInterpretation": {
"omero:details": {},
"@id": 5,
"@type": "TBD#PhotometricInterpretation",
"value": "Monochrome"

},
"Name": "CFP_JP4",
"Color": 65535,
"omero:details": {},
"ExcitationWavelength": {
"Symbol": "nm",
"Value": 436,
"@type": "TBD#LengthI",
"Unit": "NANOMETER"

},
"SamplesPerPixel": 1,
"NDFilter": 1,
"EmissionWavelength": {
"Symbol": "nm",
"Value": 470,
"@type": "TBD#LengthI",
"Unit": "NANOMETER"

},
"omero:LogicalChannelId": 12301,
"@id": 14451,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Channel"

},
{
"omero:photometricInterpretation": {
"omero:details": {},
"@id": 5,
"@type": "TBD#PhotometricInterpretation",

(continues on next page)

436 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"value": "Monochrome"
},
"Name": "RD_TR-PE",
"Color": -16776961,
"omero:details": {},
"ExcitationWavelength": {
"Symbol": "nm",
"Value": 555,
"@type": "TBD#LengthI",
"Unit": "NANOMETER"

},
"SamplesPerPixel": 1,
"NDFilter": 0,
"EmissionWavelength": {
"Symbol": "nm",
"Value": 617,
"@type": "TBD#LengthI",
"Unit": "NANOMETER"

},
"omero:LogicalChannelId": 12303,
"@id": 14453,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Channel"

}
],
"SizeX": 512,
"SizeY": 512,
"SizeZ": 29,
"SizeC": 2,
"SizeT": 1,
"PhysicalSizeX": {
"Symbol": "µm",
"Value": 0.12698,
"@type": "TBD#LengthI",
"Unit": "MICROMETER"

},
"PhysicalSizeY": {
"Symbol": "µm",
"Value": 0.12698,
"@type": "TBD#LengthI",
"Unit": "MICROMETER"

},
"PhysicalSizeZ": {
"Symbol": "µm",
"Value": 0.2,
"@type": "TBD#LengthI",
"Unit": "MICROMETER"

},
"Type": {
"omero:details": {
omitted for brevity

},
"@id": 6,

(continues on next page)

3.2. Using the OMERO API 437

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"@type": "TBD#PixelsType",
"value": "uint16"

},
"omero:sha1": "eae01c54191fd9cf4b09e3651e1899d677375b7d",
"omero:details": {
omitted for brevity

},
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Pixels",
"SignificantBits": 16

},
"omero:series": 0,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Image"

}
]

}

Screens, Plates and Wells

For more information on the Screen, Plate, Well data model, please see the documentation page.

List Screens

Parameters

Name Type Description
--
plate Number Filter Datasets by child Plate ID

These query parameters are also supported (see above):

offset, limit, owner, group, childCount, normalize

GET /api/v0/m/screens/

Response

{
"data": [
{
"@id": 582,
"Name": "Test data",
"Description": "This is the Screen description",
"url:screen": "https://server.openmicroscopy.org/api/v0/m/screen/582/",
"url:plates": "https://server.openmicroscopy.org/api/v0/m/screen/582/plates/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Screen",
"omero:details": {
omitted for brevity

}
}

]
}

438 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/latest/ome-model/developers/screen-plate-well.html

OMERO, Release 5.6.5-SNAPSHOT-1

Get a single Screen

GET /api/v0/m/screens/{screen_id}/

Response

{
"data": {
"@id": 582,
"Name": "Test data",
"Description": "This is the Screen description",
"url:plates": "https://server.openmicroscopy.org/api/v0/m/screen/582/plates/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Screen",
"omero:details": {
omitted for brevity

}
}

}

List Plates

Parameters

Name Type Description
--
screen Number Filter Plates by parent Screen ID

well Number Filter Plates by child Well ID

orphaned Boolean Find Plates that are not in any Screen

These query parameters are also supported (see above):

offset, limit, owner, group, childCount, normalize

GET /api/v0/m/plates/

Response

{
"data": [
{
"@id": 5067,
"Name": "Plate name",
"Rows": 8,
"Columns": 12,
"RowNamingConvention": "letter",
"ColumnNamingConvention": "number",
"ExternalIdentifier": "003857",
"url:plate": "https://server.openmicroscopy.org/api/v0/m/plates/5067/",
"url:plateacquisitions": "https://server.openmicroscopy.org/api/v0/m/plates/5067/

→˓plateacquisitions/",
(continues on next page)

3.2. Using the OMERO API 439

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"url:wells": "https://server.openmicroscopy.org/api/v0/m/plates/5067/wells/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Plate",
"omero:details": {
omitted for brevity

}
},

]
}

Plates in a Screen
Plates can be filtered by parent Screen using the ?screen=id query string but you can also show Plates in a Screen
using this URL:

GET /api/v0/m/screens/{screen_id}/plates/

Get a single Plate

GET /api/v0/m/plates/{plate_id}/

Response
The response for a single Plate includes information on the WellSamples (fields) for each Well such as the min/max
WellSampleIndex for the Plate.

{
"data": {
"@id": 5067,
"Name": "Plate name",
"Rows": 8,
"Columns": 12,
"RowNamingConvention": "letter",
"ColumnNamingConvention": "number",
"ExternalIdentifier": "003857",
"url:plate": "https://server.openmicroscopy.org/api/v0/m/plates/5067/",
"url:plateacquisitions": "https://server.openmicroscopy.org/api/v0/m/plates/5067/

→˓plateacquisitions/",
"url:wells": "https://server.openmicroscopy.org/api/v0/m/plates/5067/wells/",
"url:wellsampleindex_wells": [
"https://server.openmicroscopy.org/api/v0/m/plates/5068/wellsampleindex/0/wells/",
"https://server.openmicroscopy.org/api/v0/m/plates/5068/wellsampleindex/1/wells/",
"https://server.openmicroscopy.org/api/v0/m/plates/5068/wellsampleindex/2/wells/",
"https://server.openmicroscopy.org/api/v0/m/plates/5068/wellsampleindex/3/wells/"

],
"omero:wellsampleIndex": [
0,
3

],
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Plate",
"omero:details": {
omitted for brevity

}
(continues on next page)

440 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

}
}

List Plate Acquisitions

A Plate Acquisition (run) is a collection of WellSamples, grouped by an acquisition time. A Plate may contain zero,
one or more Plate Acquisitions.

GET /api/v0/m/plates/{plate_id}/plateacquisitions/

Response

{
"data": [
{
"@id": 4217,
"url:wellsampleindex_wells": [
"https://server.openmicroscopy.org/api/v0/m/plateacquisitions/4217/

→˓wellsampleindex/0/wells/"
"https://server.openmicroscopy.org/api/v0/m/plateacquisitions/4217/

→˓wellsampleindex/1/wells/"
"https://server.openmicroscopy.org/api/v0/m/plateacquisitions/4217/

→˓wellsampleindex/2/wells/"
],
"omero:details": {
omitted for brevity

},
"MaximumFieldCount": 3,
"url:plateacquisition": "https://server.openmicroscopy.org/api/v0/m/

→˓plateacquisitions/4217/",
"omero:wellsampleIndex": [
0,
2

],
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#PlateAcquisition"

}
]

}

List Wells in a Plate

Each Well in a Plate may contain zero, one or many WellSamples (fields). By default, when listing Wells in a Plate, all
of the WellSamples and Images will be loaded for each Well. Wells are ordered by Column and Row.

Parameters
The following query parameters can be used (as described above)

offset, limit, owner, normalize

3.2. Using the OMERO API 441

OMERO, Release 5.6.5-SNAPSHOT-1

GET /api/v0/m/plates/{plate_id}/wells/

Note: If there are a large number of WellSamples per Well, this has the potential to load a large amount of data. This
can be reduced by using a smaller limit on the number of Wells loaded or only loading a single WellSample per Well,
as described below.

Response

{
"data": [
{
"@id": 139,
"Column": 0,
"Row": 0,
"omero:details": {
omitted for brevity

},
"url:well": "https://server.openmicroscopy.org/api/v0/m/wells/139/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Well",
"WellSamples": [
{
"PositionX": {
"Symbol": "reference frame",
"Value": 21864.47,
"@type": "TBD#LengthI",
"Unit": "REFERENCEFRAME"

},
"PositionY": {
"Symbol": "reference frame",
"Value": 36711.98,
"@type": "TBD#LengthI",
"Unit": "REFERENCEFRAME"

},
"omero:details": {
omitted for brevity

},
"Image": {
"Name": "plate1.HTD [Well E02 Field #1]",
"AcquisitionDate": 1252939626000,
"omero:details": {
omitted for brevity

},
"url:image": "https://server.openmicroscopy.org/api/v0/m/images/2942/",
"omero:series": 120,
"@id": 2942,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Image",
"Description": "Scan Time: Mon Sep 14 11:36:58 2009"

},
"PlateAcquisition": {
"omero:details": {
omitted for brevity

(continues on next page)

442 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

},
"MaximumFieldCount": 4,
"StartTime": 1252938959000,
"EndTime": 1252939813000,
"@id": 102,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#PlateAcquisition"

},
"@id": 203,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#WellSample"

}
]

}
]

}

It is also possible to list all Wells without filtering by Plate, using the top-level URL /api/v0/m/wells/ optionally
filtering by the plate query parameter.

List Wells by WellSample Index

To list Wells in a Plate, loading only a single WellSample and Image per Well, you can filter by WellSample Index.
This list of Wells will not include empty Wells (Wells that have no WellSamples and Images).

GET /api/v0/m/plates/{plate_id}/wellsampleindex/{index}/wells/

It is also possible to use the Plate Acquisition ID instead of Plate ID, when the WellSample (field) at the specified index
was acquired as part of that Plate Acquisition:

GET /api/v0/m/plateacquisitions/{plateacquisition_id}/wellsampleindex/{index}/wells/

Get a single Well

When a single Well is loaded, this will include all the WellSamples and Images with Pixels loaded.

GET /api/v0/m/wells/{well_id}/

ROIs and Shapes

Support for listing ROIs was added in API version 0.1. ROIs are linked to Images and contain one or more Shapes.
Types of shape are Ellipse, Label, Line, Mask, Point, Polygon, Polyline and Rectangle.

3.2. Using the OMERO API 443

OMERO, Release 5.6.5-SNAPSHOT-1

List ROIs

When ROIs are listed, their child Shapes will also be loaded.

Parameters

Name Type Description
--
image Number Filter ROIs by Image ID

These query parameters are also supported (see above):

offset, limit, owner, group, normalize

GET /api/v0/m/rois/

Response

{
"data": [
{
"@id": 454,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#ROI",
"shapes": [
{
"FontStyle": "Normal",
"Locked": false,
"Width": 98,
"omero:details": {
omitted for brevity

},
"Height": 135,
"FontFamily": "sans-serif",
"StrokeWidth": {},
"FontSize": {
"Symbol": "pt",
"Value": 12,
"@type": "TBD#LengthI",
"Unit": "POINT"

},
"FillColor": 1073741824,
"Y": 192,
"X": 189,
"StrokeColor": -993737532,
"TheT": 23,
"@id": 713,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Rectangle",
"TheZ": 1

}
],
"omero:details": {
omitted for brevity

},
},

(continues on next page)

444 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

]
}

ROIs on an Image
ROIs can be filtered by Image using the ?image=id query string but you can also show ROIs on an Image using this
URL:

GET /api/v0/m/images/{image_id}/rois/

Experimenters and Groups

Support for listing Experimenters and Groups was added in API version 0.2. Experimenters are users of OMERO and
can belong to one or more Groups. Groups are defined as ExperimenterGroups in the OME model.

Listing Experimenters

OMERO will only allow you to access details of Experimenters who are members of a non-private group that you are
also a member of.

Parameters

Name Type Description
--
experimentergroup Number Filter Experimenters by Group

These query parameters are also supported (see above):

offset, limit

GET /api/v0/m/experimenters/

Response

{
"data": [
{
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Experimenter",
"@id": 10,
"omero:details": {
"@type": "TBD#Details",
"permissions": {
"@type": "TBD#Permissions",
"perm": "------",
"canAnnotate": true,
"canDelete": false,
"canEdit": false,
"canLink": true,
"isWorldWrite": false,
"isWorldRead": false,
"isGroupWrite": false,

(continues on next page)

3.2. Using the OMERO API 445

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"isGroupRead": false,
"isGroupAnnotate": false,
"isUserWrite": false,
"isUserRead": false

}
},
"FirstName": "Ben",
"LastName": "Nevis",
"UserName": "ben",
"url:experimenter": "https://server.openmicroscopy.org/web/api/v0/m/experimenters/

→˓10/",
"url:experimentergroups": "https://server.openmicroscopy.org/web/api/v0/m/

→˓experimenters/10/experimentergroups/"
},

]
}

Get a single Experimenter

Load an Experimenter with:

GET /api/v0/m/experimenters/{experimenter_id}/

Experimenters in a Group

Experimenters can be filtered by Group using the ?experimentergroup=id query string but you can also show
Members of a Group using this URL:

GET /api/v0/m/experimentergroups/{group_id}/experimenters/

Listing Groups

Parameters

Name Type Description
--
experimenter Number Filter Groups by Experimenter

These query parameters are also supported (see above):

offset, limit

GET /api/v0/m/experimentergroups/

Response

{
"data": [

(continues on next page)

446 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

{
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#ExperimenterGroup",
"@id": 10,
"omero:details": {
"@type": "TBD#Details",
"permissions": {
"@type": "TBD#Permissions",
"perm": "------",
"canAnnotate": true,
"canDelete": false,
"canEdit": false,
"canLink": true,
"isWorldWrite": false,
"isWorldRead": false,
"isGroupWrite": false,
"isGroupRead": false,
"isGroupAnnotate": false,
"isUserWrite": false,
"isUserRead": false

}
},
"Name": "Swedlow Lab",
"url:experimentergroup": "https://server.openmicroscopy.org/web/api/v0/m/

→˓experimentergroups/10/",
"url:experimenters": "https://server.openmicroscopy.org/web/api/v0/m/

→˓experimentergroups/10/experimenters/"
},

]
}

Get a single Group

Load a Group with:

GET /api/v0/m/experimentergroups/{group_id}/

3.2. Using the OMERO API 447

OMERO, Release 5.6.5-SNAPSHOT-1

Groups for an Experimenter

Groups can be filtered by Experimenter using the ?experimenter=id query string but you can also show Experi-
menterGroups that an Experimenter belongs to using this URL:

GET /api/v0/m/experimenters/{experimenter_id}/experimentergroups

Creating and saving objects

The JSON API currently supports creating and saving of a limited number of object types, namely Projects, Datasets
and Screens. It is not yet possible to save objects with unloaded objects, such as an Image without Pixels or Channels
loaded. We will be working to resolve these issues in future releases.

Creating and saving of JSON objects are handled by a single save URL and objects are identified by their @type and
@id attributes.

Object types

The object @type must be based on the currently supported Schema URL which can be retrieved with:

GET /api/v0/

Response

{
"url:schema": "http://www.openmicroscopy.org/Schemas/OME/2016-06",
other urls not shown

}

This can then be used to create a @type by appending # and the object name, such as:

http://www.openmicroscopy.org/Schemas/OME/2016-06#Project

Creating objects

To create an object, POST the JSON for that object, including the ID of the OMERO group that the object should be
saved in. Currently only creation of Projects, Datasets and Screens is supported.

POST /api/v0/m/save/?group={group_id}

Content

{
"Name": "My new Project",
"Description": "Created via the JSON API",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project"

}

Response

448 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

{
"data": {
"@id": 567,
"Name": "My new Project",
"Description": "Created via the JSON API",
"url:datasets": "https://server.openmicroscopy.org/api/v0/m/projects/3872/datasets/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",
"omero:details": {
omitted for brevity

}
}

}

Updating objects

The API supports PUT to replace existing objects with the submitted data. As mentioned above, the only objects that
you can currently update are Projects, Datasets and Screens. The submitted JSON data can be constructed from scratch,
but it will generally be more convenient and safer to GET the object, update it and save the edited JSON.

For example, to edit the Name of the Project in the previous example:

PUT /api/v0/m/save/

Content

{
"@id": 567,
"Name": "Edited Project Name",
"Description": "Created via the JSON API",
"url:datasets": "https://server.openmicroscopy.org/api/v0/m/projects/3872/datasets/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",
"omero:details": {
omitted for brevity

}
}

Response

{
"data": {
"@id": 567,
"Name": "Edited Project Name",
"Description": "Created via the JSON API",
"url:datasets": "https://server.openmicroscopy.org/api/v0/m/projects/3872/datasets/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",
"omero:details": {
omitted for brevity

}
}

}

3.2. Using the OMERO API 449

OMERO, Release 5.6.5-SNAPSHOT-1

Deleting objects

To delete a Project, Dataset or Screen, simply DELETE using the URL to that object. The deleted object will be
returned. For example, to delete a Project:

DELETE /api/v0/m/projects/{project_id}/

Response

{
"data": {
"@id": 567,
"Name": "Edited Project Name",
"Description": "Created via the JSON API",
"url:datasets": "https://server.openmicroscopy.org/api/v0/m/projects/3872/datasets/",
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",
"omero:details": {
omitted for brevity

}
}

}

3.3 Analysis

3.3.1 Local analysis

If you are interested in running your analysis locally and storing the results to the server, then your first step is to become
familiar with the developer documentation.

• The Working with OMERO guide provides numerous examples in each language with explanations and tries to
be a starting point for anyone who wants to write code which talks to the OMERO server.

• Most of the OMERO Application Programming Interface is covered by the Javadocs.

• Each of the languages has extra information on its own page:

– OMERO C++ language bindings

– OMERO Java language bindings

– OMERO MATLAB language bindings

– OMERO Python language bindings

Once you have your local analysis working, you can push it onto the server for background processing using the OMERO
scripting service.

450 Chapter 3. Developer Documentation

https://downloads.openmicroscopy.org/latest/omero5.5/api/

OMERO, Release 5.6.5-SNAPSHOT-1

3.3.2 Storing external data in OMERO

There are several options for storing external or schema-less data in OMERO, including StructuredAnnotations for
small quantities of data, or extending the OME model, but this risks interoperability issues. (See ExtendingOmero).

For larger volumes of data, or data which needs to be queried, OMERO.tables provides a unified and effective solution
for the storage of tabular data from various sources, such as automated analysis results or script-based processing, and
makes them available within OMERO.

Third-party analysis and OMERO.tables

Support has been added for some third-party analysis data, which gets converted in OMERO into a common format.
These formats include:

• MIAS data, measurements, and overlays

• InCell data and measurements

• Flex data with Acapella results (screencast). In the Flex case, additional configuration may be necessary for
accessing both the raw data and the analysis results. Watch the configuration screencast for more information.

The analysis results which are parsed out of the formats listed above are converted to HDF by the OMERO.tables API.
This facility can then be used by clients to visualize the parsed measurements, and in the case of regions of interest,
see their location overlayed on the associated image:

3.3. Analysis 451

http://cvs.openmicroscopy.org.uk/snapshots/movies/omero-4-1/mov/FlexPreview4.1-import.mov
http://cvs.openmicroscopy.org.uk/snapshots/movies/omero-4-1/mov/FlexPreview4.1-configuration.mov

OMERO, Release 5.6.5-SNAPSHOT-1

Other high-content screening (HCS) data

In addition to the Flex, Mias, and InCell 100 file formats, BD Pathway, Olympus ScanR, and native OME-XML/TIFF
files can all be imported as HCS data, though without support for any external analysis data which may be attached.
If you are interested in having other analysis formats supported, contact either the open source community or Glencoe
Software, Inc. depending on your needs.

3.3.3 OMERO.tables

The OMERO.tables API unifies the storage of columnar data from various sources, such as automated analysis results
or script-based processing, and makes them available within OMERO.

Large and small volumes of tabular data can be stored via named columns, and retrieved in bulk or via paging. A
limited query language provides basic filtering and selecting.

Since 5.6, the client library omero-py is available on PyPI and Conda. We recommend to install the library in a Python
virtual environment. In the same environment, you should now install PyTables by running:

$ pip install tables

Note that if you are installing on Ubuntu 16.04 or Debian 9, you will have to cap the version i.e.:

$ pip install 'tables<3.6'

The interface

The slice definition file for the OMERO.tables API primarily defines two service interfaces and a type hierarchy.

class omero.grid.Table The central service for dealing with tabular data, described below.

class omero.grid.Tables

An internal service used for managing table services, and can be ignored for almost all purposes.

class omero.grid.Column

The base class for column types which permit returning arrays of columnar values (Ice doesn’t provide an Any
type, so it is necessary to group values of the same type). All columns in a table must have the same number of
rows.

Note: Attribute names (including column names) beginning with __ (double underscore) are reserved for internal use.
This restriction was introduced in OMERO 5.1, Tables created by older versions should continue to work.

Single value columns

These columns store a single value in each row.

class omero.grid.FileColumn(name, description[, values])
class omero.grid.ImageColumn(name, description[, values])
class omero.grid.RoiColumn(name, description[, values])
class omero.grid.WellColumn(name, description[, values])

452 Chapter 3. Developer Documentation

https://www.glencoesoftware.com/
https://www.glencoesoftware.com/
https://pypi.org
https://docs.conda.io/en/latest/
http://pytables.org
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/Tables.ice
https://zeroc.com

OMERO, Release 5.6.5-SNAPSHOT-1

class omero.grid.PlateColumn(name, description[, values])
Id-based (long) columns which reference omero.model.File, Image, Roi, Well and Plate instances respec-
tively.

class omero.grid.BoolColumn(name, description[, values])
A value column with bool (non-null) values.

class omero.grid.LongColumn(name, description[, values])
A value column with long (non-null, 64-bit) values.

class omero.grid.DoubleColumn(name, description[, values])
A value column with double (non-null, 64-bit) values.

Parameters
• name (string) – The name of the column, each column in a table must have a unique name.

• description (string) – The column description, may be empty.

• values ([]) – A list of values (one value per row) used to initialize a column (optional).

values

A class member holding the list of values stored in the column.

class omero.grid.StringColumn(name, description, size[, values])
A value column which holds strings

Parameters
• name (string) – The column name.

• description (string) – The column description.

• size (long) – The maximum string length that can be stored in this column, >= 1

• values (string[]) – A list of strings (optional).

Array value columns

These columns store an array in each row.

class omero.grid.FloatArrayColumn(name, description, size[, values])
A value column with fixed-width arrays of float (32 bit) values.

class omero.grid.DoubleArrayColumn(name, description, size[, values])
A value column with fixed-width arrays of double (64 bit) values.

class omero.grid.LongArrayColumn(name, description, size[, values])
A value column with fixed-width arrays of long (64 bit) values.

Parameters
• name (string) – The column name.

• description (string) – The column description.

• size (long) – The width of the array, >= 1

• values ([][]) – A list of arrays, each of length size (optional).

3.3. Analysis 453

OMERO, Release 5.6.5-SNAPSHOT-1

Warning: The OMERO.tables service currently does limited validation of string and array lengths. When adding
or modifying data it is essential that the size parameter of a column matches that of the underlying table.

Warning: Array value columns should be considered experimental for now.

Main methods

class omero.grid.Data

Holds the data retrieved from a table, also used to update a table.

lastModification

The timestamp of the last update to the table.

rowNumbers

The row indices of the values retrieved from the table.

columns

A list of columns

class omero.grid.Table

The main interface to the Tables service.

getHeaders()

Returns An empty list of columns describing the table. Fill in the values of these columns to
add a new row to the table.

getNumberOfRows()

Returns The number of rows in the table.

readCoordinates(rowNumbers)
Read a set of entire rows in the table.

Parameters rowNumbers (long[]) – A list of row indices to be retrieved from the table.

Returns The requested rows as a Data object.

read(colNumbers, start, stop)
Read a subset of columns and consecutive rows from a table.

Parameters
• colNumber (long[]) – A list of column indices to be retrieved from the table (may be

non-consecutive).

• start (long) – The index of the first row to retrieve.

• stop (long) – The index of the last+1 row to retrieve (uses similar semantics to range()).

Returns The requested columns and rows as a Data object.

Note: start=0, stop=0 currently returns the first row instead of empty as would be expected using the
normal Python range semantics. This may change in future.

454 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

slice(colNumbers, rowNumbers)
Read a subset of columns and rows (may be non-consecutive) from a table.

Parameters
• colNumbers (long[]) – A list of column indices to be retrieved. The results will be

returned in the same order as these indices.

• rowNumbers (long[]) – A list of row indices to be retrieved. The results will be returned
in the same order as these indices.

Returns The requested columns and rows as a Data object.

getWhereList(condition, variables, start, stop, step)
Run a query on a table, see Query language.

Parameters
• condition (string) – The query string

• variables – A mapping of strings and variable values to be substituted into condition.
This can often be left empty.

• start (long) – The index of the first row to consider.

• stop (long) – The index of the last+1 row to consider.

• step (long) – The stepping interval between the start and stop rows to consider, using the
same semantics as range(). Set to 0 to disable stepping.

Returns A list of row indices matching the condition which can be passed as the first parameter
of readCoordinates() or read().

Note: variables seems to add unnecessary complexity, should it be removed?

initialize(columns)
Initialize a new table. Any column values are ignored, use addData() to add these values.

Parameters columns (Column[]) – A list of columns whose names and types are used to setup
the table.

addData(columns)
Append one or more full rows to the table.

Parameters columns (Column[]) – A list of columns, such as those returned by
getHeaders(), whose values are the rows to be added to the table.

update(data)
Modify one or more columns and/or rows in a table.

Parameters data (Data) – A Data object previously obtained using read() or
readCoordinates() with column values to be updated.

setMetadata(key, value)
Store additional properties associated with a Table.

Parameters
• key (string) – A key name.

• value (string/int/float/long) – The value of the property.

3.3. Analysis 455

OMERO, Release 5.6.5-SNAPSHOT-1

setAllMetadata(keyvalues)
Store multiple additional properties associated with a Table. See setMetadata().

Parameters keyvalues (dict) – A dictionary of key-value pairs.

getMetadata(key)
Get the value of a property.

Parameters key (string) – The property name.

Returns A property.

getAllMetadata()

Get all additional properties. See getMetadata().

Returns All key-value properties.

You many find the Python and Java annotated code samples helpful, in addition to the examples and documentation on
the API. These are only an introduction to using OMERO.tables and do not show its full potential, see Going forward
for some inspiration.

Examples

• Hello World: examples/OmeroTables/first.py

• Creating a Measurement Table: examples/OmeroTables/MeasurementTable.java

• Querying a Table: examples/OmeroTables/FindMeasurements.java

The implementation

Currently, each table is backed by a single HDF table. Since PyTables (and HDF in the general case) do not support
concurrent access, OMERO.tables provides a global locking mechanism which permits multiple views of the same
data. Each OMERO.tables file (registered as an OriginalFile in the database), is composed of a single HDF table
with any number of certain limited column types.

Query language

The query language mentioned above is currently the PyTables Condition syntax. Columns are referenced by name.
The following operators are supported:

• Logical operators: &, |, ~

• Comparison operators: <, <=, ==, !=, >=, >

• Unary arithmetic operators: -

• Binary arithmetic operators: +, -, *, /, **, %

and the following functions:

• where(bool, number1, number2): number — number1 if the bool condition is true, number2 otherwise.

• {sin,cos,tan}(float|complex): float|complex — trigonometric sine, cosine or tangent.

• {arcsin,arccos,arctan}(float|complex): float|complex — trigonometric inverse sine, cosine or tangent.

• arctan2(float1, float2): float — trigonometric inverse tangent of float1/float2.

• {sinh,cosh,tanh}(float|complex): float|complex — hyperbolic sine, cosine or tangent.

456 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/grid/Table.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/grid/Table.html
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroTables/first.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroTables/MeasurementTable.java
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroTables/FindMeasurements.java
http://pytables.org/usersguide/condition_syntax.html

OMERO, Release 5.6.5-SNAPSHOT-1

• {arcsinh,arccosh,arctanh}(float|complex): float|complex — hyperbolic inverse sine, cosine or tan-
gent.

• {log,log10,log1p}(float|complex): float|complex — natural, base-10 and log(1+x) logarithms.

• {exp,expm1}(float|complex): float|complex — exponential and exponential minus one.

• sqrt(float|complex): float|complex — square root.

• {real,imag}(complex): float — real or imaginary part of complex.

• complex(float, float): complex — complex from real and imaginary parts.

for example, if id is the name of a LongColumn

table.getWhereList(condition='(id>x)', variables={'x':omero.rtypes.rint(5)},
start=2, stop=10, step=3)

will extract a subset of rows (2, 5, 8) as indicated by start, stop and step, substitute 5 in place of x in the condition, and
evaluate condition so as to return the indices of rows where column id is greater than 5.

Going forward

The Tables API itself provides little more than a remotely accessible store, think of it as a server for Excel-like spread-
sheets. We are currently looking into the facilities that can be built on top of it, and are very open to suggestions. For
example, the IRoi interface has been extended to filter ROIs by a given measurement. This allows seeing only those
results from a particular analysis run. The following example shows how to set up such a measurement and retrieve its
results:

iroi.py

For an example of production code that parses out such measurements, see populate_roi.py.

The IRoi interface has been integrated into OMERO.insight, allowing for the visualization and export of
OMERO.tables:

We are also looking into a NoSQL-style storage mechanism for OMERO, either as an alternative back-end to
OMERO.tables or as an additional key-value type store. Any suggestions or ideas would be very welcome.

See also:
PyTables Software on which OMERO.tables is built.

Condition Syntax The PyTables condition syntax.

slice definition file The API definition for OMERO.tables

The Tables test suite The testsuite for OMERO.tables

3.4 Scripts - plugins for OMERO

3.4.1 Introduction to OMERO.scripts

OMERO.scripts are the OME version of plugins, allowing you to extend the functionality of your OMERO installation.

The OMERO scripting service allows scripts to be uploaded to the server so that image processing and analysis, and
other functionality, can be carried out there rather than on your local machine. Scripts are generally written in Python,
but other languages are also supported, like Jython. MATLAB scripts are supported natively as well as via a Python
wrapper as described in MATLAB and Python.

3.4. Scripts - plugins for OMERO 457

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IRoi.html
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroTables/iroi.py
https://github.com/ome/omero-py/blob/v5.11.2/src/omero/util/populate_roi.py
http://pytables.org
http://pytables.org/usersguide/condition_syntax.html
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/Tables.ice
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy/test/integration/tablestest/

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 1: Choice between multiple measurements

Scripts can be run from the OMERO clients, using a UI generated from the script and the results should also be
handled where relevant e.g. allowing users to view OMERO Images or Datasets created by the script, or download files
or images.

Finding scripts

Core scripts are bundled with every OMERO.server release and automatically available to all users. You can find
additional scripts on GitHub by looking for forks of ome/omero-user-scripts. Some examples include:

• OMERO scripts - Glencoe Software

• Example scripts - OME Team

• Fixing scripts - Pierre Pouchin

• GDSC OMERO user scripts - Alex Herbert

• QBI-Microscopy scripts - Queensland Brain Institute

• OMEROscripts - Damir Sudar

All of the included scripts and repositories can be downloaded following the instructions below in order to run the
scripts locally (although some of them are intended as examples only—check the associated README).

458 Chapter 3. Developer Documentation

https://github.com/ome/scripts
https://github.com/ome/omero-user-scripts/network/members
https://github.com/glencoesoftware/omero-user-scripts
https://github.com/openmicroscopy/omero-example-scripts
https://github.com/ppouchin/omero-user-scripts
https://github.com/aherbert/omero-user-scripts
https://github.com/QBI-Microscopy/omero-user-scripts
https://github.com/dsudar/OMEROscripts

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 2: Scripts menu in OMERO.insight

Fig. 3: Running a script from an OMERO client

3.4. Scripts - plugins for OMERO 459

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 4: A script user interface

460 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Downloading and installing scripts

The easiest way to make use of scripts is for someone with admin rights to upload them to the OMERO.server as
described in the OMERO.scripts user guide. Once a script has been added under the lib/scripts directory, you can run
them from the OMERO clients or the command line. However, you will not be notified of any updates to the script, nor
will you be able to automatically update them. This means that when your OMERO installation is upgraded, all your
additional scripts will be lost.

To keep your scripts up to date, we recommend you use a Github repository to manage your scripts. If you are not
familiar with using git, you can use the GitHub app for your OS (available for Mac and Windows but not Linux). The
basic workflow is:

• fork our omero-user-script repository or any other repository you trust (https://github.com/ome/
omero-user-scripts/network/members)

• clone it in your lib/scripts directory

cd lib/scripts
git clone git@github.com:YOURGITUSERNAME/omero-user-scripts.git YOUR_SCRIPTS

• save the scripts you want to use into the appropriate sub-directory in your cloned location
lib/scripts/YOUR_SCRIPTS

If all you want to do is add scripts from someone else’s repository to your server, you can simply clone that repository in
your lib/scripts directory and the scripts within it will be added to your script list as described in the OMERO-user-script
repository readme.

As your new scripts will then show up in the script menu in the clients, alongside the core ‘omero’ scripts
which are shipped with each release, you should try to pick unique names to avoid future clashes e.g. Cus-
tom_Scripts/Search_Scripts/original_metadata_search.py:

Fig. 5: Custom scripts in OMERO.web menu

The OME developers use Github to co-ordinate all our development work so joining the network will help you access
help and support, and see what other people are doing with scripts. Cloning our repository also means you have an
example script to get you started with developing your own.

3.4. Scripts - plugins for OMERO 461

https://docs.openmicroscopy.org/contributing/using-git.html
https://docs.github.com/en/get-started/quickstart/set-up-git
https://github.com/ome/omero-user-scripts
https://github.com/ome/omero-user-scripts/network/members
https://github.com/ome/omero-user-scripts/network/members
https://github.com/ome/omero-user-scripts
https://github.com/ome/omero-user-scripts

OMERO, Release 5.6.5-SNAPSHOT-1

Developing your own scripts

The easiest way to get started developing scripts for your own site is to fork the github.com/ome/omero-user-scripts
repository and clone it somewhere under lib/scripts as described above. Then go into YOUR_SCRIPTS and rename
the existing script to match your needs:

cd lib/scripts/YOUR_SCRIPTS
git mv Example.py util_scripts/New_function.py

Once you have done that, you can edit and test run the script and then when you are happy with it, you can save it and
push it back to your fork for others to see and share.

OMERO.scripts user guide describes the workflows for developing and running your own scripts. You should use the
Guidelines for writing OMERO.scripts to ensure your script interacts with the OMERO clients in a usable way.

Contributing back to the community

If you have modified one of the core scripts or developed your own that you would like to contribute back to the
community, please get in touch. If the script is likely to have wide appeal, we can look into adding it to the core scripts
that are distributed with an OMERO release.

See also:
OMERO.scripts user guide, Guidelines for writing OMERO.scripts, OMERO.scripts advanced topics and MATLAB
and Python

3.4.2 OMERO.scripts user guide

OMERO.blitz provides a service to run scripts on the server. The scripts are then passed on to a grid of processors
called OMERO.grid that executes the script and returns the result to the server which in turn passes the result onto the
caller. All scripts are of the form:

import the omero package and the omero.scripts package.
import omero, omero.scripts as scripts

'''
This method creates the client script object, with name SCRIPTNAME and SCRIPTDESCRIPTION.
The script then supplies a number of variables that are both inputs and outputs to the
script. The types allowed are defined in the script package, with the qualifier after the
variable of in, out or inout depending on whether the variable if for input, output or␣
→˓input
and output.
'''
client = scripts.client("SCRIPTNAME", "SCRIPTDESCRIPTION",

scripts.TYPE("VARIABLENAME").[in()|out()|inout()], ...)

All variables are stored in a map accessed by getInput and setOutput via the client␣
→˓object.
VARIABLENAME = client.getInput("VARIABLENAME");
client.setOutput("VARIABLENAME", value);

This is a guide to getting started with the scripting service, without going into the ‘behind the scenes’ details. More
technical details can be found on the OMERO.scripts advanced topics page. In addition to this guide, you may find

462 Chapter 3. Developer Documentation

https://github.com/ome/omero-user-scripts

OMERO, Release 5.6.5-SNAPSHOT-1

the following pages useful for more information on using the OMERO Python API: Working with OMERO, OMERO
Python language bindings.

Sample scripts

Below are two sample scripts. You can find the core scripts that are distributed with the OMERO.server under the
scripts repository or download them from OMERO.insight (from the bottom-left of any run-script dialog), or use the
GitHub repositories forked from ome/omero-user-scripts to find scripts written by other users.

Ping script

This script echoes the input parameters as outputs.

import omero, omero.scripts as scripts
client = scripts.client("ping.py", "simple ping script",

scripts.Long("a"), scripts.String("b"))

keys = client.getInputKeys()
print("Keys found:")
print(keys)
for key in keys:

client.setOutput(key, client.getInput(key))

Accessing an Image and Channels on the server

This example shows usage of the Python Blitz Gateway to access an Image, using its ID. We then list the Channel
names and the script returns them as outputs.

import omero, omero.scripts as scripts
from omero.gateway import BlitzGateway
from omero.rtypes import wrap

Define the script name & description, and a single 'required' parameter
client = scripts.client("Get_Channels.py", "Get channel names for an image",

scripts.Long("imageId", optional=False))

get the Image Id from the parameters.
imageId = client.getInput("imageId", unwrap=True) # unwrap the rtype

Use the Python Blitz Gateway for convenience
conn = BlitzGateway(client_obj=client)

get the Image, print its name
image = conn.getObject("Image", imageId)
print(image.getName())

Print each channel 'label' (Name or Excitation wavelength)
for i, ch in enumerate(image.getChannels()):

print(ch.getLabel())
Return as output. Key is string, value is rtype

(continues on next page)

3.4. Scripts - plugins for OMERO 463

https://github.com/ome/scripts
https://github.com/ome/omero-user-scripts/network/members

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

client.setOutput("Channel%s" % i, wrap(str(ch.getLabel())))

Cleanup
client.closeSession()

Dynamic arguments

In general, script parameters are processed on server startup and cached for later use. If you have a script which should
recalculate its arguments on each invocation, use the NSDYNAMIC namespace:

A list of datasets will be dynamically generated and used to populate the
script parameters every time the script is called

import omero
import omero.gateway
from omero import scripts
from omero.rtypes import rstring

def get_params():
try:

client = omero.client()
client.createSession()
conn = omero.gateway.BlitzGateway(client_obj=client)
conn.SERVICE_OPTS.setOmeroGroup(-1)
objparams = [rstring('Dataset:%d %s' % (d.id, d.getName()))

for d in conn.getObjects('Dataset')]
if not objparams:

objparams = [rstring('<No objects found>')]
return objparams

except Exception as e:
return ['Exception: %s' % e]

finally:
client.closeSession()

def runScript():
"""
The main entry point of the script
"""

objparams = get_params()

client = scripts.client(
'Example Dynamic Test', 'Example script using dynamic parameters',

scripts.String(
'Dataset', optional=False, grouping='1',
description='Select a dataset', values=objparams),

namespaces=[omero.constants.namespaces.NSDYNAMIC],
(continues on next page)

464 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

)

try:
scriptParams = client.getInputs(unwrap=True)
message = 'Params: %s\n' % scriptParams
print(message)
client.setOutput('Message', rstring(str(message)))

finally:
client.closeSession()

if __name__ == '__main__':
runScript()

Example_Dynamic_Script.py

Script writing as ‘Admin’

The basic steps in a script-writing workflow are:

• Write a script using your favorite text editor, save locally

• Use command line (or OMERO.insight) to upload the script to server

• Use command line (or OMERO.insight or web clients) to run the script on the server (results will be displayed)

• Edit the script and replace it on the server and run again, etc.

Working with scripts is far more straightforward if you have admin access to your OMERO.server installation - this is
the preferred workflow. It is possible to work with scripts as a regular user (see OMERO.scripts advanced topics) but
the software you would be required to install means it is easier to install a server on your local machine so you have
admin rights.

It is assumed that scripts written by a server admin are “trusted” to run on the server without causing any disruption or
security risks. Once uploaded these scripts are available to all regular users of the server alongside the official scripts
included in each OMERO release.

Download / Edit script

The easiest way to get started is to take an existing script and edit it for your needs. An example created for the purpose
of this tutorial can be found at Edit_Descriptions.py. You should organize your scripts on your local machine in a way
that makes sense to users, since your local file paths will be mimicked on the server and used to organize script menus
in the clients (see screen-shot above).

Save the script to a suitable location. The tutorial will use this location:
Desktop/scripts/demo_tutorial/Edit_Descriptions.py

The action of this script (editing Image descriptions) is trivial but it demonstrates a number of features that you may
find useful, including conventions for inputs and outputs to improve interaction with the clients(as discussed on the
Guidelines for writing OMERO.scripts).

The script is well-documented and should get you started. A few points to note:

If you are using the ‘Blitz Gateway’ then you can get a connection wrapper like this:

3.4. Scripts - plugins for OMERO 465

https://github.com/ome/openmicroscopy/blob/develop/examples/ScriptingService/Edit_Descriptions.py

OMERO, Release 5.6.5-SNAPSHOT-1

from omero.gateway import BlitzGateway

conn = BlitzGateway(client_obj=client)
now you can do e.g. conn.getObject("Image", imageId) etc.

Alternatively, if you are working directly with the OMERO services, you can get a service factory like this:

session = client.getSession()
now you can do e.g. session.getQueryService() etc.

More example scripts

Several official scripts are included in the release of OMERO and can be found under the lib/scripts/omero/ directory
of the server package. Any script can also be download from the clients (bottom-left of the run-script dialog).

Warning: If you wish to edit the official scripts that are part of the OMERO release, you should be prepared to
apply the same changes to future releases of these scripts from OMERO. If you think that your changes should be
included as part of future released scripts, please let us know.

Upload script

You can use the command line, OMERO.insight or the server file system to upload scripts. The script command line
tool is discussed in more detail below.

Upload the script we saved earlier, specifying it as ‘official’ (trusted to run on the server processor). You will need to
log in the first time you use the omero script command. The new script ID will be printed out:

$ cd Desktop/scripts/
$ omero script upload demo_tutorial/Edit_Descriptions.py --official
Previously logged in to localhost:4064 as root
Server: [localhost] # hit 'enter' to accept default login details
Username: [root]
Password:
Created session 09fcf689-cc85-409d-91ac-f9865dbfd650 (root@localhost:4064). Idle␣
→˓timeout: 10.0 min. Current group: system
Uploaded official script as original file #301

You can add, remove and edit scripts directly in the OMERO_HOME/lib/scripts/omero/ folder. Any changes made here
will be detected by OMERO. Official scripts are uniquely identified on the OMERO server by their ‘path’ and ‘name’.

Any folders in the script path are created on the server under /lib/scripts/ e.g. the above example will be stored at
/lib/scripts/examples/Edit_Descriptions.py

The ID of the script is printed after upload and can also be determined by listing scripts (see below).

466 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Run script

You can run the script from OMERO.insight or OMERO.web by browsing the scripts (see screen-shot above). A UI
will be generated from the chosen script and the currently selected images or datasets will be populated if the script
supports this (see Guidelines for writing OMERO.scripts).

Or launch the script from the command line, specifying the script ID. You will be asked to provide input for any non-
optional parameters that do not have default values specified. Any stdout and stderr will be displayed as well as any
outputs that the script has returned.

$ omero script launch 301 # script ID
Using session 1202acc0-4424-4fa2-84fe-7c9e069d3563 (root@localhost:4064). Idle timeout:␣
→˓10.0 min. Current group: system
Enter value for "IDs": 1201
Job 1464 ready
Waiting....
Callback received: FINISHED

*** start stdout ***
* {'IDs': [1201L], 'Data_Type': 'Dataset'}
* Processing Images from Dataset: LSM - .mdb
* Editing images with this description:
* No description specified
*
* Editing image ID: 15651 Name: sample files.mdb [XY-ch-02]
* Editing image ID: 15652 Name: sample files.mdb [XY-ch-03]
* Editing image ID: 15653 Name: sample files.mdb [XY-ch]
* Editing image ID: 15654 Name: sample files.mdb [XYT]
* Editing image ID: 15655 Name: sample files.mdb [XYZ-ch-20x]
* Editing image ID: 15656 Name: sample files.mdb [XYZ-ch-zoom]
* Editing image ID: 15658 Name: sample files.mdb [XYZ-ch0]
* Editing image ID: 15657 Name: sample files.mdb [XYZ-ch]
*
*** end stdout ***

*** out parameters ***
* Message=8 Images edited
*** done ***

Parameter values can also be specified in the command.

simply specify the required parameters that don't have defaults
$ omero script launch 301 IDs=1201

can also specify additional parameters
$ omero script launch 301 Data_Type='Image' IDs=15652,15653 New_Description="Adding␣
→˓description from script to Image"

3.4. Scripts - plugins for OMERO 467

OMERO, Release 5.6.5-SNAPSHOT-1

Edit and replace

Edit the script and upload it to replace the previous copy, specifying the ID of the file to replace.

$ omero script replace 301 examples/Edit_Descriptions.py

Finally, you can upload and run your scripts from OMERO.insight.

Other script commands

Start by printing help for the script command:

$ omero script -h
usage: omero script

[-h] <subcommand> ...

Support for launching, uploading and otherwise managing OMERO.scripts

Optional Arguments:
In addition to any higher level options

-h, --help show this help message and exit

Subcommands:
Use omero script <subcommand> -h for more information.

<subcommand>
demo Runs a short demo of the scripting system
list List files for user or group
cat Prints a script to standard out
edit Opens a script in $EDITOR and saves it back to the server
params Print the parameters for a given script
launch Launch a script with parameters
disable Makes script non-executable by setting the mimetype
enable Makes a script executable (sets mimetype to text/x-python)
jobs List current jobs for user or group
serve Start a usermode processor for scripts
upload Upload a script
replace Replace an existing script with a new value
run Run a script with the OMERO libraries loaded and current login

To list scripts on the server:

$ omero script list
Using session 09fcf689-cc85-409d-91ac-f9865dbfd650 (root@localhost:4064). Idle timeout:␣
→˓10.0 min. Current group: system
id | Official scripts
-----+---
202 | /omero/export_scripts/Batch_Image_Export.py
203 | /omero/export_scripts/Make_Movie.py
204 | /omero/figure_scripts/Movie_Figure.py
205 | /omero/figure_scripts/Movie_ROI_Figure.py

(continues on next page)

468 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

206 | /omero/figure_scripts/ROI_Split_Figure.py
207 | /omero/figure_scripts/Split_View_Figure.py
208 | /omero/figure_scripts/Thumbnail_Figure.py
8 | /omero/import_scripts/Populate_ROI.py
209 | /omero/util_scripts/Channel_Offsets.py
210 | /omero/util_scripts/Combine_Images.py
211 | /omero/util_scripts/Images_From_ROIs.py
(14 rows)

If you want to know the parameters for a particular script you can use the params command. This prints out the details
of the script, including the inputs.

$ omero script params 301
Using session 1202acc0-4424-4fa2-84fe-7c9e069d3563 (root@localhost:4064). Idle timeout:␣
→˓10.0 min. Current group: system

id: 301
name: Edit_Descriptions.py
version:
authors:
institutions:
description: Edits the descriptions of multiple Images,
either specified via Image IDs or by the Dataset IDs.
namespaces:
stdout: text/plain
stderr: text/plain
inputs:
New_Description - The new description to set for each Image in the Dataset
Optional: True
Type: ::omero::RString
Min:
Max:
Values:

IDs - List of Dataset IDs or Image IDs
Optional: False
Type: ::omero::RList
Subtype: ::omero::RLong
Min:
Max:
Values:

Data_Type - The data you want to work with.
Optional: False
Type: ::omero::RString
Min:
Max:
Values: Dataset, Image

outputs:

3.4. Scripts - plugins for OMERO 469

OMERO, Release 5.6.5-SNAPSHOT-1

Debugging scripts

The stderr and stdout from running a script should always be returned to you, either when running scripts from the
command line, via the clients or using the scripts API. This should allow you to debug any problems you have.

You can also look at the output from the script in the OriginalFile directory, commonly stored in /OMERO/File/. The
script file when executed is uploaded as a new OriginalFile, and the standard error, standard out are saved as the next
two OriginalFiles after that. These files can be opened in a text editor to examine contents.

3.4.3 Guidelines for writing OMERO.scripts

These guidelines for writing OMERO scripts are designed to improve the interaction of the scripts with OMERO clients
so that they can:

• generate a nice, usable UI for the script

• handle the script results appropriately

If you want instructions on how to get started with OMERO scripts, see the link above or the OMERO.scripts user
guide.

Most of the points below are implemented in the example Edit_Descriptions.py.

Script naming and file path

• Script Name should be in the form ‘Script_Name.py’. The OMERO.web and OMERO.insight clients will replace
underscores with spaces in the script selection menu.

• File paths - The clients will use the parent folder to build a scripts menu, capitalising and removing underscores.
For example, a script uploaded from /omero/export_scripts/Batch_Image_Export.py will be displayed in the
clients under “Export Scripts”.

• Script Descriptions should give a brief summary of what the script does. If a longer description or instructions
for using the script are desired, it is suggested that a URL is included. The description will be displayed in the
script UI and any URLs will be ‘clickable’ to launch a browser.

Parameters

• Parameter Names should be in the form ‘Parameter_Name’. Underscores will be replaced by spaces in the UI
generated in the clients.

• Where applicable, parameters should be supplied with a list of options. For example:

scripts.String("Algorithm", values=[rstring('Maximum_Intensity'),rstring('Mean_
→˓Intensity')])

• Where possible, parameters should be supplied with default values. These will be used to populate fields in the
clients script UI and will be used by default when launching the script from the command line.

scripts.String("Folder_Name", description="Name of folder to store images", default=
→˓'Batch_Image_Export'),

• Where applicable, parameters should have min and max values, e.g.:

scripts.Int("Size_Z", description="Number of Z planes in new image", min=1),

470 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/ScriptingService/Edit_Descriptions.py

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 6: Movie ROI figure script UI
3.4. Scripts - plugins for OMERO 471

OMERO, Release 5.6.5-SNAPSHOT-1

Parameter grouping / ordering

Parameters are not ordered by default. They can be ordered and grouped by adding a “grouping” attribute, which is
a string, where ‘groups’ are separated by a ‘.’ e.g. “01.A”. Parameters will be ordered by the lexographic sorting of
this string and groups indicated in the UI. In most cases this will simply be a common indentation of parameters in the
same group. In addition, if the ‘parent’ parameter of a group is a boolean, then un-checking the check-box in the UI
will disable the child parameters. For example a UI generated from the code below will have a ‘Show Scalebar’ option.
If this is un-checked, then the ‘Size’ and ‘Colour’ parameters will be disabled and will not be passed to the script.

scripts.Bool("Show_Scalebar", grouping="10", default=True),
scripts.Int("Scalebar_Size", grouping="10.1"),
scripts.String("Scalebar_Colour", grouping="10.2"),

Pick selected Images, Datasets or Projects from OMERO clients

Both OMERO.insight and OMERO.web recognize and populate a pair of fields named ‘Data_Type’ (string) and ‘IDs’
(Long list) with the objects currently selected in the client UI when the script is launched. You should specify the
‘Data_Type’ options that your script should accept. For example:

dataTypes = [rstring('Dataset'),rstring('Image')]

client = scripts.client('Thumbnail_Figure.py', "Export a figure of thumbnails",
scripts.String("Data_Type", optional=False, grouping="01", values=dataTypes, default=

→˓"Dataset"),
scripts.List("IDs", optional=False, grouping="02").ofType(rlong(0))
)

Script outputs

• Scripts may return a short message to report success or failure. This should use the key: ‘Message’ in the output
map. This will be displayed in clients when the script completes.

client.setOutput("Message", rstring("Script generated new Image"))

• Scripts that generate an Image should return the omero.model.ImageI object. The clients will provide a link to
view the Image. The key that is used (“Image” in this example) is not important for this to work, but ‘image’
should be an omero.model.ImageI object.

client.setOutput("Image",robject(image))

• Scripts that generate a File Annotation or Original File should return these objects. The clients will give users the
option of downloading the File, and may also allow viewing of the file if it is of a suitable type. This should be
set as the mimetype of the File Annotation (e.g. ‘plain/text’, ‘image/jpeg’, etc.). In this example, fileAnnotation
should be an omero.model.FileAnnotationI object, but could also be an omero.model.OriginalFileI object.

client.setOutput("File_Annotation",robject(fileAnnotation))

• Scripts that generate a URL link should return the omero.rtypes.rmap, with the following keys: “type”: “URL”,
“href”: “URL address to open”, “title”: “Help message”. The client will give users the option of opening the
URL in a new browser window/tab. To use this feature the URL omero.types.rmap should use the key: ‘URL’ in
the output map.

472 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

url = omero.rtypes.wrap({
"type": "URL",
"href": "https://www.openmicroscopy.org",
"title": "Open URL link to OME's website.",

})
client.setOutput("URL", url)

More tips

• Use the ‘unwrap()’ function from omero.rtypes to unwrap rtypes from the script parameters since this function
will iteratively unwrap lists, maps, etc..

from omero.rtypes import *
scriptParams = {}
for key in client.getInputKeys():

if client.getInput(key):
scriptParams[key] = unwrap(client.getInput(key))

print(scriptParams) # stdout will be returned - useful for bug fixing etc.

3.4.4 MATLAB and Python

MATLAB functionality can be mixed into Python scripts using the MATLAB Engine API for Python.

Installing MATLAB Engine API

To install the MATLAB Engine API for Python follow the installation guide. You only need to run python setup.py
install, most likely as an administrator. It is possible to install the engine into a virtual environment.

Example MATLAB scripts

Below are some sample scripts showing MATLAB being launched from OMERO.scripts. MATLAB functions can
also call the OMERO Java language bindings interface to access the server from the MATLAB functions.

Calling a simple MATLAB function

import omero.scripts as scripts

import matlab.engine

client = scripts.client('prime.py',
"""

This script checks if the specified number is a prime number.
""",
scripts.Long(

"x", optional=False, grouping="1",
description="Number to check."))

(continues on next page)

3.4. Scripts - plugins for OMERO 473

https://www.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

try:
process the list of args above.
params = {}
for key in client.getInputKeys():

if client.getInput(key):
params[key] = client.getInput(key, unwrap=True)

x = params.get("x")
start the MATLAB engine
eng = matlab.engine.start_matlab("-nodisplay")
tf = eng.isprime(x)
print(tf)
eng.quit()

finally:
client.closeSession()

Using the OMERO interface inside MATLAB

This example shows the MATLAB script being called, passed to the client object and accessing the same client instance
as the script.

You will need to have the OMERO.matlab toolbox installed on the server:

• download the toolbox from the OMERO Downloads page

• unzip

• enter the full path to the toolbox in the OMERO script below.

Create a frap.m, copy the MATLAB function below. Save the file to the server. Enter the full path to the directory
containing the scipt in the example OMERO script below.

Note that this script expects to run on timelapse images with at least one Ellipse not linked to a T-index.

import omero

import omero.scripts as scripts
from omero.rtypes import rlong
from omero.gateway import BlitzGateway
from omero.rtypes import robject, rstring

import matlab.engine

dataTypes = [rstring('Dataset')]
client = scripts.client('frap.py',

"""
This script does simple FRAP analysis using Ellipse ROIs previously
saved on images. If matplotlib is installed, data is plotted and new
OMERO images are created from the plots.
Call the matlab frap code.

""",
scripts.String(

"Data_Type", optional=False, grouping="1",
description="Choose source of images",

(continues on next page)

474 Chapter 3. Developer Documentation

https://www.openmicroscopy.org/omero/downloads/

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

values=dataTypes, default="Dataset"),

scripts.Long(
"ID", optional=False, grouping="2",
description="Dataset ID."))

try:
process the list of args above.
params = {}
for key in client.getInputKeys():

if client.getInput(key):
params[key] = client.getInput(key, unwrap=True)

dataset_id = params.get("ID")
wrap client to use the Blitz Gateway
conn = BlitzGateway(client_obj=client)
start the MATLAB engine
eng = matlab.engine.start_matlab("-nodisplay")
Add the OMERO.matlab toolbox the MATLABPATH
eng.addpath("PATH_TO_TOOLBOX/OMERO.matlab-xxx")
Add the frap function to the MATLABPATH.
For convenience this could
be placed in the OMERO.matlab toolbox folder
eng.addpath("PATH_TO_FRAP")
eng.frap(conn.getEventContext().sessionUuid, dataset_id, nargout=0)
eng.quit()
client.setOutput("Message", rstring("frap script completed"))

finally:
client.closeSession()

The MATLAB frap function

function T = frap(sessionId, datasetId)

p = inputParser;
p.addRequired('sessionId',@(x) isscalar(x));
p.addRequired('datasetId',@(x) isscalar(x));

client = loadOmero();
client.enableKeepAlive(60);
% Join an OMERO session
session = client.joinSession(sessionId);
% Initiliaze the service used to load the Regions of Interest (ROI)
service = session.getRoiService();

% Retrieve the Dataset with the Images
dataset = getDatasets(session, datasetId, true);
images = toMatlabList(dataset.linkedImageList);

% Iterate through the images

(continues on next page)

3.4. Scripts - plugins for OMERO 475

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

for i = 1 : numel(images)
image = images(i);
imageId = image.getId().getValue();
pixels = image.getPrimaryPixels();
sizeT = pixels.getSizeT().getValue(); % The number of timepoints

% Load the ROIs linked to the Image. Only keep the Ellipses
roiResult = service.findByImage(imageId, []);
rois = roiResult.rois;
if rois.size == 0

continue;
end
toAnalyse = java.util.ArrayList;
for thisROI = 1:rois.size

roi = rois.get(thisROI-1);
for ns = 1:roi.sizeOfShapes

shape = roi.getShape(ns-1);
if (isa(shape, 'omero.model.Ellipse'))

toAnalyse.add(java.lang.Long(shape.getId().getValue()));
end

end
end

% We analyse the first z and the first channel
keys = strings(1, sizeT);
values = strings(1, sizeT);
means = zeros(1, sizeT);
for t = 0:sizeT-1

% OMERO index starts at 0
stats = service.getShapeStatsRestricted(toAnalyse, 0, t, [0]);
calculated = stats(1,1);
mean = calculated.mean(1,1);
index = t+1;
keys(1, index) = num2str(t);
values(1, index) = num2str(mean);
means(1, index) = mean;

end
% create a map annotation and link it to the Image
mapAnnotation = writeMapAnnotation(session, cellstr(keys), cellstr(values),

→˓'namespace', 'demo.simple_frap_data');
linkAnnotation(session, mapAnnotation, 'image', imageId);

% Create a CSV
headers = 'Image_name,ImageID,Timepoint,Mean';
tmpName = [tempname,'.csv'];
[filepath,imageName,ext] = fileparts(tmpName);
f = fullfile(filepath, 'results_frap.csv');
fileID = fopen(f,'w');
fprintf(fileID,'%s\n',headers);
for j = 1 : numel(keys)

row = strcat(char(imageName), ',', num2str(imageId), ',', keys(1, j), ',',␣
→˓values(1, j));

(continues on next page)

476 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

fprintf(fileID,'%s\n',row);
end
fclose(fileID);
% Create a file annotation
fileAnnotation = writeFileAnnotation(session, f, 'mimetype', 'text/csv', 'namespace',

→˓ 'training.demo');
linkAnnotation(session, fileAnnotation, 'image', imageId);

% Plot the result
time = 1:sizeT;
fig = plot(means);
xlabel('Timepoint'), ylabel('Values');
% Save the plot as png
name = strcat(char(image.getName().getValue()),'_FRAP_plot.png');
saveas(fig,name);
% Upload the Image as an attachment
fileAnnotation = writeFileAnnotation(session, name);
linkAnnotation(session, fileAnnotation, 'image', imageId);
% Delete the local file
delete(name)

end

3.4.5 OMERO.scripts advanced topics

Regular user (non-admin) workflow

If you are using a server for which you do not have admin access, you must upload scripts as ‘user’ scripts, which are
not trusted to run on the server machine. The OMERO scripting service will still execute these scripts in a similar
manner to official ‘trusted’ scripts but behind the scenes it uses the client machine to execute the script. This means
that any package imports required by the script should be available on the client machine.

The first step is to connect to the server and set up the processor on the client (see diagram, below).

• Install ‘Ice’ from ZeroC and set the environment variables, as described in the server installation page.

• You also need the OMERO server download. Go to the OMERO downloads page and get the appropriate server
package (version must match the server you are connecting to). Unzip the package in a suitable location.

In a command line terminal, change into the unzipped OMERO package, connect to the server and start user processor.
For example for host: openmicroscopy.org.uk and user: will

$ cd Desktop/OMERO.server-5.3.x-icexx-bxx/
$ omero -s openmicroscopy.org.uk -u will script serve user
$ password:

You should see an output similar to the one below

Created session afdbba21-35dc-462a-ab6e-15cc94f93957 (user-4@openmicroscopy.org.uk:4064).
→˓ Idle timeout: 10 min. Current group: read-only-1
2016-10-03 10:12:45,964 INFO [omero.util.Resources] (Thread-2)␣
→˓Starting

(continues on next page)

3.4. Scripts - plugins for OMERO 477

https://downloads.openmicroscopy.org/latest/omero5.5/

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 7: OMERO scripting workflow

(continued from previous page)

2016-10-03 10:12:45,965 INFO [omero.processor.ProcessorI] (MainThread)␣
→˓Registering processor %fOr(Up>[ERUV%B8$.N</omero.scripts.serve-fa53ba-3959-4d85-876a-
→˓00e8b932eb -t -e 1.0:tcp -h openmicroscopy.org.uk -p 54385
Press any key to exit...

Now you need to open a new terminal window in order to continue with your workflow.

If you want to run scripts belonging to another user in the same collaborative group you need to set up your local user
processor to accept scripts from that user. First, find the ID of the user, then start the user processor and give it the
user’s ID:

$ cd Desktop/OMERO.server-5.3.x-icexx-bxx/
$ omero user list
$ omero script serve user=5

From this point on, the user and admin workflows are the same, except for a couple of options that are not available to
regular users. Also see below.

Note: Because non-official scripts do not have a unique path name, you will be able to run the upload command
multiple times on the same file. This will create multiple copies of a file in OMERO and then you will have to choose
the most recent one (highest ID) if you want to run the latest script. It is best to avoid this and use the ‘replace’ command
as for official scripts.

To list user scripts:

478 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

$ omero script list user # lists user scripts
id | Scripts for user

-----+---
→˓--------------
151 | examples/HelloWorld.py
251 | examples/Edit_Descriptions.py

You can list scripts belonging to another user that are available for you (e.g. you are both in the same collaborative
group) by using the user ID as described above:

$ omero user list
$ omero script list user=5

User scripts can be run from OMERO.insight. They will be found under ‘User Scripts’ in the scripts menu. Remember,
for user scripts you will need to have the User-Processor running.

The iScript service

The OMERO.blitz server provides a service called iScript that includes methods to upload, delete, query and run scripts.
To access these methods a session needs to be created and the script service started. However, you may find it more
convenient to use the command line omero script or the OMERO.insight client to work with scripts as described on
the OMERO.scripts user guide.

Scripting service API

The recommended way of working with the scripting service is via the command line as described on the
OMERO.scripts user guide page. The information on this page is only useful if you want to access the Script-
ing service from your own client-side Python code.
OMERO clients can upload, edit, list and run scripts on the OMERO server using the Scripting Service API.

These methods (discussed below) are implemented in examples/ScriptingService/adminWorkflow.py. This sample
script allows these functions to be called from the command line and can be used as an example for writing your own
clients.

Most functions of the adminWorkflow.py script are also implemented in the OMERO CLI described on the
OMERO.scripts user guide, which is the preferred way of accessing the scripting service for script writers.

Having downloaded examples/ScriptingService/adminWorkflow.py, you can get some instructions for using the script
by typing:

$ python adminWorkflow.py help

To upload ‘official’ scripts, use the uploadOfficialScript method of the scripting service or use the upload command
from adminWorkflow.py (you can omit password and enter it later if you do not want it showing in your console):

$ python adminWorkflow.py -s server -u username -p password -f script/file/to/upload.py␣
→˓upload

Official scripts must have unique paths. Therefore, the uploadOfficialScript method will not allow you to overwrite
and existing script. However, the adminWorkflow.py upload command will automatically use scriptService.
editScript() if the file exists. If you want to change this behavior, edit the adminWorkflow.py script accordingly.

To get the official scripts available to run, use the getScripts()method, which returns a list of Original Files (scripts).
This code will produce a list of scripts like the one above.

3.4. Scripts - plugins for OMERO 479

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IScript.html
https://github.com/ome/openmicroscopy/blob/develop/examples/ScriptingService/adminWorkflow.py
https://github.com/ome/openmicroscopy/blob/develop/examples/ScriptingService/adminWorkflow.py

OMERO, Release 5.6.5-SNAPSHOT-1

scripts = scriptService.getScripts()
for s in scripts:

print(s.id.val, s.path.val + s.name.val)

This can be called from adminWorkflow.py with this command:

$ python adminWorkflow.py -s server -u username -p password list

The script can then be run, using the script ID and passing the script a map of the input parameters. The adminWork-
flow.py script has a ‘run’ command that can be used to identify a script by its ID or path/name and run it. The ‘run’
command will ask for parameter inputs at the command line.

$ python adminWorkflow.py -s localhost -u root -p omero -f scriptID run

or

$ python adminWorkflow.py -s localhost -u root -p omero -f omero/figure_scripts/Roi_
→˓Figure.py run

You can combine the latter form of this command with the ‘upload’ option to upload and run a script at once, useful
for script writing and testing.

$ python adminWorkflow.py -s localhost -u root -p omero -f omero/figure_scripts/Roi_
→˓Figure.py upload run

Alternatively, you could edit adminWorkflow.py to ‘hard-code’ a set of input parameters for a particular script (this
strategy is used by examples/ScriptingService/runHelloWorld.py. The code below shows a more complex example
parameter map. This strategy might save you time if you want to be able to rapidly run and re-run a script you are
working on. Of course, it is also possible to run scripts from OMERO.insight!

cNamesMap = omero.rtypes.rmap({'0':omero.rtypes.rstring("DAPI"),
'1':omero.rtypes.rstring("GFP"),
'2':omero.rtypes.rstring("Red"),
'3':omero.rtypes.rstring("ACA")})

blue = omero.rtypes.rstring('Blue')
red = omero.rtypes.rstring('Red')
mrgdColoursMap = omero.rtypes.rmap({'0':blue, '1':blue, '3':red})
map = {

"Image_IDs": omero.rtypes.rlist(imageIds),
"Channel_Names": cNamesMap,
"Split_Indexes": omero.rtypes.rlist([omero.rtypes.rlong(1),omero.rtypes.rlong(2)]),
"Split_Panels_Grey": omero.rtypes.rbool(True),
"Merged_Colours": mrgdColoursMap,
"Merged_Names": omero.rtypes.rbool(True),
"Width": omero.rtypes.rint(200),
"Height": omero.rtypes.rint(200),
"Image_Labels": omero.rtypes.rstring("Datasets"),
"Algorithm": omero.rtypes.rstring("Mean_Intensity"),
"Stepping": omero.rtypes.rint(1),
"Scalebar": omero.rtypes.rint(10), # will be ignored since no pixelsize set
"Format": omero.rtypes.rstring("PNG"),
"Figure_Name": omero.rtypes.rstring("splitViewTest"),
"Overlay_Colour": omero.rtypes.rstring("Red"),
"ROI_Zoom":omero.rtypes.rfloat(3),

(continues on next page)

480 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/ScriptingService/runHelloWorld.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"ROI_Label":omero.rtypes.rstring("fakeTest"), # won't be found - but should still work
}

The results returned from running the script can be queried for script outputs, including stdout and stderr. The following
code queries the results for an output named ‘Message’ (also displayed by OMERO.insight)

print(results.keys())
if 'Message' in results:

print(results['Message'].getValue())
if 'stdout' in results:

origFile = results['stdout'].getValue()
print("Script generated StdOut in file:" , origFile.getId().getValue())

if 'stderr' in results:
origFile = results['stderr'].getValue()
print("Script generated StdErr in file:" , origFile.getId().getValue())

This code has been extended in adminWorkflow.py to display any StdErr and StdOut generated by the script when it
is run.

3.5 Web

3.5.1 OMERO.web framework

3.5. Web 481

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.web is a framework for building web applications for OMERO. It uses Django to generate HTML and JSON
from data retrieved from the OMERO server. OMERO.web acts as a Python client of the OMERO server using the
OMERO API, as well as being a web server itself (see ‘infrastructure’ info below). It uses Django ‘apps’ to provide
modular web tools, such as the webclient, webgateway and the JSON api app. This modular framework makes it
possible to extend OMERO.web with your own apps.

OMERO.web infrastructure

OMERO Python API

The OMERO.web framework is all based on the OMERO Python API. Code-generated omero.model objects commu-
nicate remotely with their counterparts on the OMERO.server using Ice from ZeroC.

BlitzGateway

The Blitz Gateway wraps omero.model objects to facilitate many loading and update operations (see Blitz Gateway
documentation).

OMERO.web

The OMERO.web framework consists of several Django apps that are included in the OMERO.server release, as well as
others that can be installed independently (see below). It also includes utilities for creating and retrieving connections
to OMERO (see example below and Writing OMERO.web views for more details).

Included apps
• webclient: Main web client for browsing, viewing and annotating images. More information available under

OMERO.web.

• webgateway: Provides rendered images and JSON data for other OMERO.web apps or for external applications
hosted elsewhere. See WebGateway.

• webadmin: Tool for OMERO.server Administrators to manage users and groups.

• api: New in 5.3.0, this provides a JSON API for OMERO. See JSON API .

Additional apps
• omero-figure: The OMERO.figure app allows you to create scientific figures.

• omero-webtest: webtest is an example app that contains several code samples mentioned in the following pages.

• omero-iviewer: The OMERO.iviewer is a new (currently unreleased) image viewer that supports ROI creation
and editing.

• webtagging: The webtagging app was developed externally by Douglas Russell. It supports ‘auto’ tagging based
on image name and Tag-based filtering of data.

• omero-mapr: The OMERO.mapr app is a new tool that allows browsing data through Map Annotations linked
to images.

• omero-gallery: OMERO.gallery provides a simple interface for browsing Projects, Datasets and Images.

Warning: Although it is possible to access functionality from any installed app, ONLY webgateway and api
should be considered as a stable public API. URLs and methods within other web apps are purely designed to
provide internal functionality for the app itself and may change in minor releases without warning.

482 Chapter 3. Developer Documentation

https://www.djangoproject.com/
https://zeroc.com/products/ice
https://github.com/ome/omero-figure/
https://github.com/ome/omero-webtest/
https://github.com/ome/omero-iviewer
https://github.com/MicronOxford/webtagging
https://github.com/ome/omero-mapr/
https://github.com/ome/omero-gallery/

OMERO, Release 5.6.5-SNAPSHOT-1

Getting started

The preferred workflow for extending OMERO.web is to create a new Django app. Django apps provide a nice way
for you to keep all your code in one place and make it much easier to port your app to new OMERO releases or share
it with other users. To get started, see Creating an app. Further documentation on editing the core OMERO.web code
is at Editing OMERO.web. If you want to have a quick look at some example code, see below.

Quick example - OMERO.webtest

This tiny example gives you a feel for how the OMERO.web framework gets data from OMERO and displays it on a
web page. You can find this and other examples in the OMERO.webtest repository.

There are 3 parts to each page: url, view and template. For example, this code below is for generating an HTML page
of a Dataset (see screen-shot). If you have OMERO.web running and webtest installed, you can view the page under
http://<servername>/webtest/dataset/<datasetId>.

• url goes in omeroweb/omero_webtest/urls.py This maps the URL ‘webtest/dataset/<datasetId>/’ to the View
function ‘dataset’, passing it the datasetId.

url(r'^dataset/(?P<dataset_id>[0-9]+)/$', views.dataset, name="webtest_dataset"),

• view function, in omeroweb/omero_webtest/views.py. N.B.: @login_required decorator retrieves connection to
OMERO as ‘conn’ passed in args to method. See Writing OMERO.web views for more details.

3.5. Web 483

https://github.com/ome/omero-webtest/

OMERO, Release 5.6.5-SNAPSHOT-1

from omeroweb.webclient.decorators import login_required
handles login (or redirects)
@login_required()
def dataset(request, dataset_id, conn=None, **kwargs):

ds = conn.getObject("Dataset", dataset_id)
generate html from template
return render(request, 'webtest/dataset.html', {'dataset': ds})

• template: The template web page, in omero-webtest/omero_webtest/templates/webtest/dataset.html

<html><body>

<h1>{{ dataset.getName }}</h1>

{% for i in dataset.listChildren %}
<div style="float:left; padding:10px">

{{ i.getName }}

</div>
{% endfor %}

</body></html>

• Next: Get started by OMERO.web installation for developers. . . .

3.5.2 OMERO.web installation for developers

Getting set up

You will need to have an OMERO server running that you can connect to. This could be on your own machine
localhost or you can connect to a remote OMERO server.

The preferred option for developing OMERO.web apps is to install omero-web on your machine as described below.

However, it is also possible to use omero-web-docker to run OMERO.web in a Docker container. If you are using this
option, you can go directly to the Creating an app page which describes this process.

Installing OMERO.web

From OMERO 5.6.0 release, the omero-web library supports Python 3 and can be installed via pip. We need to specify
a location OMERODIR to create log files and a config.xml file. This can be any existing directory. We recommend you
use a virtual environment:

$ python3 -m venv py3_venv
$ source py3_venv/bin/activate

Somewhere to create config and log files
$ export OMERODIR=$(pwd)

$ pip install 'omero-web>=5.14.0'

484 Chapter 3. Developer Documentation

https://github.com/ome/omero-web-docker/

OMERO, Release 5.6.5-SNAPSHOT-1

Using the lightweight development server

All that is required to use the Django lightweight development server is to set the omero.web.application_server
configuration option, and turn omero.web.debug on. If you want to connect to a remote OMERO server, add that as
shown. Then start up the development server to run in the foreground:

$ omero config set omero.web.application_server development
$ omero config set omero.web.debug True
$ omero config append omero.web.server_list '["server.address", 4064, "name"]'
$ omero web start
INFO:__main__:Application Starting...
INFO:root:Processing custom settings for module omeroweb.settings
...
Validating models...

0 errors found
Django version 3.2, using settings 'omeroweb.settings'
Starting development server at http://127.0.0.1:4080/
Quit the server with CONTROL-C.

You should now be able to open http://localhost:4080 in your browser, choose the OMERO server and login.

Using WSGI

For convenience you may wish to run a web server under your local user account instead of using a system server for
testing. Install NGINX and Gunicorn (See OMERO.web installation and maintenance) but generate a configuration
file using the following commands:

$ omero config set omero.web.application_server 'wsgi-tcp'
$ omero web config nginx-development > nginx-development.conf

Start NGINX and the Gunicorn worker processes running one thread listening on 127.0.0.1:4080 that will autoreload
on source change:

$ nginx -c $PWD/nginx-development.conf
$ omero config set omero.web.application_server.max_requests 1
$ omero config set omero.web.wsgi_args -- "--reload"
$ omero web start

Next: Get started by Creating an app. . . .

3.5.3 Creating an app

The Django web site has a very good tutorial to get you familiar with the Django framework. The more you know about
Django, the easier you will find it working with the OmeroWeb framework.

All official OMERO applications can be installed from PyPI.

3.5. Web 485

http://localhost:4080
https://docs.djangoproject.com/en/1.11/intro/tutorial01/
https://pypi.org

OMERO, Release 5.6.5-SNAPSHOT-1

Getting set up

In order to deploy OMERO.web in a development or testing environment, you can use Docker as described below or
follow the install instructions under OMERO.web installation for developers.

If you want to make changes to the OMERO.web code itself, go to Editing OMERO.web.

Clone the examples repository

To get started quickly, we are going to use the omero web apps examples repository which contains two sample
OMERO.web apps. Clone the repo to a location of your choice:

$ git clone git@github.com:ome/omero-web-apps-examples.git

We will run the simplest example app from the repo. This is called minimal_webapp.

Run your app with locally-installed OMERO.web

If you have installed omero-web locally in a virtual environment as described in OMERO.web installation for devel-
opers, you can simply install the minimal-webapp example via pip:

$ cd omero-web-apps-examples/minimal-webapp
$ pip install -e .

This installs the source code directly, allowing you to work on the installed code.

You also need to add your app to the omero.web.apps setting:

Note: Here we use single quotes around double quotes.

$ omero config append omero.web.apps '"minimal_webapp"'

Now you can restart your omero-web server and go to http://localhost:4080/minimal_webapp/ in your browser. You
should be redirected to the login screen and then back to the minimal_webapp page which will display your Name and
list your Projects.

Run your app with OMERO.web in a Docker container

The following walk-through uses omero-web-docker to run the app. Here we add minimal_webapp to the installed
apps and map the app directory to the site-packages directory in the Docker instance so that python can import our
minimal_webapp module.

You need to be in the project directory for this to work.
cd omero-web-apps-examples/

The OMERO server we want to connect to.
$ host=demo.openmicroscopy.org

Path to the python module for the app.
$ appdir=$(pwd)/minimal-webapp/minimal_webapp

(continues on next page)

486 Chapter 3. Developer Documentation

https://github.com/ome/omero-web-apps-examples
http://localhost:4080/minimal_webapp/
https://github.com/ome/omero-web-docker/

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

Location within Docker instance we want to link the app, so it can be imported.
$ docker_appdir=/opt/omero/web/venv3/lib/python3.6/site-packages/minimal_webapp

This example config file installs "minimal_webapp". See the file for more details.
$ config=$(pwd)/config.omero

Location within Docker instance we want to mount the config.
$ docker_config=/opt/omero/web/config/config.omero

Run docker container.
$ docker run -it --rm -e OMEROHOST=$host -p 4080:4080 -v $appdir:$docker_appdir -v
→˓$config:$docker_config openmicroscopy/omero-web-standalone

This will run Docker in the foreground, showing the output in your terminal and allowing you to kill the container with
Ctrl-C. You should see the following lines in the output, indicating that OMERO.web is starting and the static files from
your app are being included.

...
Copying '/opt/omero/web/venv3/lib/python3.6/site-packages/minimal_webapp/static/minimal_
→˓webapp/app.css'
Copying '/opt/omero/web/venv3/lib/python3.6/site-packages/minimal_webapp/static/minimal_
→˓webapp/app.js'
...
Starting OMERO.web...

Now go to http://localhost:4080/minimal_webapp/ in your browser. You should be redirected to the login screen and
then back to the minimal_webapp page which will display your Name and list your Projects.

Exploring the app

The minimal_webapp code is well-documented to explain how the app is working. Briefly, the app supports a single
URL defined in minimal_webapp/urls.py which maps to the index function within minimal_webapp/views.py.
This uses the connection to OMERO, conn to load the current user’s name and passes this to the index.html template
to render the page.

This page also includes the static app.js and app.css files. JavaScript is used to load Projects from the JSON API
and display them on the page.

Create an app from the template example

If you want to create your own app, you can use the example as a template.

Go to the template repository omero-web-apps-examples. Click ‘Use this template’ as described here and choose a
name for your new repo, for example my_app.

Go to the directory where you want your app to live and clone it. Then run as above with Docker or locally-installed
OMERO.web, making sure that your app can be imported as before.

$ git clone https://github.com/<username>/my_app
$ cd my_app

Then run as above...

3.5. Web 487

http://localhost:4080/minimal_webapp/
https://github.com/ome/omero-web-apps-examples/tree/master/minimal-webapp
https://github.com/will-moore/omero-web-apps-examples
https://docs.github.com/en/repositories/creating-and-managing-repositories/creating-a-repository-from-a-template

OMERO, Release 5.6.5-SNAPSHOT-1

App settings

You can add settings to your app that allow configuration via the command line in the same way as for the base
OMERO.web. The list of CUSTOM_SETTINGS_MAPPINGS in settings.py is a good source for examples of the different
data types and parsers you can use.

For example, if you want to create a user-defined setting appname.foo, that contains a dictionary of key-value pairs,
you can add to CUSTOM_SETTINGS_MAPPINGS in appname/settings.py:

import json
CUSTOM_SETTINGS_MAPPINGS = {

"omero.web.appname.foo": ["FOO", '{"key": "val"}', json.loads]
}

From somewhere else in your app, you can then access the settings:

from appname import settings

print(settings.FOO)

Users can then configure this on the command line as follows:

$ omero config set omero.web.appname.foo '{"userkey": "userval"}'

Linking from Webclient

If you want to add links to your app from the webclient, a number of options are described on Linking from Webclient.

Releasing your app

The Release an app page has some useful steps to take when you are preparing to release your app.

3.5.4 Release an app

When you are ready to share your app with others, you can improve the install process by making your app installable
via pip. You may also wish to configure the app label to make the app URL more user-friendly.

Make your app installable from PyPI

This is not required but it is recommended to make your app installable from PyPI. If you opt to do so, a few files need
to be added:

• setup.py - a set-up file used to configure various aspects of the app and also used as a command line interface
for packaging the app

• setup.cfg - a configuration file that contains option defaults for setup.py commands

• MANIFEST.in - a file needed in certain cases to package files not automatically included

See Packaging and Distributing Projects for more details.

488 Chapter 3. Developer Documentation

https://github.com/ome/omero-web/blob/master/omeroweb/settings.py
https://packaging.python.org/guides/distributing-packages-using-setuptools/

OMERO, Release 5.6.5-SNAPSHOT-1

Configuring your app name and label

We support the option of configuring your OMERO.web app with a name and label. See Configuring Applications.

This allows the URL to an app to be different from its name. For example, OMERO.figure app is named omero_figure
but the url is simply /figure/ as configured by __init__.py and apps.py.

3.5.5 Linking from Webclient

If you want users to be able to access your app or other resources from the webclient there are a number of ways you
can add links to the webclient UI.

OMERO.web top links

You can configure omero.web.ui.top_links to add links to the list of links at the top of the webclient main pages.

• Name your URL in urls.py (optional). Preferably we use URL names to refer to URLs. For example, the
homepage of your app might be named like this in organization-appname/urls.py.

url(r'^$', views.index, name='figure_index'),

You can then refer to the link defined above using this name, or you can simply use a full URL for external links.

• Update configuration Use the OMERO command line interface to append the link to the top_links list.

Links use the format ["Label", "URL_name"] or you can follow this example:

$ omero config append omero.web.ui.top_links '["Figure", "figure_index"]'

From OMERO 5.1, you can add additional attributes to links using the format ['Link Text', 'link',
attrs]. This can be used to add tool-tips and to open the link in a new “target” tab. For example:

$ omero config append omero.web.ui.top_links '["Homepage", "http://myhome.com", {
→˓"title": "Homepage", "target": "_blank"}]'

Custom image viewer

If you have created your own image viewer and would like to have it replace the existing image viewer in the webclient,
this can be configured using omero.web.viewer.view.

You will need your views.py method to take an Image ID with a parameter named iid. For example, see
channel_overlay_viewer from omero-webtest app:

@login_required()
def channel_overlay_viewer(request, iid, conn=None, **kwargs):

You can then configure the webclient to use this viewer by providing the full path name to this view method. For
example, if you have webtest installed you can use the channel_overlay_viewer:

$ omero config set omero.web.viewer.view webtest.views.channel_overlay_viewer

This will now direct the image viewer url at webclient/img_detail/<iid>/ to this viewer. However, the existing
viewer will still be available under webgateway at webgateway/img_detail/<iid>/.

If you want to use a different viewer for different images, you can conditionally redirect to the webgateway viewer or
elsewhere. For example:

3.5. Web 489

https://docs.djangoproject.com/en/1.11/ref/applications/#configuring-applications
https://github.com/ome/omero-figure/blob/master/omero_figure/__init__.py
https://github.com/ome/omero-figure/blob/master/omero_figure/apps.py
https://github.com/ome/omero-webtest/

OMERO, Release 5.6.5-SNAPSHOT-1

if image.getSizeC() == 1:
return HttpResponseRedirect(reverse("webgateway.views.full_viewer", args=(iid,)))

Open with

The ‘Open with’ configuration allows users to ‘open’ data from OMERO in another web page using omero.web.
open_with.

For example:

• Open images in a custom viewer

• Open images in a new figure with OMERO.figure

• Link to external resources, e.g. open Dataset named ‘000397’ with url https://www.ncbi.nlm.nih.gov/protein/
000397

Currently, ‘Open With’ options are shown in the context menu of the left-panel tree and are therefore only available for
objects shown in the tree.

Label, name and supported objects

In the simplest case the minimum needed to add an Open with option is a unique identifier for your extension, a url
name, and a list of the types of objects that are supported by your app. For example:

$ omero config append omero.web.open_with '["xyz_viewer", "url_name", {"supported_objects
→˓": ["image"]}]'

This will create a menu option named xyz_viewer that is only enabled when a single “image” is selected.

The unique ID string,``xyz_viewer`` can be used to identify your plugin if you add extra scripts, as shown below. If
you want your Open with option to appear under a different menu label, see “UI Label” section below.

We use reverse(url_name) to resolve a url from the url_name. If the url_name is not recognised (for external urls)
the url_name will be used directly.

When the xyz_viewer option is clicked, a new window will be opened with the selected object(s) added to the url as
a query string

url?image=:imageId

Supported objects can be configured to support multiple images or other data types. Data types are project,
dataset, image, screen, plate, acquisition or use plurals to indicate that multiple objects are supported.
For example, `images` will enable the ‘Open with’ option when 1 or more images are selected. In the following
example, we support a single dataset or multiple images.

"supported_objects": ["dataset", "images"]

Further parameters can be specified in the options object, as described below.

490 Chapter 3. Developer Documentation

https://www.ncbi.nlm.nih.gov/protein/000397
https://www.ncbi.nlm.nih.gov/protein/000397

OMERO, Release 5.6.5-SNAPSHOT-1

Open in new tab

If you wish to open in a new browser tab instead of a popup window, you can add a target attribute to the options:

$ omero config append omero.web.open_with '["xyz_viewer", "url_name", {"supported_objects
→˓": ["image"], "target": "_blank"}]'

UI Label

If a “label” is specified in the options object, this will be used as the display label in the webclient context menu instead
of using the ID.

$ omero config append omero.web.open_with '["xyz_viewer", "url_name"], {"supported_
→˓objects": ["image"], "label": "X-Y-Z viewer"}]'

JavaScript handlers

For more control over the enabled status of your plugin or to configure how urls are created from selected objects, you
can write JavaScript functions that handle these steps. These functions use the label specified above as an ID for your
Open with option. In this example it is xyz_viewer. Add one or both of these function calls to a script, for example
openwith.js

// Here we set an 'enabled' handler that is passed a list of selected
// objects and should return ``true`` if the 'Open with' option should
// be enabled.
// The ``supported_objects`` parameter will not be needed.
// First argument is the label that we used above to identify the option
OME.setOpenWithEnabledHandler("xyz_viewer", function(selected){

// selected is a list of objects containing id, name, type

// Only support single objects
if (selected.length !== 1) return false;

// Only support image with name ending in .svs
var obj = selected[0];
return (obj.type === 'image' && obj.name.endsWith('.svs'))

});

// Here we configure a url provider. This function will be passed the selected
// objects and the base url that was specified in the 'Open with' configuration above.
OME.setOpenWithUrlProvider("xyz_viewer", function(selected, url) {

// Build a url using id from selected objects
url += selected[0].id + "/";
return url;

});

Note that instead of returning a static URL, you can also return a function, which will be called when the menu option
is selected:

3.5. Web 491

OMERO, Release 5.6.5-SNAPSHOT-1

// Here we configure a url provider that returns a function instead of
// a static URL. As an example, this shows an alert instead of opening
// a new web page.
OME.setOpenWithUrlProvider("xyz_viewer", function(selected, url) {

return function () {
window.alert("The first selected ID is " + selected[0].id);

};
});

Save the script to a static location, either within an OMERO.web app’s static directory or make it available at another
url. Then specify this location using the script_url option.

Note: Once you have added a script and updated the config, you will need to restart OMERO.web as normal. This
will syncmedia to copy the script to the static files location.

Script is saved at myviewer/static/myviewer/openwith.js
$ omero config append omero.web.open_with '["xyz_viewer", "url_name"], {"script_url":
→˓"myviewer/openwith.js"}]'

'Open with' option loads a script from the specified url.
The script will open any object with url https://www.ncbi.nlm.nih.gov/protein/:name
and is enabled when the :name of the object is a number (all digits)
$ omero config append omero.web.open_with '["GenBank Protein", "https://www.ncbi.nlm.nih.
→˓gov/protein/", {"script_url": "https://will-moore.github.io/presentations/2016/
→˓OpenWith-Filtering-June-2016/openwith.js"}]'

OMERO.web plugins

If you want to display content from your app within the webclient UI, please see Webclient Plugins.

3.5.6 Webclient Plugins

The webclient UI can be configured to include content from other web apps. This allows you to extend the webclient UI
with your own functionality. This is used by the webtagging app and there are also some examples in the omero-webtest
repository.

Currently you can add content in the following locations:

• Center Panel Adding a panel to the center of the webclient will display a drop-down menu to the top right of
the center panel, allowing users to choose your plugin.

• Right Panel You can add additional tabs to the right panel. These will be available in the main webclient page
as well as history and search result pages.

492 Chapter 3. Developer Documentation

https://github.com/MicronOxford/webtagging
https://github.com/ome/omero-webtest/

OMERO, Release 5.6.5-SNAPSHOT-1

Overview

To begin with, you need to prepare your plugin pages in your own app, with their own URLs, views and templates.
Then you can display these pages within the webclient UI, using the plugin framework.

Note: When you embed your pages in the webclient, there is potential for conflicts between JavaScript and CSS in the
host page and your own code. Care must be taken not to overwrite global JavaScript functions (such as jQuery or the
‘OME’ namespace) or to add CSS codes that may affect host elements.

The webclient plugins work by adding some custom JavaScript snippets into the main pages of the webclient and adding
HTML elements to specified locations in the webclient. These snippets of JavaScript can be used to load content into
these HTML elements. Usually you will want to do this dynamically, to display data based on the currently selected
objects (although this is optional). Helpers can be used to respond to changes in the selected objects and the selected
tab, so you can load or refresh your plugin only when necessary.

App URLs

To display content based on currently selected data, such as Projects, Datasets and Images, your app pages will need to
have these defined in their URLs. For example:

Webtagging: Tag images within the selected dataset
url(r'^auto_tag/dataset/(?P<datasetId>[0-9]+)/$', views.auto_tag),

Webtest: Show a panel of ROI thumbnails for an image
url(r'^image_rois/(?P<imageId>[0-9]+)/', views.image_rois, name='webtest_image_rois'),

These URLs should simply display the content that you want to show in the webclient. When these pages load in the
webclient, they will have all the webclient CSS and JavaScript (such as jQuery) available so you do not need to include
these in your page.

Configuring the plugin

Choose an element ID

You will need to specify an ID for the <div> element that is added to the webclient, so that you can refer to this element
in the JavaScript. For example, image_roi_tab or auto_tag_panel.

Create a JavaScript file

This will contain the JavaScript snippet that is injected into the main webclient page <head> when the page is generated.
This is added using Django’s templates, so it should be placed within your app’s /templates/<organization_appname>/
directory and named .html, e.g. /templates/<organization_appname>/webclient_plugins/right_plugin_rois.html. All
the JavaScript should be within <script> and </script> tags. Your plugin initialization should happen after the page
has loaded, so you use the jQuery on-ready function.

You use custom jQuery functions, called omeroweb_right_plugin or omeroweb_center_plugin, to initialize the
webclient plugin. These will handle all the selection change events. You simply need to specify how the panel is loaded,
based on the selected object(s) and what objects are supported. The plugin will be disabled when non-supported objects
are selected.

Below is a simple example of their usage. More detailed documentation available in the plugin options section below.

3.5. Web 493

OMERO, Release 5.6.5-SNAPSHOT-1

Center Panel Plugin

<script>
$(function() {

// Initialise the center panel plugin, on our specified element
$("#auto_tag_panel").omeroweb_center_plugin({

// To support single item selection, we can specify the types like this.
// Tab will only be enabled when a single dataset is selected
supported_obj_types: ['dataset'],

load_plugin_content: function(selected, dtype, oid){

// since we currently limit our dtype to 'dataset', oid will be dataset ID
// Use the 'index' of your app as base for your URL
var auto_tag_url = '{% url 'webtagging_index' %}auto_tag/dataset/'+oid+'/';
$(this).load(auto_tag_url);

}
});

});
</script>

Right Tab Plugin

<script>
$(function() {

// Initialise the right tab plugin, on our specified tab element
$("#image_roi_tab").omeroweb_right_plugin({

// Tab will only be enabled when a single image is selected
supported_obj_types: ['image'],

// This will get called when tab is displayed or selected objects change
load_plugin_content: function(selected, obj_dtype, obj_id) {

// since we only support single images, the obj_id will be an image ID
// Generate url based on a template-generated url
var url = '{% url 'webtest_index' %}image_rois/' + obj_id + '/';

// Simply load the tab
$(this).load(url);

},

});

});
</script>

494 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Plugin installation

Now you need to add your plugin to the appropriate plugin list, stating the displayed name of the plugin, the path/to/
js_snippet.html and the ID of the plugin element. Plugin lists are:

• omero.web.ui.center_plugins

• omero.web.ui.right_plugins

Use the OMERO command line interface to add the plugin to the appropriate list.

$ omero config append omero.web.ui.center_plugins
'["Auto Tag", "webtagging/auto_tag_init.js.html", "auto_tag_panel"]'

The right_plugins list includes the Acquisition tab and Preview tab by default. If you want to append the
OMERO.webtest ROI plugin or your own plugin to the list, you can simply do:

$ omero config append omero.web.ui.right_plugins
'["ROIs", "omero_webtest/webclient_plugins/right_plugin.rois.js.html", "image_roi_tab

→˓"]'

If you want to replace existing plugins and display only your own single plugin, you can simply do:

$ omero config set omero.web.ui.right_plugins
'[["ROIs", "omero_webtest/webclient_plugins/right_plugin.rois.js.html", "image_roi_

→˓tab"]]'

Restart Web

Stop and restart your web server, then refresh the webclient UI. You should see your plugin appear in the webclient UI
in the specified location. You should only be able to select the plugin from the drop-down menu or tab if the supported
data type is selected, e.g. ‘image’. When you select your plugin, the load content method you specified above will be
called and you should see your plugin loaded.

Refreshing content

If you now edit the views.py or HTML template for your plugin and want to refresh the plugin within the webclient,
all you need to do is to select a different object (e.g. dataset, image etc.). If you select an object that is not supported
by your plugin, then nothing will be displayed, and for the right-tab plugin, the tab selection will change to the first tab.

Plugin options

• supported_obj_types: If your plugin displays data from single objects, such as a single Image or Dataset, you
can specify that here, using a list of types:

supported_obj_types: ['dataset', 'image'],

This will ensure that the plugin is only enabled when a single Dataset or Image is selected. To support multiple
objects, see ‘tab_enabled’.

• plugin_enabled: This function allows you to specify whether a plugin is enabled or not when specified objects
are selected. It is only used if you have NOT defined ‘supported_obj_types’. The function is passed a single
argument:

3.5. Web 495

OMERO, Release 5.6.5-SNAPSHOT-1

– selected: This is a list of the selected objects e.g. [{‘id’:’image-123’}, {‘id’:’image-456’}]

The function should return true if the plugin should be enabled. For example, if you want the center plugin to
support multiple images, or a single dataset:

plugin_enabled: function(selected){
if (selected.length == 0) return false;
var dtype = selected[0]['id'].split('-')[0];
if (selected.length > 1) {

return (dtype == "image");
} else {

return ($.inArray(dtype, ["image", "dataset"]) > -1);
}

}

• load_plugin_content / load_tab_content: This function will be called when the plugin/tab content needs to be
refreshed, either because the plugin is displayed for the first time, or because the selected object changes. The
function will be passed 3 arguments:

– selected: This is a list of the selected objects e.g. [{‘id’:’image-123’}, {‘id’:’image-456’}]

– obj_dtype: This is the data-type of the first selected object, e.g. ‘image’

– obj_id: This is the ID of the first selected object, e.g. 123

3.5.7 Editing OMERO.web

If you need to make changes to OMERO.web itself, then you can perform a developer install of omero-web. You need
to be within a virtual environment with omero-py installed as described at OMERO Python language bindings. Then:

$ git clone https://github.com/ome/omero-web.git
$ cd omero-web
$ pip install -e .

This will allow you to edit and run the source code without a build step.

You can then run OMERO.web as described at OMERO.web installation for developers. You may need to restart the
web server after saving changes, particularly for python files, before refreshing the browser.

3.5.8 WebGateway

WebGateway is a Django app within the OMERO.web framework. It provides a web API for rendering images and
accessing data on the OMERO server via URLs.

Note: The OMERO.web client also supports URLs linking to specified data in OMERO. See the OMERO.web user
guides for more details.

496 Chapter 3. Developer Documentation

https://help.openmicroscopy.org/
https://help.openmicroscopy.org/

OMERO, Release 5.6.5-SNAPSHOT-1

Web services

This list of URLs below may be incomplete or out of date. For a complete list of URLs, see the latest API and try the
URLs out for yourself!

The HTTP request will need to include login details for creating or using a current server connection. This will be true
for any request made after logging in to the server, e.g. login using the webclient login page then go to webgateway/...
or if you have logged in to a server at http://ome.example.com/webclient then go to, for example, http://ome.
example.com/webgateway/render_image/<imageid>/<z>/<t>/

Fig. 8: Rendered thumbnail

URLs from within OMERO.web

Images rendered within OMERO.web templates should use Django’s {% url %} tag to generate URLs for webgateway,
passing in the ID of the image. This is shown for each of the URLs below:

Image viewer

• Provides a full image viewer, with controls for scrolling Z and T, editing rendering settings etc.

URL: https://your_host/webgateway/img_detail/<imageid>/

Template tag: {% url 'webgateway_full_viewer' image_id %}

Images

• Returns a jpeg of the specified plane with current rendering settings

URL: https://your_host/webgateway/render_image/<imageid>/<z>/<t>/

Template tag: {% url 'webgateway_render_image' image_id theZ theT %}

Omitting Z and T will use the default values:

URL: https://your_host/webgateway/render_image/<imageid>/

Template tag: {% url 'webgateway_render_image' image_id %}

• Makes a jpeg laying out each active channel in a separate panel

URL: https://your_host/webgateway/render_split_channel/<imageId>/<z>/<t>/

Template tag: {% url 'webgateway_render_split_channel' image_id theZ theT %}

3.5. Web 497

https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omeroweb/omeroweb.webgateway.html#module-omeroweb.webgateway.urls

OMERO, Release 5.6.5-SNAPSHOT-1

• Plots the intensity of a row of pixels in an image. w is line width

URL: https://your_host/webgateway/render_row_plot/<imageId>/<z>/<t>/<y>/<w>

Template tag: {% url 'webgateway_render_row_plot' image_id theZ theT yPos width %}

• Plots the intensity of a column of pixels in an image.

URL: https://your_host/webgateway/render_col_plot/<imageId>/<z>/<t>/<x>/<w>/

Template tag: {% url 'webgateway_render_col_plot' image_id theZ theT xPos width %}

• Returns a jpeg of a thumbnail for an image. w and h are optional (default is 64). Specify just one to retain aspect
ratio. It is also possible to specify Z and T indices in the query string.

URL: https://your_host/webgateway/render_thumbnail/<imageId>/?z=10

Template tag: {% url 'webgateway_render_thumbnail' image_id %}?z=10 # default␣
→˓size, z=10

URL: https://your_host/webgateway/render_thumbnail/<imageId>/<w>/<h>

Template tag: {% url 'webgateway_render_thumbnail' image_id 100 %} # size 100

Rendering settings

If no rendering settings are specified (as above), then the current rendering settings will be used. To apply different
settings to images returned by the render_image and render_split_channels URLs, parameters can be specified
in the request. N.B. These settings are only applied to the rendered image and will not be saved unless specified.

Individual parameters are:

• Channels on/off e.g. for an image with 4 channels, to turn on all channels except 2:

?c=1,-2,3,4

You can simply specify the active channels.
?c=3 # only Channel 3 is active
?c=3,4 # Channels 3 and 4 are active

• Channel color e.g. to set the colors for channels 1 to red and 2 to green and 3 to blue:

?c=1|$FF0000,2|$00FF00,3|$0000FF

• Rendering levels e.g. to set the cut-in and cut-out values for an image with 3 Channels.

?c=1|400:505,2|463:2409,3|620:3879
?c=-1|400:505,2|463:2409,3|620:3879 # First channel inactive "-1"
?c=2|463:2409,3|620:3879 # Inactive channels can be omitted

• Z-projection: Maximum intensity, Mean intensity or None (normal). By default we use all z-sections, but a
range can be specified.

498 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

?p=intmax
?p=intmax|0:10 # Use z-sections 0-10 inclusive
?p=intmean
?p=normal

• Rendering ‘Mode’: greyscale or color.

?m=g # greyscale (only the first active channel will be shown in grey)
?m=c # color

• Codomain maps: OMERO’s rendering engine supports mapping from input -> output pixel intensity via ap-
plication of “codomain maps”. Currently only the ‘reverse’ intensity map is supported, but the use of JSON
encoding for the maps query parameter is designed to support more maps in future. In the case of the ‘reverse’
map, we only need to specify whether it is enabled for each channel. For an image with 2 channels, to enable
reverse map for the first channel, we can use this query string:

?maps=[{"reverse":{"enabled":true}},{"reverse":{"enabled":false}}]

• Parameters can be combined, e.g.

https://your_host/webgateway/render_image/2602/10/0/?c=1|100:505$0000FF,2|463:2409
→˓$00FF00,3|620:3879$FF0000,-4|447:4136$FF0000&p=normal

JSON methods

• List of projects: webgateway/proj/list/

[{"description": "", "id": 269, "name": "Aurora"},
{"description": "", "id": 269, "name": "Drugs"}]

• Project info: webgateway/proj/<projectId>/detail/

{"description": "", "type": "Project", "id": 269, "name": "CenpA"}

• List of Datasets in a Project: webgateway/proj/<projectId>/children/

[{"child_count": 9, "description": "", "type": "Dataset", "id": 270,
"name": "Control"},]

• Dataset, same as for Project: webgateway/dataset/<datasetId>/detail/

• Details of Images in the dataset: webgateway/dataset/<datasetId>/children/

• Lots of metadata for the image. See below: webgateway/imgData/<imageId>/

• Histogram of pixel intensity data for an image plane. Channel index is zero-based. By default the Z and T index
are 0 and the number of histogram bins is 256, but these can be specified in the query string. The range of the
histogram will be the pixel intensity range for that channel of the image (see “window”: “min” and “max” in
imgData below)

URL: webgateway/histogram_json/<imageId>/channel/<index>/?theT=0&theZ=0&bins=20

{"data": [24354, 93878, 87555, 45323, 27365, 14690, 9346, 2053, 60, 7, 19, 14, 15,␣
→˓9, 5, 5, 3, 0, 2, 1]}

3.5. Web 499

OMERO, Release 5.6.5-SNAPSHOT-1

Saving etc.

• webgateway/saveImgRDef/<imageId>/

• webgateway/compatImgRDef/<imageId>/

• webgateway/copyImgRDef/

ImgData

The following is sample JSON data generated by /webgateway/imgData/<imageId>/

{
"split_channel": {

"c": {"width": 1448, "gridy": 2, "border": 2, "gridx": 3, "height": 966},
"g": {"width": 966, "gridy": 2, "border": 2, "gridx": 2, "height": 966}
},

"rdefs": {"defaultT": 0, "model": "color",
"projection": "normal", "defaultZ": 15},

"pixel_range": [-32768, 32767],
"channels": [

{"color": "0000FF", "active": true,
"window": {"max": 449.0, "end": 314, "start": 70, "min": 51.0},
"emissionWave": "DAPI",
"label": "DAPI"},

{"color": "00FF00", "active": true,
"window": {"max": 7226.0, "end": 1564, "start": 396, "min": 37.0},
"emissionWave": "FITC",
"label": "FITC"}

],
"meta": {

"projectDescription": "",
"datasetName": "survivin",
"projectId": 2,
"imageDescription": "",
"imageTimestamp": 1277977808.0,
"imageId": 12,
"imageAuthor": "Will Moore",
"imageName": "CSFV-siRNAi02_R3D_D3D.dv",
"datasetDescription": "",
"projectName": "siRNAi",
"datasetId": 3

},
"id": 12,
"pixel_size": {"y": 0.0663, "x": 0.0663, "z": 0.2},
"size": {

"width": 480,
"c": 4,
"z": 31,
"t": 1,
"height": 480

},
(continues on next page)

500 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

"tiles": false
}

For large tiled images, the following data is also included:

{
"tiles": true,
"tile_size": {

width: 256,
height: 256

},
"levels": 5,
"zoomLevelScaling": {

0: 1,
1: 0.25,
2: 0.0625,
3: 0.0312,
4: 0.0150

},
}

3.5.9 Embedding an OMERO.web viewport in a web page

Note: These example are intended to be used with images that have been added to the PUBLIC group with a Public
member in OMERO, making them publicly available. To see how to configure public URL filters, see the Publishing
data using OMERO.web section.

OMERO.web viewer in iframe

Insert the following:

<div id="omeroviewport"><iframe width="850" height="600" src="http://localhost:8000/
→˓webclient/img_detail/IMAGE_ID/" id="omeroviewport" name="omeroviewport"></iframe></div>

Launching OMERO.web viewer

Use the following code to reference the scripts.

<script type="text/javascript">

function openPopup(url) {
owindow = window.open(url, 'anew', config='height=600,width=850,left=50,top=50,

→˓toolbar=no,menubar=no,scrollbars=yes,resizable=yes,location=no,directories=no,status=no
→˓');

if(!owindow.closed) owindow.focus();
return false;

}
(continues on next page)

3.5. Web 501

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

</script>

Then in <BODY> insert the following:

<a href="#" onclick="return openPopup('http://localhost:8000/webclient/img_detail/IMAGE_
→˓ID/')">Open viewer

Customizing the content of the embedded OMERO.web viewport

This section demonstrates how to embed an OMERO.web image viewer in any HTML page, allowing use of resources
directly from an OMERO server.

$ omero config set omero.web.public.url_filter '^/webgateway'

Provided the image corresponding to IMAGE_ID is in the PUBLIC group, it can be accessed via the link:
http://your_host/webgateway/img_detail/IMAGE_ID/. Please remember that public images must be in a public group
where a public user can access them. The Publishing data using OMERO.web documentation section can help you to
set this up.

Use the following code to load stylesheets and scripts.

<link rel="stylesheet" type="text/css" href="http://your_host/static/omeroweb.viewer.min.
→˓css">
<script type="text/javascript" src="http://your_host/static/omeroweb.viewer.min.js"></
→˓script>

Then create the small JavaScript with associated stylesheet which allows you to view particular image defined by
IMAGE_ID.

<style type="text/css">
.viewport {

height: 500px;
width: 800px;
padding: 10px;

}
</style>

<script type="text/javascript">
$(document).ready(function () {

/* Prepare the viewport */
viewport = $.WeblitzViewport($("#viewport"), "http://your_host/webgateway/", {

'mediaroot': "http://your_host/static/"
});

/* Load the selected image into the viewport */
viewport.load(IMAGE_ID);

});
</script>

Then in <BODY> insert the following:

502 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

<div id="viewport" class="viewport"></div>

The viewport can be made more interactive by adding buttons or links to allow display of scalebars, ROIs, zooming
and selection of channels. Full examples of how to embed microscopy or Whole Slide Image are available in the
OMERO.webtest GitHub repository.

3.5.10 Writing OMERO.web views

This page contains info on how to write your own views.py code, including documentation on the webclient/views.
py and webgateway/views.py code. Although we aim to provide some useful notes and examples here, you will find
the best source of examples is the code itself.

@Decorators

Decorators in Python are functions that ‘wrap’ other functions to provide additional functionality. They are added
above a method using the @ notation. We use them in the OMERO.web framework to handle common tasks such as
login (getting connection to OMERO server) etc.

@login_required()

The login_required decorator uses parameters in the ‘request’ object to retrieve an existing connection to OMERO. In
the case where the user is not logged in, they are redirected to a login page. Upon login, they will be redirected back to
the page that they originally tried to view. The method that is wrapped by this decorator will be passed a ‘conn’ Blitz
Gateway connection to OMERO.

Note: login_required is a class-based decorator with several methods that can be overwritten to customize its func-
tionality (see below). This means that the decorator MUST be instantiated when used with the @ notation, i.e.

@login_required() NOT @login_required # this will give you strange error messages

A simple example of @login_required() usage (in omero_webtest/views.py). Note the Blitz Gateway connection “conn”
retrieved by @login_required() is passed to the function via the optional parameter conn=None.

from omeroweb.decorators import login_required

@login_required()
def dataset(request, datasetId, conn=None, **kwargs):

ds = conn.getObject("Dataset", datasetId)
return render(request, 'webtest/dataset.html', {'dataset': ds})

or

from omeroweb.decorators import login_required, render_response

@login_required()
@render_response()
def dataset(request, datasetId, conn=None, **kwargs):

ds = conn.getObject("Dataset", datasetId)
context['template'] = 'webtest/dataset.html'

(continues on next page)

3.5. Web 503

https://github.com/ome/omero-webtest/tree/master/omero_webtest/templates/webtest/examples
https://github.com/ome/omero-web/blob/master/omeroweb/webclient/views.py
https://github.com/ome/omero-webtest/blob/master/omero_webtest/views.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

context['dataset'] = ds
return context

Fig. 9: Logic flow for retrieving Blitz Gateway connection from HTTP request.

login_required logic

The login_required decorator has some complex connection handling code, to retrieve or create connections to
OMERO. Although it is not necessary to study the code itself, you may find it useful to understand the logic that
is used (see Flow Diagram). As mentioned above, we start with a HTTP request (top left) and either a connection is
returned (bottom left) OR we are redirected to login page (right).

Note: Options to configure a “public user” are described in the Publishing data using OMERO.web documentation.

Extending login_required

The base login_required class can be found in omeroweb/decorators.py. It has a number of methods that can be
overwritten to customize or extend its functionality. Again, it is best to look at an example of this. See webclient/
decorators.py to see how the base omeroweb.decorators.login_required has been extended to configure the conn
connection upon login, handle login failure differently etc.

render_response

This decorator handles the rendering of view methods to HttpResponse. It expects that wrapped view methods return
a dict. This allows:

• the template to be specified in the method arguments OR within the view method itself

• the dict to be returned as json if required

• the request is passed to the template context, as required by some tags etc

• a hook is provided for adding additional data to the context, from the Blitz Gateway documentation or from the
request.

504 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Note: Using @render_response guarantees using special RequestContext class which always uses django.
template.context_processors.csrf (no matter what template context processors are configured in the TEM-
PLATES setting). For more details see CSRF.

Extending render_response

The base render_response class can be found in omeroweb/decorators.py. It has a number of methods that can be
overwritten to customize or extend its functionality. Again, it is best to look at an example of this. See webclient/
decorators.py to see how the base omeroweb.decorators.render_response has been extended to configure HttpRe-
sponse and its subclasses.

Style guides

Tips on good practice in views.py methods and their corresponding URLs.

• Include any required arguments in the function parameter list. Although many views.py methods use the
kwargs parameter to accept additional arguments, it is best not to use this for arguments that are ab-
solutely required by the method.

• Specify default parameters where possible. This makes it easier to reuse the method in other ways.

• Use keyword arguments in URL regular expressions. This makes them less brittle to changes in parameter
ordering in the views.

• Similarly, use keyword arguments for URLs in templates

{% url 'url_name' object_id=obj.id %}

and reverse function:

>>> from django.urls import reverse
>>> reverse('url_name', kwargs={'object_id': 1})

OMERO.web error handling

Django comes with some nice error handling functionality. We have customized this and also provided some client-side
error handling in JavaScript to deal with errors in AJAX requests. This JavaScript can be included in all pages that
require this functionality. Errors are handled as follows:

• 404 - simply displays a 404 message to the user

• 403 - this is ‘permission denied’ which probably means the user needs to login to the server (e.g. session may
have timed out). The page is refreshed which will redirect the user to login page.

• 500 - server error. We display a feedback form for the user to submit details of the error to our QA system -
POSTs to “qa.openmicroscopy.org.uk:80”. This URL is configurable in settings.py.

In general, you should not have to write your own error handling code in views.py or client side. The default behavior
is as follows:

3.5. Web 505

https://docs.djangoproject.com/en/1.11/ref/templates/api/#subclassing-context-requestcontext

OMERO, Release 5.6.5-SNAPSHOT-1

With Debug: True (during development)

Django will return an HTML page describing the error, with various parameters, stack trace etc. If the request was
AJAX, and you have our JavaScript code on your page then the error will be handled as described (see above). NB:
with Debug True, 500 errors will be returned as HTML pages by Django but these will not be rendered as HTML in
our feedback form. You can use developer tools on your browser (e.g. Firebug on Firefox) to see various errors and
open the request in a new tab to display the full debug info as HTML.

With Debug: False (in production)

Django will use its internal error handling to produce standard 404, 500 error pages. We have customized this behavior
to display our own error pages. The 500 error page allows you to submit the error as feedback to our QA system. If the
request is AJAX, we return the stack trace is displayed in a dialog which also allows the error to be submitted to QA.

Custom error handling

If you want to handle certain exceptions in particular ways you should use appropriate try/except statements.

This is only advised for trivial errors, where you can give the user a simple message, e.g. “No Objects selected, please
try again”, or if the error is well understood and you can recover from the error in a reasonable way.

For ‘unexpected’ server errors, it is best to allow the exception to be handled by Django since this will provide a lot
more info to the user (request details etc.) and format HTML (both with Debug True or False).

If you still want to handle the exception yourself, you can provide stack trace alongside a message for the user. If
the request is AJAX, do not return HTML, since the response text will be displayed in a dialog box for the user (not
rendered as HTML).

try:
something bad happens

except:
log the stack trace
logger.error(traceback.format_exc())
message AND stack trace
err_msg = "Something bad happened! \n \n%s" % traceback.format_exc()
if request.is_ajax():

return HttpResponseServerError(err_msg)
else:

... # render err_msg with a custom template
return HttpResponseServerError(content)

3.5.11 Writing page templates in OMERO.web

This page documents the various base templates that are used by the webclient and describes how to extend these to
create your own pages with the OMERO.web look and feel.

You can use these templates in a number of ways, but there are 2 general scenarios that are detailed below:

• You want a page header to look like the webclient, but you do not need any data or connection to an OMERO
server.

• You want a page that looks and behaves like it is part of the webclient application, including data from the
OMERO server.

506 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 10: The base_header.html template extended in OMERO.webtest with dummy content

Django templates

We use Django templates for the OMERO.web pages. See docs here: templates. We have designed a num-
ber of OMERO.web base templates that you can extend. The base templates live in the ‘webgateway’ app under
omeroweb/webgateway/templates/webgateway/base. You can use these to make pages that do not require an OMERO
login (e.g. public home page) etc.

If you want your pages to extend the webclient application, you can use templates from
omeroweb/webclient/templates/webclient/base.

These templates are described in more detail below.

Getting Started

Within your OMERO.web app, create a new page template and add this line at the top:

{% extends "webgateway/base/base_header.html" %}

Now add the page content in a ‘content’ block like this:

{% block content %}
Your page content goes here

{% endblock %}

You can now save this template and view the page. It should look something like the screen-shot above. You could add
a ‘title’ block to set the page <title>

{% block title %}
My OMERO.web app page

{% endblock %}

Additional blocks can be used to customize the page further. See below for more details.

3.5. Web 507

https://docs.djangoproject.com/en/1.11/ref/templates/
https://github.com/ome/omero-web/tree/master/omeroweb/webclient/templates/webclient/base

OMERO, Release 5.6.5-SNAPSHOT-1

Using Webclient templates

Webclient templates can be used in exactly the same way, for example try using this at the top of the page you created
above:

{% extends "webclient/base/base_container.html" %}

However, this template will need various pieces of data to be in the page context that Django uses to render the page.
You will need to use the @login_required() and @render_response() decorators on your views.py methods in
order to retrieve this info and pass it to the template. See Writing OMERO.web views for more details.

If you have used the ‘content’ block on this page (as described above) you will see that your page content fills the whole
area under the header. However, if you want to use the same 3 column layout as the webclient, you can replace your
‘content’ block with:

{% block left %}
Left column content

{% endblock %}

{% block center %}
Center content

{% endblock %}

{% block right %}
Right column content

{% endblock %}

This should give you something like the screen-shot below.

Fig. 11: The webclient/base/base_container.html template extended in OMERO.webtest with dummy content

508 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Extending templates

You should aim to create a small number of your own base templates, extending the OMERO.web webgateway or
webclient templates as required. If you extend all of your own pages from a small number of your own base templates,
then you will find it easier to change things in future. For example, any changes in our ‘webgateway’ templates will
only require you to edit your own base templates.

Here is a full list of the templates under omeroweb/webgateway/templates/webgateway/base with more details
below:

• base_html.html - This provides the base <html> template with blocks for ‘link’(for CSS) ‘title’ ‘script’ and
‘body’. It is extended by every other template. Usage: {% extends "webgateway/base/base_html.html"
%}

• base_frame.html - This adds jQuery and jQuery-ui libraries to a blank page. Used for popup windows etc.
Usage: {% extends "webgateway/base/base_frame.html" %}

• base_header.html - This also extends base_html.html adding all the header and footer components that are used
by the webclient. See screen-shot above. More details below.

• base_main.html - This adds jQuery and jQuery-ui libraries to the base_header.html template. Used for popup
windows etc. Usage: {% extends "webgateway/base/base_main.html" %}

• container2.html, container3.html - These templates extend the base_header.html template, adding a 2 or 3
column layout in the main body of the page. container3.html is used by the webclient for the base_container
example above.

Webtest examples

You can find examples of how to extend the base templates in the OMERO.webtest repository within the
omero_webtest/templates/webtest/webgateway directory. If you install the OMERO.webtest app, you can view
the template examples live at <your-server-name>/webtest/webgateway_templates/base_header/>

The link is to an example that extends base_header.html and contains links to all the other webtest examples. These
pages indicate the names of the various template “blocks” that have been used to add content to different parts of the
page (also see below for block names).

Content blocks

These blocks can be used to add content to specific points in the page.

Note: It is important to consider using {{ block.super }} if you want to include the content from the parent
template. This is critical for the “link” and “script” blocks, which are used to add <link> and <script> elements to the
head of the page. If you forget to use `` {{ block.super }} `` then you will remove all the CSS and JavaScript links
required by the parent template.

See base_header.html for full template details.

• link: used to add CSS with <link> blocks to the page head e.g.

{% block link %}
{{ block.super }}
<link rel="stylesheet" type="text/css"

href="{% static "webgateway/css/ome.body.css" %}"/>
{% endblock %}

3.5. Web 509

https://github.com/ome/omero-webtest/
https://github.com/ome/omero-web/blob/master/omeroweb/webgateway/templates/webgateway/base/base_header.html

OMERO, Release 5.6.5-SNAPSHOT-1

• script - used to add JavaScript with <script> blocks to the page head

• title - add text here for the page <title>.

• head - another block for any extra head elements

• middle_header_right - add content to the right of the main header

• middle_header_left - add content to the left of the main header

• content - main page content.

container2.html, container3.html

These templates have all the same blocks as base_header.html since they extent it (see above). In addition, they also
add the following blocks:

• left: The left column (NOT in container2.html)

• center: The middle column

• right: The right column

See container3.html for full template details.

3.5.12 Cross Site Request Forgery protection

CSRF is an attack which forces an end user to execute unwanted actions on a web application in which they are currently
authenticated. For more details see Cross-Site Request Forgery.

OMERO.web provides easy-to-use protection against Cross Site Request Forgeries, for more information see Django
documentation.

The first defense against CSRF attacks is to ensure that GET requests (and other ‘safe’ methods, as defined by 9.1.1
Safe Methods, HTTP 1.1, RFC 2616) are only reading data from the server.

Requests that write data to the server should only use methods such as POST, PUT and DELETE. These requests can
then be protected as follows:

• By default OMERO.web has the middleware django.middleware.csrf.CsrfViewMiddleware added to the
list of middleware classes.

• In any template that uses a POST form, use the csrf_token tag inside the <form> element if the form is for an
internal URL, e.g.:

<form action="." method="post">{% csrf_token %}

Note: This should not be done for POST forms that target external URLs, since that would cause the CSRF
token to be leaked, leading to a vulnerability.

• On each XMLHttpRequest set a custom X-CSRFToken header to the value of the CSRF token and pass the CSRF
token in data with every AJAX POST request. You can import a jQuery-based script to do this as follows:

<script type="text/javascript" src="{% static "webgateway/js/ome.csrf.js" %}"></
→˓script>

For more details see CSRF for ajax.

510 Chapter 3. Developer Documentation

https://github.com/ome/omero-web/blob/master/omeroweb/webgateway/templates/webgateway/base/container3.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://docs.djangoproject.com/en/1.11/ref/csrf/
https://docs.djangoproject.com/en/1.11/ref/csrf/
https://tools.ietf.org/html/rfc2616.html#section-9.1.1
https://docs.djangoproject.com/en/1.11/ref/csrf/#ajax

OMERO, Release 5.6.5-SNAPSHOT-1

The Django framework also offers decorator methods that can help you protect your view methods and restrict access
to views based on the request method. For more details see Django decorators.

By default OMERO.web provides a built-in view that handles all unsafe incoming requests failing with 403 Forbidden
response if the CSRF token has not been included with a POST form.

3.5.13 The OMERO.web client application

The webclient Django app provides the main OMERO.web client UI.

Data is retrieved from OMERO using the OMERO Python language bindings and is rendered to HTML using Django
templates before being sent to the browser. Additional javascript (jQuery-based) functionality in the browser is used to
update the UI in response to user interactions such as browsing or modifying the data. This will often involve AJAX
calls to load more data as HTML or JSON objects.

Note: The webclient should NOT be considered as a stable public API. URLs and methods within the app are purely
designed to provide internal functionality for the webclient itself and may change in minor releases without warning.

Top level pages

There are a small number of top level HTML pages that the user will start at. These are all handled by the load_template
view:

• / (homepage delegates to /userdata)

• /userdata

• /usertags

• /public

• /history

• /search

These pages contain many different jQuery scripts that run when the page loads, to setup event listeners and to load
additional data.

Additional top-level pages are used in popup windows for running scripts and downloading data.

JsTree

A jsTree is used by the userdata, usertags and public pages to browse hierarchical data. Each time a node is expanded,
it uses appropriate AJAX calls to load children as json data. Further POST or DELETE AJAX calls are made to modify
the data hierachy by creating or deleting links between objects.

Selection changes in the jsTree and centre panel thumbnails cause events to be triggered by jQuery on the $("body")
element of the page, allowing other scripts to listen for these events. These are used to load selected data into the centre
and right panels. The HTML for these panels contains additional scripts that also run when they load to setup their
own event listeners.

There is also a global update_thumbnails_panel function that can be called by any script that needs to refresh the
centre panel. For example, when the jsTree is used to add or remove Images from a selected Dataset.

3.5. Web 511

https://docs.djangoproject.com/en/1.11/topics/http/decorators/
https://docs.djangoproject.com/en/1.11/topics/templates/
https://docs.djangoproject.com/en/1.11/topics/templates/

OMERO, Release 5.6.5-SNAPSHOT-1

Switching Groups and Users

The current group and user are stored in the HTTP session as request.session['active_group'] and request.
session['user_id']. These are used to define the data that is loaded in the main userdata and usertags pages.

The group and user are switched by the Groups and Users menu, which updates the session and reloads the page.

Show queries

Data in OMERO can be linked from the webclient with URLs of the form /webclient/?show=image-23|image-34

In the load_template view, the first object is queried from OMERO and its parent containers are also loaded. The
owner and group of the top container is used to set the active_group and user_id so that the main page loads the
appropriate data hierarchy.

The jsTree does its own lookup from the query string, retrieving json data and using this to expand the appropriate
nodes to show the specified objects.

Javascript code

The majority of javascript code is jQuery-based code that is embedded within the HTML templates and is run when
the page loads.

Additional code is in static scripts, with functions generally name-spaced under an OME module.

Reusing OMERO sessions

When integrating other applications with OMERO.web you may want to automatically log in to OMERO.web using
an existing OMERO session key. The session can be passed as a query parameter. For example a direct link to image
will look as follows:

https://your_host/webgateway/img_detail/IMAGE_ID/?server=SERVER_ID&bsession=OMERO_
→˓SESSION_KEY

This provides full access to OMERO.web, in the same way that logging in with a username and password would. It is
therefore unsuited for giving others temporary access to data.

Note: The SERVER_ID should match the index from the list set using omero.web.server_list from the server
session you created. If your list contains only one server, the index will be 1.

For more details about how to create an OMERO session see server-side session or use the command line interface to
create one.

512 Chapter 3. Developer Documentation

https://docs.djangoproject.com/en/1.11/topics/http/sessions/

OMERO, Release 5.6.5-SNAPSHOT-1

3.6 Insight

Note: With the release of OMERO 5.3.0, the OMERO.insight desktop client has entered maintenance mode, meaning
it will only be updated if a major bug is discovered. Instead, the OME team will be focusing on developing the web
clients. As a result, coding against this client is no longer recommended. Technical documentation can be found at
https://omero-insight.readthedocs.io/en/latest/.

3.7 More on API Usage

OMERO can be extended by modifying these clients or by writing your own in any of the supported languages.

3.7.1 Developing OMERO clients

Note:
• If you are only interested in using our OMERO clients, please see the OMERO clients overview section, which

will point you to user guides, demo videos, and download sites.

• This page is intended for developers already familiar with client/server programming. If you are not, your best
starting point is to read the Hello World chapter of the Ice manual (or more). A deeper understanding of Ice
might not be necessary, but certainly understanding the Ice basics will make reading this guide much easier.

For developers, there are many examples listed below, all of which are stored under: examples and buildable/runnable
via scons:

cd omero-src
./build.py build-all
cd omero-src/examples
python ../target/scons/scons.py

Other examples (in Python) can be found here.

Introduction

A Blitz client is any application which uses the OMERO Application Programming Interface to talk to the OMERO.blitz
server in any of the supported languages, like Python, C++, Java, or MATLAB. A general understanding of the
OMERO.server overview may make what is happening behind the scenes more transparent, but is not necessary. The
points below outline all that an application writer is expected to know with links to further information where necessary.

3.6. Insight 513

https://omero-insight.readthedocs.io/en/latest/
https://doc.zeroc.com/display/Ice/Hello+World+Application
https://github.com/ome/openmicroscopy/tree/develop/examples
https://www.scons.org

OMERO, Release 5.6.5-SNAPSHOT-1

Distributed computing

The first hurdle when beginning to work with OMERO is to realize that building distributed-object systems is different
from both building standalone clients and writing web applications in frameworks like mod_perl, django, or Ruby on
Rails. The remoting framework used by OMERO is Ice from ZeroC. Ice is comparable to CORBA in many ways, but
is typically easier to use.

A good first step is to be aware of the difference between remote and local invocations. Any invocation on a proxy
(<class_name>Prx, described below) will result in a call over the network with all the costs that entails. The often-
cited fallacies of distributed computing all apply, and the developer must be aware of concurrency and latency issues,
as well as complete loss of connectivity, all of which we will discuss below.

Objects

Before we can begin talking about what you can do with OMERO (the remote method calls available in the OMERO
Application Programming Interface), it is helpful to first know what the objects are that we will be distributing. These
are the only types that can pass through the API.

“Slice” mapping language

Ice provides an interface definition language (IDL) for defining class hierarchies for passing data in a binary format.
Similar to WSDL in web services or CORBA’s IDL, slice provides a way to specify how types can pass between
different programming languages. For just that reason, several constructs not available in all the supported languages
are omitted:

• multiple inheritance (C++ and Python)

• nullable primitive wrappers (e.g. Java’s java.lang.Integer)

• interfaces (Java)

• HashSet types

• iterator types

Primitives

Slice defines the usual primitives – long, string, bool, as well as int, double, and float – which map into each
language as would be expected. Aliases like “Ice::Long” are available for C++ to handle both 32 and 64 bit architectures.

A simple struct can then be built out of any combination of these types. From src/main/slice/omero/System.ice:

// The EventContext is all the information the server knows about a
// given method call, including user, read/write status, etc.
class EventContext
{
...
long userId;
string userName;
...
bool isAdmin;
...

514 Chapter 3. Developer Documentation

https://zeroc.com
https://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
https://en.wikipedia.org/wiki/Interface_description_language
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/System.ice

OMERO, Release 5.6.5-SNAPSHOT-1

Sequences, dictionaries, enums, and constants

Other than the “user-defined classes” which we will get to below, slice provides only four built-in building blocks for
creating a type hierarchy.

• Sequences. & Dictionaries : Most of the sequences and dictionaries in use by the OMERO Application Pro-
gramming Interface are defined in src/main/slice/omero/Collections.ice. Each sequence or dictionary must be
defined before it can be used in any class. By default a sequence will map to an array of the given type in Java
or a vector in C++, but these mappings can be changed via metadata. (In most cases, a List is used in the Java
mapping).

• Constants. : Most of the enumerations for OMERO Application Programming Interface are defined in
src/main/slice/omero/Constants.ice. These are values which can be defined once and then referenced in each
of the supported programming languages. The only real surprise when working with enumerations is that in Java
each constant is mapped to an interface with a single public final static field named “value”.

#include <iostream>
#include <omero/Constants.h>
using namespace omero::constants;
int main() {

std::cout << "By default, no method call can pass more than ";
std::cout << MESSAGESIZEMAX << "kb" << std::endl;
std::cout << "By default, client.createSession() will wait ";
std::cout << (CONNECTTIMEOUT / 1000) << " seconds for a connection" << std::endl;

}

Example: examples/OmeroClients/constants.cpp

sz=omero.constants.MESSAGESIZEMAX.value;
to=omero.constants.CONNECTTIMEOUT.value/1000;
disp(sprintf('By default, no method call can pass more than %d kb',sz));
disp(sprintf('By default, client.createSession() will wait %d seconds for a connection',␣
→˓to));

Example: examples/OmeroClients/constants.m

from omero.constants import *
print("By default, no method call can pass more than %s kb" % MESSAGESIZEMAX)
print("By default, client.createSession() will wait %s seconds for a connection" %␣
→˓(CONNECTTIMEOUT/1000))

Example: examples/OmeroClients/constants.py

import static omero.rtypes.*;
public class constants {

public static void main(String[] args) {
System.out.println(String.format(

"By default, no method call can pass more than %s kb",
omero.constants.MESSAGESIZEMAX.value));

System.out.println(String.format(
"By default, client.createSession() will wait %s seconds for a connection",
omero.constants.CONNECTTIMEOUT.value/1000));

}
}

Example: examples/OmeroClients/constants.java

3.7. More on API Usage 515

https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/Collections.ice
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/Constants.ice
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constants.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constants.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constants.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constants.java

OMERO, Release 5.6.5-SNAPSHOT-1

• Enums. Finally, enumerations which are less used through OMERO Application Programming Interface, but
which can be useful for simplyifying working with constants.

#include <iostream>
#include <omero/Constants.h>
using namespace omero::constants::projection;
int main() {

std::cout << "IProjection takes arguments of the form: ";
std::cout << MAXIMUMINTENSITY;
std::cout << std::endl;

}

Example: examples/OmeroClients/enumerations.cpp

v=omero.constants.projection.ProjectionType.MAXIMUMINTENSITY.value();
disp(sprintf('IProjection takes arguments of the form: %s', v));

Example: examples/OmeroClients/enumerations.m

import omero
import omero_Constants_ice
print("IProjection takes arguments of the form: %s" % omero.constants.projection.
→˓ProjectionType.MAXIMUMINTENSITY)

Example: examples/OmeroClients/enumerations.py

public class enumerations {
public static void main(String[] args) {

System.out.println(String.format(
"IProjection takes arguments of the form: %s",
omero.constants.projection.ProjectionType.MAXIMUMINTENSITY));

}
}

Example: examples/OmeroClients/enumerations.java

RTypes

In Java, the Ice primitives map to non-nullable primitives. And in fact, for the still nullable types java.lang.String
as well as all collections and arrays, Ice goes so far as to send an empty string (“”) or collection([]) rather than null.

However, the database and OMERO support nullable values and so OMERO.blitz defines a hierarchy of types which
wraps the primitives: RTypes Since Ice allows references to be nulled, as opposed to primitives, it is possible to send
null strings, integers, etc.

#include <omero/RTypesI.h>
using namespace omero::rtypes;
int main() {

omero::RStringPtr s = rstring("value");
omero::RBoolPtr b = rbool(true);
omero::RLongPtr l = rlong(1);
omero::RIntPtr i = rint(1);

}

Example: examples/OmeroClients/primitives.cpp

516 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/enumerations.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/enumerations.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/enumerations.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/enumerations.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/RTypes.ice
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/primitives.cpp

OMERO, Release 5.6.5-SNAPSHOT-1

import omero.rtypes;
a = rtypes.rstring('value');
b = rtypes.rbool(true);
l = rtypes.rlong(1);
i = rtypes.rint(1);

Example: examples/OmeroClients/primitives.m

from omero.rtypes import *
s = rstring("value")
b = rbool(True)
l = rlong(1)
i = rint(1)

Example: examples/OmeroClients/primitives.py

import static omero.rtypes.*;
public class primitives {

public static void main(String[] args) {
omero.RString a = rstring("value");
omero.RBool b = rbool(true);
omero.RLong l = rlong(1l);
omero.RInt i = rint(1);

}
}

Example: examples/OmeroClients/primitives.java

The same works for collections. The RCollection subclass of RType holds a sequence of any other RType.

#include <omero/RTypesI.h>
using namespace omero::rtypes;
int main() {

// Sets and Lists may be interpreted differently on the server
omero::RListPtr l = rlist(); // rstring("a"), rstring("b"));
omero::RSetPtr s = rset(); // rint(1), rint(2));

// No-varargs (#1242)
}

Example: examples/OmeroClients/rcollection.cpp

% Sets and Lists may be interpreted differently on the server
ja = javaArray('omero.RString',2);
ja(1) = omero.rtypes.rstring('a');
ja(2) = omero.rtypes.rstring('b');
list = omero.rtypes.rlist(ja)
ja = javaArray('omero.RInt',2);
ja(1) = omero.rtypes.rint(1);
ja(2) = omero.rtypes.rint(2);
set = omero.rtypes.rset(ja)

Example: examples/OmeroClients/rcollection.m

3.7. More on API Usage 517

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/primitives.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/primitives.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/primitives.java
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/rcollection.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/rcollection.m

OMERO, Release 5.6.5-SNAPSHOT-1

import omero
from omero.rtypes import *
Sets and Lists may be interpreted differently on the server
list = rlist(rstring("a"), rstring("b"));
set = rset(rint(1), rint(2));

Example: examples/OmeroClients/rcollection.py

import static omero.rtypes.*;
public class rcollection {

public static void main(String[] args) {
// Sets and Lists may be interpreted differently on the server
omero.RList list = rlist(rstring("a"), rstring("b"));
omero.RSet set = rset(rint(1), rint(2));

}
}

Example: examples/OmeroClients/rcollection.java

A further benefit of the RTypes is that they support polymorphism. The original OMERO Application Programming
Interface was designed strictly for Java, in which the java.lang.Object type or collections of java.lang.Object
could be passed. This is not possible with Ice, since there is no Any type as there is in CORBA.

Instead, omero.RType is the abstract superclass of our “remote type” hierarchy, and any method which takes an
“RType” can take any subclass of “RType”.

To allow other types discussed later to also take part in the polymorphism, it is necessary to include RType wrappers
for them. This is the category that omero::RObject and omero::RMap fall into.

omero::RTime and omero::RClass fall into a different category. They are identical to omero::RLong and
omero::RString, respectively, but are provided as type safe variants.

OMERO model objects

With these components – rtypes, primitives, constants, etc. – it is possible to define the core nouns of OME, the OME-
Remote Objects. The OMERO OME-Remote Objects is a translation of the OME XML specification into objects for
use by the server, built out of RTypes, sequences and dictionaries, and Details.

Details

The omero.model.Details object contains security and other internal information which does not contain any do-
main value. Attempting to set any values which are not permitted, will result in a SecurityViolation, for example
trying to change the details.owner to the current user.

#include <omero/model/ImageI.h>
#include <omero/model/PermissionsI.h>
using namespace omero::model;
int main() {

ImagePtr image = new ImageI();
DetailsPtr details = image->getDetails();
PermissionsPtr p = new PermissionsI();
p->setUserRead(true);
assert(p->isUserRead());

(continues on next page)

518 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/rcollection.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/rcollection.java
https://docs.openmicroscopy.org/latest/ome-model/ome-xml/

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

details->setPermissions(p);
// Available when returned from server
// Possibly modifiable
details->getOwner();
details->setGroup(new ExperimenterGroupI(1L, false));
// Available when returned from server
// Not modifiable
details->getCreationEvent();
details->getUpdateEvent();

}

Example: examples/OmeroClients/details.cpp

image = omero.model.ImageI();
details_ = image.getDetails();
p = omero.model.PermissionsI();
p.setUserRead(true);
assert(p.isUserRead());
details_.setPermissions(p);
% Available when returned from server
% Possibly modifiable
details_.getOwner();
details_.setGroup(omero.model.ExperimenterGroupI(1, false));
% Available when returned from server
% Not modifiable
details_.getCreationEvent();
details_.getUpdateEvent();

Example: examples/OmeroClients/details.m

import omero
import omero.clients
image = omero.model.ImageI()
details = image.getDetails()
p = omero.model.PermissionsI()
p.setUserRead(True)
assert p.isUserRead()
details.setPermissions(p)
Available when returned from server
Possibly modifiable
details.getOwner()
details.setGroup(omero.model.ExperimenterGroupI(1L, False))
Available when returned from server
Not modifiable
details.getCreationEvent()
details.getUpdateEvent()

Example: examples/OmeroClients/details.py

import omero.model.Image;
import omero.model.ImageI;
import omero.model.Details;
import omero.model.Permissions;

(continues on next page)

3.7. More on API Usage 519

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/details.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/details.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/details.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

import omero.model.PermissionsI;
import omero.model.ExperimenterGroupI;
public class details {

public static void main(String args[]) {
Image image = new ImageI();
Details details = image.getDetails();
Permissions p = new PermissionsI();
p.setUserRead(true);
assert p.isUserRead();
details.setPermissions(p);
// Available when returned from server
// Possibly modifiable
details.getOwner();
details.setGroup(new ExperimenterGroupI(1L, false));
// Available when returned from server
// Not modifiable
details.getCreationEvent();
details.getUpdateEvent();

}
}

Example: examples/OmeroClients/details.java

Warning: Do not use IQuery’s projection operation to read a data object obj’s obj.details.
permissions field because it can give a misleading result. Instead OMERO.web instantiates a Map in reading
obj_details_permissions. This pattern is shown in the first section of OME’s Hibernate 3.5 Training where it
covers the querying of permissions.

ObjectFactory and casting

In the previous examples, you may have noticed how there are two classes for each type: Image and ImageI. Classes
defined in slice are by default data objects, more like C++’s structs than anything else. As soon as a class defines a
method, however, it becomes an abstract entity and requires application writers to provide a concrete implementation
(hence the “I”). All OMERO classes define methods, but OMERO takes care of providing the implementations for you
via code generation. For each slice-defined and Ice-generated class omero.model.Something, there is an OMERO-
generated class omero.model.SomethingI which can be instantiated.

#include <omero/model/ImageI.h>
#include <omero/model/DatasetI.h>
using namespace omero::model;
int main() {

ImagePtr image = new ImageI();
DatasetPtr dataset = new DatasetI(1L, false);
image->linkDataset(dataset);

}

Example: examples/OmeroClients/constructors.cpp

import omero.model.*;
image = ImageI();

(continues on next page)

520 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/details.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IQuery.html#projection
https://downloads.openmicroscopy.org/presentations/2017/Team-Training/Hibernate/
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constructors.cpp

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

dataset = DatasetI(1, false);
image.linkDataset(dataset)

Example: examples/OmeroClients/constructors.m

import omero
import omero.clients
image = omero.model.ImageI()
dataset = omero.model.DatasetI(long(1), False)
image.linkDataset(dataset)

Example: examples/OmeroClients/constructors.py

import java.util.Iterator;
import omero.model.Image;
import omero.model.ImageI;
import omero.model.Dataset;
import omero.model.DatasetI;
import omero.model.DatasetImageLink;
import omero.model.DatasetImageLinkI;
public class constructors {

public static void main(String args[]) {
Image image = new ImageI();
Dataset dataset = new DatasetI(1L, false);
image.linkDataset(dataset);

}
}

Example: examples/OmeroClients/constructors.java

When OME-Remote Objects instances are serialized over the wire and arrive in the client, the Ice runtime must deter-
mine which constructor to call. It consults with the ObjectFactory, also provided by OMERO, to create the new classes.
If you would like to have your own classes or subclasses created on deserialization, see the Advanced topics section
below.

Such concrete implementations provide features which are not available in the solely Ice-based versions. When you
would like to use these features, it is necessary to down-cast to the OMERO-based type.

For example, objects in each language binding provide a “more natural” form of iteration for that language.

#include <omero/model/ImageI.h>
#include <omero/model/DatasetI.h>
#include <omero/model/DatasetImageLinkI.h>
using namespace omero::model;
int main() {

ImageIPtr image = new ImageI();
DatasetIPtr dataset = new DatasetI();
DatasetImageLinkPtr link = dataset->linkImage(image);
omero::model::ImageDatasetLinksSeq seq = image->copyDatasetLinks();
ImageDatasetLinksSeq::iterator beg = seq.begin();
while(beg != seq.end()) {

beg++;
}

}

3.7. More on API Usage 521

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constructors.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constructors.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/constructors.java

OMERO, Release 5.6.5-SNAPSHOT-1

Example: examples/OmeroClients/iterators.cpp

import omero.model.*;
image = ImageI();
dataset = DatasetI();
link = dataset.linkImage(image);
it = image.iterateDatasetLinks();
while it.hasNext()

it.next().getChild().getName()
end

Example: examples/OmeroClients/iterators.m

import omero
from omero_model_ImageI import ImageI
from omero_model_DatasetI import DatasetI
from omero_model_DatasetImageLinkI import DatasetImageLinkI
image = ImageI()
dataset = DatasetI()
link = dataset.linkImage(image)
for link in image.iterateDatasetLinks():

link.getChild().getName();

Example: examples/OmeroClients/iterators.py

import omero.model.ImageI;
import omero.model.Dataset;
import omero.model.DatasetI;
import omero.model.DatasetImageLink;
import omero.model.DatasetImageLinkI;
import java.util.*;
public class iterators {

public static void main(String args[]) {
ImageI image = new ImageI();
Dataset dataset = new DatasetI();
DatasetImageLink link = dataset.linkImage(image);
Iterator<DatasetImageLinkI> it = image.iterateDatasetLinks();
while (it.hasNext()) {

it.next().getChild().getName();
}

}
}

Example: examples/OmeroClients/iterators.java

]

Also, each concrete implementation provides static constants of various forms.

#include <omero/model/ImageI.h>
#include <iostream>
int main() {

std::cout << omero::model::ImageI::NAME << std::endl;
std::cout << omero::model::ImageI::DATASETLINKS << std::endl;

}

522 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/iterators.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/iterators.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/iterators.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/iterators.java

OMERO, Release 5.6.5-SNAPSHOT-1

Example: examples/OmeroClients/staticfields.cpp

disp(omero.model.ImageI.NAME);
disp(omero.model.ImageI.DATASETLINKS);

Example: examples/OmeroClients/staticfields.m

import omero
from omero_model_ImageI import ImageI as ImageI
print(ImageI.NAME)
print(ImageI.DATASETLINKS)

Example: examples/OmeroClients/staticfields.py

import omero.model.ImageI;
public class staticfields {

public static void main(String[] args) {
System.out.println(ImageI.NAME);
System.out.println(ImageI.DATASETLINKS);

}
}

Example: examples/OmeroClients/staticfields.java

Visibility and loadedness

In the constructor example above, a constructor with two arguments was used to create the Dataset instance linked to
the new Image. The Dataset instance so created is considered “unloaded”.

Objects and collections can be created unloaded as a pointer to an actual instance or they may be returned unloaded
from the server when they are not actively accessed in a query. Because of the interconnectedness of the OME-Remote
Objects, loading one object could conceivably require downloading a large part of the database if there were not some
way to “snip-off” sections.

#include <omero/model/ImageI.h>
#include <omero/model/DatasetI.h>
#include <omero/ClientErrors.h>
using namespace omero::model;
int main() {

ImagePtr image = new ImageI(); // A loaded object by default
assert(image->isLoaded());
image->unload(); // can then be unloaded
assert(! image->isLoaded());
image = new ImageI(1L, false); // Creates an unloaded "proxy"
assert(! image->isLoaded());
image->getId(); // Ok
try {

image->getName(); // No data access is allowed other than id.
} catch (const omero::ClientError& ce) {

// Ok.
}

}

Example: examples/OmeroClients/unloaded.cpp

3.7. More on API Usage 523

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/staticfields.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/staticfields.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/staticfields.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/staticfields.java
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/unloaded.cpp

OMERO, Release 5.6.5-SNAPSHOT-1

image = omero.model.ImageI(); % A loaded object by default
assert(image.isLoaded());
image.unload();
assert(~ image.isLoaded()); % can then be unloaded
image = omero.model.ImageI(1, false);
assert(~ image.isLoaded()); % Creates an unloaded "proxy"
image.getId(); % Ok.
try

image.getName(); % No data access is allowed other than id
catch ME

% OK
end

Example: examples/OmeroClients/unloaded.m

import omero
import omero.clients
image = omero.model.ImageI() # A loaded object by default
assert image.isLoaded()
image.unload() # can then be unloaded
assert (not image.isLoaded())
image = omero.model.ImageI(1L, False) # Creates an unloaded "proxy"
assert (not image.isLoaded())
image.getId() # Ok
try:

image.getName() # No data access is allowed other than id.
except:

pass

Example: examples/OmeroClients/unloaded.py

import omero.model.ImageI;
public class unloaded {

public static void main(String args[]) {
ImageI image = new ImageI(); // A loaded object by default
assert image.isLoaded();
image.unload(); // can then be unloaded
assert ! image.isLoaded();
image = new ImageI(1L, false); // Creates an unloaded "proxy"
assert ! image.isLoaded();
image.getId(); // Ok.
try {

image.getName(); // No data access is allowed other than␣
→˓id.

} catch (Exception e) {
// Ok.

}
}

}

Example: examples/OmeroClients/unloaded.java

When saving objects that have unloaded instances in their graph, the server will automatically fill in the values. So,
if your Dataset contains a collection of Images, all of which are unloaded, then they will be reloaded before saving,

524 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/unloaded.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/unloaded.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/unloaded.java

OMERO, Release 5.6.5-SNAPSHOT-1

based on the id. If, however, you had tried to set a value on one of the Images, you will get an exception.

To prevent errors when working with unloaded objects, all the OME-Remote Objects classes are marked as protected
in the slice definitions which causes the implementations in each language to try to hide the fields. In Java and C++
this results in fields with “protected” visibility. In Python, an underscore is prefixed to all the variables. (In the Python
case, we have also tried to “strengthen” the hiding of the fields, by overriding __setattr__. This is not full proof, but
only so much can be done to hide values in Python.)

Collections

Just as an entire object can be unloaded, any collection field can also be unloaded. However, as mentioned above, since
it is not possible to send a null collection over the wire with Ice and working with RTypes can be inefficient, all the
OME-Remote Objects collections are hidden behind several methods.

#include <omero/model/DatasetI.h>
#include <omero/model/DatasetImageLinkI.h>
#include <omero/model/EventI.h>
#include <omero/model/ImageI.h>
#include <omero/model/PixelsI.h>
using namespace omero::model;
int main(int argc, char* argv[]) {

ImagePtr image = new ImageI(1, true);
image->getDetails()->setUpdateEvent(new EventI(1L, false));
// On creation, all collections are
// initialized to empty, and can be added
// to.
assert(image->sizeOfDatasetLinks() == 0);
DatasetPtr dataset = new DatasetI(1L, false);
DatasetImageLinkPtr link = image->linkDataset(dataset);
assert(image->sizeOfDatasetLinks() == 1);
// If you want to work with this collection,
// you'll need to get a copy.
ImageDatasetLinksSeq links = image->copyDatasetLinks();
// When you are done working with it, you can
// unload the datasets, assuming the changes
// have been persisted to the server.
image->unloadDatasetLinks();
assert(image->sizeOfDatasetLinks() < 0);
try {

image->linkDataset(new DatasetI());
} catch (...) {

// Can't access an unloaded collection
}
// The reload...() method allows one instance
// to take over a collection from another, if it
// has been properly initialized on the server.
// sameImage will have its collection unloaded.
ImagePtr sameImage = new ImageI(1L, true);
sameImage->getDetails()->setUpdateEvent(new EventI(1L, false));
sameImage->linkDataset(new DatasetI(1L, false));
image->reloadDatasetLinks(sameImage);
assert(image->sizeOfDatasetLinks() == 1);
assert(sameImage->sizeOfDatasetLinks() < 0);

(continues on next page)

3.7. More on API Usage 525

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

// If you would like to remove all the member
// elements from a collection, don't unload it
// but "clear" it.
image->clearDatasetLinks();
// Saving this to the database will remove
// all dataset links!
// Finally, all collections can be unloaded
// to use an instance as a single row in the database.
image->unloadCollections();
// Ordered collections have slightly different methods.
image = new ImageI(1L, true);
image->addPixels(new PixelsI());
image->getPixels(0);
image->getPrimaryPixels(); // Same thing
image->removePixels(image->getPixels(0));

}

Example: examples/OmeroClients/collectionmethods.cpp

import omero.model.*;
image = ImageI(1, true);
image.getDetails().setUpdateEvent(EventI(1, false));
% On creation, all collections are
% initialized to empty, and can be added
% to.
assert(image.sizeOfDatasetLinks() == 0);
dataset = DatasetI(1, false);
link = image.linkDataset(dataset);
assert(image.sizeOfDatasetLinks() == 1);
% If you want to work with this collection,
% you'll need to get a copy.
links = image.copyDatasetLinks();
% When you are done working with it, you can
% unload the datasets, assuming the changes
% have been persisted to the server.
image.unloadDatasetLinks();
assert(image.sizeOfDatasetLinks() < 0);
try

image.linkDataset(DatasetI());
catch ME

% Can't access an unloaded collection
end
% The reload...() method allows one instance
% to take over a collection from another, if it
% has been properly initialized on the server.
% sameImage will have its collection unloaded.
sameImage = ImageI(1, true);
sameImage.getDetails().setUpdateEvent(EventI(1, false));
sameImage.linkDataset(DatasetI(1, false));
image.reloadDatasetLinks(sameImage);
assert(image.sizeOfDatasetLinks() == 1);
assert(sameImage.sizeOfDatasetLinks() < 0);

(continues on next page)

526 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/collectionmethods.cpp

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

% If you would like to remove all the member
% elements from a collection, don't unload it
% but "clear" it.
image.clearDatasetLinks();
% Saving this to the database will remove
% all dataset links!
% Finally, all collections can be unloaded
% to use an instance as a single row in the database.
image.unloadCollections();
% Ordered collections have slightly different methods.
image = ImageI(1, true);
image.addPixels(PixelsI());
image.getPixels(0);
image.getPrimaryPixels(); % Same thing
image.removePixels(image.getPixels(0));

Example: examples/OmeroClients/collectionmethods.m

import omero
import omero.clients
ImageI = omero.model.ImageI
DatasetI = omero.model.DatasetI
EventI = omero.model.EventI
PixelsI = omero.model.PixelsI
image = ImageI(long(1), True)
image.getDetails().setUpdateEvent(EventI(1L, False))
On creation, all collections are
initialized to empty, and can be added
to.
assert image.sizeOfDatasetLinks() == 0
dataset = DatasetI(long(1), False)
link = image.linkDataset(dataset)
assert image.sizeOfDatasetLinks() == 1
If you want to work with this collection,
you'll need to get a copy.
links = image.copyDatasetLinks()
When you are done working with it, you can
unload the datasets, assuming the changes
have been persisted to the server.
image.unloadDatasetLinks()
assert image.sizeOfDatasetLinks() < 0
try:

image.linkDataset(DatasetI())
except:

Can't access an unloaded collection
pass

The reload...() method allows one instance
to take over a collection from another, if it
has been properly initialized on the server.
sameImage will have its collection unloaded.
sameImage = ImageI(1L, True)
sameImage.getDetails().setUpdateEvent(EventI(1L, False))

(continues on next page)

3.7. More on API Usage 527

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/collectionmethods.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

sameImage.linkDataset(DatasetI(long(1), False))
image.reloadDatasetLinks(sameImage)
assert image.sizeOfDatasetLinks() == 1
assert sameImage.sizeOfDatasetLinks() < 0
If you would like to remove all the member
elements from a collection, don't unload it
but "clear" it.
image.clearDatasetLinks()
Saving this to the database will remove
all dataset links!
Finally, all collections can be unloaded
to use an instance as a single row in the database.
image.unloadCollections()
Ordered collections have slightly different methods.
image = ImageI(long(1), True)
image.addPixels(PixelsI())
image.getPixels(0)
image.getPrimaryPixels() # Same thing
image.removePixels(image.getPixels(0))

Example: examples/OmeroClients/collectionmethods.py

import omero.model.Dataset;
import omero.model.DatasetI;
import omero.model.DatasetImageLink;
import omero.model.DatasetImageLinkI;
import omero.model.EventI;
import omero.model.Image;
import omero.model.ImageI;
import omero.model.Pixels;
import omero.model.PixelsI;
import java.util.*;
public class collectionmethods {

public static void main(String args[]) {
Image image = new ImageI(1, true);
image.getDetails().setUpdateEvent(new EventI(1L, false));
// On creation, all collections are
// initialized to empty, and can be added
// to.
assert image.sizeOfDatasetLinks() == 0;
Dataset dataset = new DatasetI(1L, false);
DatasetImageLink link = image.linkDataset(dataset);
assert image.sizeOfDatasetLinks() == 1;
// If you want to work with this collection,
// you'll need to get a copy.
List<DatasetImageLink> links = image.copyDatasetLinks();
// When you are done working with it, you can
// unload the datasets, assuming the changes
// have been persisted to the server.
image.unloadDatasetLinks();
assert image.sizeOfDatasetLinks() < 0;
try {

(continues on next page)

528 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/collectionmethods.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

image.linkDataset(new DatasetI());
} catch (Exception e) {

// Can't access an unloaded collection
}
// The reload...() method allows one instance
// to take over a collection from another, if it
// has been properly initialized on the server.
// sameImage will have its collection unloaded.
Image sameImage = new ImageI(1L, true);
sameImage.getDetails().setUpdateEvent(new EventI(1L, false));
sameImage.linkDataset(new DatasetI(1L, false));
image.reloadDatasetLinks(sameImage);
assert image.sizeOfDatasetLinks() == 1;
assert sameImage.sizeOfDatasetLinks() < 0;
// If you would like to remove all the member
// elements from a collection, don't unload it
// but "clear" it.
image.clearDatasetLinks();
// Saving this to the database will remove
// all dataset links!
// Finally, all collections can be unloaded
// to use an instance as a single row in the database.
image.unloadCollections();
// Ordered collections have slightly different methods.
image = new ImageI(1L, true);
image.addPixels(new PixelsI());
image.getPixels(0);
image.getPrimaryPixels(); // Same thing
image.removePixels(image.getPixels(0));

}
}

Example: examples/OmeroClients/collectionmethods.java

These methods prevent clients from accessing the collections directly, and any improper access will lead to an omero.
ClientError.

Interfaces

As mentioned above, one of the Java features which is missing from the slice definition language is the ability to have
concrete classes implement multiple interfaces. Much of the OME-Remote Objects in the RMI-based types (ome.
model) was based on the use of interfaces.

• :model_source:` IObject <src/main/java/ome/model/IObject.java>` is the root interface for all object types.
Methods: getId(), getDetails(), . . .

• :model_source:` IEnum <src/main/java/ome/model/IEnum.java>` is an enumeration value. Methods:
getValue()

• :model_source:` ILink <src/main/java/ome/model/ILink.java>` is a link between two other types. Methods:
getParent(), getChild()

• :model_source:` IMutable <src/main/java/ome/model/IMutable.java>` is an instance for changes will be per-
sisted. Methods: getVersion()

3.7. More on API Usage 529

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/collectionmethods.java

OMERO, Release 5.6.5-SNAPSHOT-1

Instead, the Ice-based types (omero.model) all subclass from the same concrete type – omero.model.IObject – and
it has several methods defined for testing which of the ome.model interfaces are implemented by any type.

Use of such methods is naturally less object-oriented and requires if/then blocks, but within the confines of the mapping
language is a next-best option.

No cpp example

import omero.model.*;
o = EventI();
assert(~ o.isMutable());
o = ExperimenterI();
assert(o.isMutable());
assert(o.isGlobal());
assert(o.isAnnotated());
o = GroupExperimenterMapI();
assert(o.isLink());
someObject = ExperimenterI();
% Some method call and you no longer know what someObject is
if (~ someObject.isMutable())

% No need to update
elseif (someObject.isAnnotated())

% deleteAnnotations(someObject);
end

Example: examples/OmeroClients/interfaces.m

import omero
from omero_model_EventI import EventI
from omero_model_ExperimenterI import ExperimenterI
from omero_model_GroupExperimenterMapI import GroupExperimenterMapI
assert (not EventI().isMutable())
assert ExperimenterI().isMutable()
assert ExperimenterI().isGlobal()
assert ExperimenterI().isAnnotated()
assert GroupExperimenterMapI().isLink()

Example: examples/OmeroClients/interfaces.py

import omero.model.IObject;
import omero.model.EventI;
import omero.model.ExperimenterI;
import omero.model.GroupExperimenterMapI;
public class interfaces {

public static void main(String args[]) {
assert ! new EventI().isMutable();
assert new ExperimenterI().isMutable();
assert new ExperimenterI().isGlobal();
assert new ExperimenterI().isAnnotated();
assert new GroupExperimenterMapI().isLink();
IObject someObject = new ExperimenterI();
// Some method call and you no longer know what someObject is
if (! someObject.isMutable()) {

// No need to update
(continues on next page)

530 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/interfaces.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/interfaces.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

} else if (someObject.isAnnotated()) {
// deleteAnnotations(someObject);

}
}

}

Example: examples/OmeroClients/interfaces.java

Improvement of this situation by adding abstract classes is planned. However, the entire functionality will not be
achievable because of single inheritance.

Language-specific behavior

Smart pointers (C++ only)

An important consideration when working with C++ is that the OME-Remote Objects classes themselves have no copy-
constructors and no assignment operator (operator=), and so cannot be allocated on the stack. Combined with smart
pointers this effectively prevents memory leaks.

The code generated types must be allocated on the heap with new and used in combination with the smart pointer
typedefs which handle calling the destructor when the reference count hits zero.

#include <omero/model/ImageI.h>
using namespace omero::model;
int main()
{

// ImageI image(); // ERROR
// ImageI image = new ImageI(); // ERROR
ImageIPtr image1 = new ImageI(); // OK
ImageIPtr image2(new ImageI()); // OK
// image1 pointer takes value of image2
// image1's content is garbage collected
image1 = image2;
//
// Careful with boolean contexts
//
if (image1 && image1 == 1) {

// Means non-null
// This object can be dereferenced

}
ImageIPtr nullImage; // No assignment
if (!nullImage && nullImage == 0) {

// Dereferencing nullImage here would throw an exception:
// nullImage->getId(); // IceUtil::NullHandleException !

}
}

Example: examples/OmeroClients/smartpointers.cpp

No m example

3.7. More on API Usage 531

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/interfaces.java
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/smartpointers.cpp

OMERO, Release 5.6.5-SNAPSHOT-1

No py example

No java example

Warning: As shown in the example, using a smart pointer instance in a boolean or integer/long context, returns 1
for true (i.e. non-null) or 0 for false (i.e. null). Be especially careful with the RTypes.

For more information, see 6.14.6 Smart Pointers for Classes in the Ice manual, which also describes the Ice.GC.
Interval parameter which determines how often garbage collection runs in C++ to reap objects. This is necessary
with the OME-Remote Objects since there are inherently cycles in the object graph.

Another point type which may be of use is omero::client_ptr. It also performs reference counting and will call
client.closeSession() once the reference count hits zero. Without client_ptr, your code will need to be sur-
rounded by a try/catch block. Otherwise, 1) sessions will be left open on the server, and 2) your client may hang on
exit.

#include <omero/client.h>
int main(int argc, char* argv[])
{

// Duplicating the argument list. ticket:1246
Ice::StringSeq args1 = Ice::argsToStringSeq(argc, argv);
Ice::StringSeq args2(args1);
Ice::InitializationData id1, id2;
id1.properties = Ice::createProperties(args1);
id2.properties = Ice::createProperties(args2);
// Either
omero::client client(id1);
try {

// Do something like
// client.createSession();

} catch (...) {
client.closeSession();

}
//
// Or
//
{

omero::client_ptr client = new omero::client(id2);
// Do something like
// client->createSession();

}
// Client was destroyed via RAII

}

Example: examples/OmeroClients/clientpointer.cpp

No m example

No py example

532 Chapter 3. Developer Documentation

https://doc.zeroc.com/display/Ice/Smart+Pointers+for+Classes
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/clientpointer.cpp

OMERO, Release 5.6.5-SNAPSHOT-1

No java example

__getattr__ and __setattr__ (Python only)

Like smart pointers for OMERO C++ language bindings, the OMERO Python language bindings SDK defines
__getattr__ and __setattr__ methods for all OME-Remote Objects classes. Rather than explicitly calling the
getFoo() and setFoo() methods, field-like access can be used. (It should be noted, however, that the accessors will
perform marginally faster.)

No cpp example

No m example

import omero
import omero.clients
from omero.rtypes import *
i = omero.model.ImageI()
#
Without __getattr__ and __setattr__
#
i.setName(rstring("name"))
assert i.getName().getValue() == "name"
#
With __getattr__ and __setattr__
#
i = omero.model.ImageI()
i.name = rstring("name")
assert i.name.val == "name"
#
Collections, however, cannot be accessed
via the special methods due to the dangers
outlined above
#
try:

i.datasetLinks[0]
except AttributeError, ae:

pass

Example: examples/OmeroClients/getsetattr.py

No java example

3.7. More on API Usage 533

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/getsetattr.py

OMERO, Release 5.6.5-SNAPSHOT-1

Method inspection and code completion (MATLAB & Python)

Ice generates a number of internal (private) methods which are not intended for general consumption. Unfortunately,
MATLAB’s code-completion as well as Python’s dir method return these methods, which can lead to confusion. In
general, the API user can ignore any method beginning with an underscore or with ice_. For example,

>>>for i in dir(omero.model.ImageI):
... if i.startswith("_") or i.startswith("ice_"):
... print(i)
...
(snip)
_op_addAllDatasetImageLinkSet
_op_addAllImageAnnotationLinkSet
_op_addAllPixelsSet
_op_addAllRoiSet
_op_addAllWellSampleSet
...
ice_id
ice_ids
ice_isA
ice_ping
ice_postUnmarshal
ice_preMarshal
ice_staticId
ice_type
>>>

Services overview

After discussing the many types and how to create them, the next obvious question is what one can actually do with
them. For that, we have to look at what services are provided by OMERO.blitz, how they are obtained, used, and
cleaned up.

OMERO client configuration

The first step in accessing the OMERO Application Programming Interface and therefore the first thing to plan when
writing an OMERO client is the proper configuration of an omero.client instance. The omero.client (or in C++
omero::client) class tries to wrap together and simplify as much of working with Ice as possible. Where it can, it
imports or <#includes> types for you, creates an Ice.Communicator and registers an ObjectFactory. Typically, the only
work on the client developers part is to properly configure the omero.client object and then login.

In the simplest case, configuration requires only the server host, username, and password with which you want to login.
But as you can see below, there are various ways to configure your client, and this is really only the beginning.

#include <omero/client.h>
#include <iostream>
int main(int argc, char* argv[]) {

// All configuration in file pointed to by
// --Ice.Config=file.config
// No username, password entered
try {

omero::client client1(argc, argv);
(continues on next page)

534 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

client1.createSession();
client1.closeSession();

} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?

} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?

}
// Most basic configuration.
// Uses default port 4064
// createSession needs username and password
try {

omero::client client2("localhost");
client2.createSession("root", "ome");
client2.closeSession();

} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?

} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?

}
// Configuration with port information
try {

omero::client client3("localhost", 24063);
client3.createSession("root", "ome");
client3.closeSession();

} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?

} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?

}
// Advanced configuration in C++ takes place
// via an InitializationData instance.
try {

Ice::InitializationData data;
data.properties = Ice::createProperties();
data.properties->setProperty("omero.host", "localhost");
omero::client client4(data);
client4.createSession("root", "ome");
client4.closeSession();

} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?

} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?

}
// std::map to be added (ticket:1278)
try {

Ice::InitializationData data;
data.properties = Ice::createProperties();
data.properties->setProperty("omero.host", "localhost");
data.properties->setProperty("omero.user", "root");
data.properties->setProperty("omero.pass", "ome");
omero::client client5(data);
// Again, no username or password needed

(continues on next page)

3.7. More on API Usage 535

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

// since present in the data. But they *can*
// be overridden.
client5.createSession();
client5.closeSession();

} catch (const Glacier2::PermissionDeniedException& pd) {
// Bad password?

} catch (const Ice::ConnectionRefusedException& cre) {
// Bad address or port?

}
}

Example: examples/OmeroClients/configuration.cpp

% All configuration in file pointed to by
% --Ice.Config=file.config
% No username, password entered
args = javaArray('java.lang.String',1);
args(1) = java.lang.String('--Ice.Config=ice.config');
client1 = omero.client(args);
client1.createSession();
client1.closeSession();
% Most basic configuration.
% Uses default port 4064
% createSession needs username and password
client2 = omero.client('localhost');
client2.createSession('root', 'ome');
client2.closeSession();
% Configuration with port information
client3 = omero.client('localhost', 10463);
client3.createSession('root', 'ome');
client3.closeSession();
% Advanced configuration can also be done
% via an InitializationData instance.
data = Ice.InitializationData();
data.properties = Ice.Util.createProperties();
data.properties.setProperty('omero.host', 'localhost');
client4 = omero.client(data);
client4.createSession('root', 'ome');
client4.closeSession();
% Or alternatively via a java.util.Map instance
map = java.util.HashMap();
map.put('omero.host', 'localhost');
map.put('omero.user', 'root');
map.put('omero.pass', 'ome');
client5 = omero.client(map);
% Again, no username or password needed
% since present in the map. But they *can*
% be overridden.
client5.createSession();
client5.closeSession();

Example: examples/OmeroClients/configuration.m

536 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/configuration.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/configuration.m

OMERO, Release 5.6.5-SNAPSHOT-1

import omero
import Ice
All configuration in file pointed to by
--Ice.Config=file.config or ICE_CONFIG
environment variable;
No username, password entered
try:

client1 = omero.client()
client1.createSession()
client1.closeSession()

except Ice.ConnectionRefusedException:
pass # Bad address or port?

Most basic configuration.
Uses default port 4064
createSession needs username and password
try:

client2 = omero.client("localhost")
client2.createSession("root","ome")
client2.closeSession()

except Ice.ConnectionRefusedException:
pass # Bad address or port?

Configuration with port information
try:

client3 = omero.client("localhost", 24064)
client3.createSession("root","ome")
client3.closeSession()

except Ice.ConnectionRefusedException:
pass # Bad address or port?

Advanced configuration can also be done
via an InitializationData instance.
data = Ice.InitializationData()
data.properties = Ice.createProperties()
data.properties.setProperty("omero.host", "localhost")
try:

client4 = omero.client(data)
client4.createSession("root","ome")
client4.closeSession()

except Ice.ConnectionRefusedException:
pass # Bad address or port?

Or alternatively via a dict instance
m = {"omero.host":"localhost",

"omero.user":"root",
"omero.pass":"ome"}

client5 = omero.client(m)
Again, no username or password needed
since present in the map. But they *can*
be overridden.
try:

client5.createSession()
client5.closeSession()

except Ice.ConnectionRefusedException:
pass # Bad address or port?

3.7. More on API Usage 537

OMERO, Release 5.6.5-SNAPSHOT-1

Example: examples/OmeroClients/configuration.py

public class configuration {
public static void main(String[] args) throws Exception {
// All configuration in file pointed to by
// --Ice.Config=file.config
// No username, password entered
omero.client client1 = new omero.client(args);
try {

client1.createSession();
} catch (Ice.ConnectionRefusedException cre) {

// Bad address or port?
} finally {

client1.closeSession();
}
// Most basic configuration.
// Uses default port 4064
// createSession needs username and password
omero.client client2 = new omero.client("localhost");
try {

client2.createSession("root", "ome");
} catch (Ice.ConnectionRefusedException cre) {

// Bad address or port?
} finally {

client2.closeSession();
}
// Configuration with port information
omero.client client3 = new omero.client("localhost", 24064);
try {

client3.createSession("root", "ome");
} catch (Ice.ConnectionRefusedException cre) {

// Bad address or port?
} finally {

client3.closeSession();
}
// Advanced configuration can also be done
// via an InitializationData instance.
Ice.InitializationData data = new Ice.InitializationData();
data.properties = Ice.Util.createProperties();
data.properties.setProperty("omero.host", "localhost");
omero.client client4 = new omero.client(data);
try {

client4.createSession("root", "ome");
} catch (Ice.ConnectionRefusedException cre) {

// Bad address or port?
} finally {

client4.closeSession();
}
// Or alternatively via a java.util.Map instance
java.util.Map<String, String> map = new java.util.HashMap<String, String>();
map.put("omero.host", "localhost");
map.put("omero.user", "root");
map.put("omero.pass", "ome");

(continues on next page)

538 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/configuration.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

omero.client client5 = new omero.client(map);
// Again, no username or password needed
// since present in the map. But they *can*
// be overridden.
try {

client5.createSession();
} catch (Ice.ConnectionRefusedException cre) {

// Bad address or port?
} finally {

client5.closeSession();
}

}
}

Example: examples/OmeroClients/configuration.java

To find out more about using the Ice.Config file for configuration, see etc/templates/ice.config.

What is a ServiceFactory?

In each of the examples above, the result of configuration was the ability to call createSession which returns a
ServiceFactoryPrx.

The ServiceFactory is the clients representation of the user’s server-side session, which multiple clients can connect
to it simultaneously. A ServiceFactoryPrx? object is acquired on login via the createSession method, and persists
until either it is closed or a timeout is encountered unless additional clients attach to it. This is done via client.
joinSession(String uuid). In that case, the session is not finally closed until its reference count drops to zero.

It produces services!

Once a client has been configured properly, and has an active in ServiceFactory in hand, it is time to start accessing
services.

The collection of all services provided by OMERO is known as the OMERO Application Programming Interface. Each
service is defined in a slice file under src/main/slice/omero. The central definitions are in src/main/slice/omero/API.ice,
along with the definition of ServiceFactory itself:

interface ServiceFactory extends Glacier2::Session
{

// Central OMERO.blitz stateless services.
IAdmin* getAdminService() throws ServerError;
IConfig* getConfigService() throws ServerError;
...
// Central OMERO.blitz stateful services.
Gateway* createGateway() throws ServerError;
...

In the definition above, the return values look like C/C++ pointers, which in Ice’s definition language represents return-
by-proxy. When a client calls, serviceFactory.getAdminService() it will receive an IAdminPrx. Any call on that object
is a remote invocation.

3.7. More on API Usage 539

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/configuration.java
https://github.com/ome/openmicroscopy/blob/develop/etc/templates/ice.config
https://github.com/ome/omero-blitz/tree/v5.5.10/src/main/slice/omero
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/API.ice

OMERO, Release 5.6.5-SNAPSHOT-1

Stateless vs. stateful

Most methods on the ServiceFactory return either a stateless or a stateful service factory. Stateless services are those
returned by calls to “getSomeNameService()”. They implement omero.api.ServiceInterface but not its subinter-
face omero.api.StatefulServiceInterface. Stateless services are for all intents and purposes singletons, though
the implementation may vary.

Stateful services are returned by calls to “createSomething()” and implement omero.api.
StatefulServiceInterface. Each maintains a state machine with varying rules on initialization and usage.
It is important to guarantee that calls are ordered as described in the documentation for each stateful service. It
is also important to always close stateful services to free up server resources. If you fail to manually call
StatefulServiceInterfacePrx.close(), it will be called for you on session close/timeout.

What are timeouts?

The following code has a resource leak:

import omero, sys
c = omero.client()
s = c.createSession()
sys.exit(0)

Although the client will not suffer any consequences, this snippet leaves a session open on the server. If the server failed
to eventually reap such sessions, they would eventually consume all available memory. To get around this, the server
implements timeouts on all sessions. It is the clients responsibility to periodically contact the server to keep the
session alive. Since threading policies vary in applications, no strict guideline is available on how to do this. Almost
any API method will suffice to tell the server that the client is still active. Important is that the call happens within
every timeout window.

No cpp example

No m example

import time
import omero
import threading
IDLETIME = 5
c = omero.client()
s = c.createSession()
re = s.createRenderingEngine()
class KeepAlive(threading.Thread):

def run(self):
self.stop = False
while not self.stop:

time.sleep(IDLETIME)
print("calling keep alive")
Currently, passing a null or empty array to keepAllAlive
would suffice. For future-proofing, however, it makes sense
to pass stateful services.
try:

s.keepAllAlive([re])
except:

(continues on next page)

540 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

c.closeSession()
raise

keepAlive = KeepAlive()
keepAlive.start()
time.sleep(IDLETIME * 2)
keepAlive.stop = True

Example: examples/OmeroClients/timeout.py

import omero.*;
import omero.api.*;
import omero.model.*;
import omero.sys.*;
public class timeout {

static int IDLETIME = 5;
static client c;
static ServiceFactoryPrx s;
public static void main(String[] args) throws Exception {

final int idletime = args.length > 1 ? Integer.parseInt(args[0]) : IDLETIME;
c = new client(args);
s = c.createSession();
System.out.println(s.getAdminService().getEventContext().sessionUuid);
final RenderingEnginePrx re = s.createRenderingEngine(); // for keep alive
class Run extends Thread {

public boolean stop = false;
public void run() {
while (! stop) {

try {
Thread.sleep(idletime*1000L);

} catch (Exception e) {
// ok

}
System.out.println(System.currentTimeMillis() + " calling keep alive

→˓");
try {

// Currently, passing a null or empty array to keepAllAlive
// would suffice. For future-proofing, however, it makes sense
// to pass stateful services.
s.keepAllAlive(new ServiceInterfacePrx[]{re});

} catch (Exception e) {
c.closeSession();
throw new RuntimeException(e);

}
}

}
}
final Run run = new Run();
class Stop extends Thread {

public void run() {
run.stop = true;

}
}

(continues on next page)

3.7. More on API Usage 541

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/timeout.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

Runtime.getRuntime().addShutdownHook(new Stop());
run.start();

}
}

Example: examples/OmeroClients/timeout.java

Exceptions

Probably the most critical thing to realize is that any call on a proxy, which includes ServiceFactoryPrx or any of the
*Prx service classes is a remote invocation on the server. Therefore proper exception handling is critical. The definition
of the various exceptions is outlined on the Exception handling page and so will not be repeated here. However, how
are these sensibly used?

One easy rule is that every omero.client object which you successfully call createSession() on must have
closeSession() called on it before you exit.

omero.client client = new omero.client();
client.createSession();
try {
// do whatever you want

} finally {
client.closeSession();

}

Obviously, the work you do in your client will be much more complicated, and may be under layers of application code.
But when designing where active omero.client objects are kept, be sure that your clean-up code takes care of them.

IQuery

Now that we have a good idea of the basics, it might be interesting to start asking the server what it has got. The most
powerful way of doing this is by using IQuery and the Hibernate Query Language (HQL).

#include <omero/api/IQuery.h>
#include <omero/client.h>
#include <omero/RTypesI.h>
#include <omero/sys/ParametersI.h>
using namespace omero::rtypes;
int main(int argc, char* argv[]) {

omero::client_ptr client = new omero::client(argc, argv);
omero::api::ServiceFactoryPrx sf = client->createSession();
omero::api::IQueryPrx q = sf->getQueryService();
std::string query_string = "select i from Image i where i.id = :id and name like␣

→˓:namedParameter";
omero::sys::ParametersIPtr p = new omero::sys::ParametersI();
p->add("id", rlong(1L));
p->add("namedParameter", rstring("cell%mit%"));
omero::api::IObjectList results = q->findAllByQuery(query_string, p);

}

Example: examples/OmeroClients/queries.cpp

542 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/timeout.java
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/queries.cpp

OMERO, Release 5.6.5-SNAPSHOT-1

[client,sf] = loadOmero;
try

q = sf.getQueryService();
query_string = 'select i from Image i where i.id = :id and name like :namedParameter

→˓';
p = omero.sys.ParametersI();
p.add('id', omero.rtypes.rlong(1));
p.add('namedParameter', omero.rtypes.rstring('cell%mit%'));
results = q.findAllByQuery(query_string, p) % java.util.List

catch ME
client.closeSession();

end

Example: examples/OmeroClients/queries.m

import sys
import omero
from omero.rtypes import *
from omero_sys_ParametersI import ParametersI
client = omero.client(sys.argv)
try:

sf = client.createSession()
q = sf.getQueryService()
query_string = "select i from Image i where i.id = :id and name like :namedParameter

→˓";
p = ParametersI()
p.addId(1L)
p.add("namedParameter", rstring("cell%mit%"));
results = q.findAllByQuery(query_string, p)

finally:
client.closeSession()

Example: examples/OmeroClients/queries.py

import java.util.List;
import static omero.rtypes.*;
import omero.api.ServiceFactoryPrx;
import omero.api.IQueryPrx;
import omero.model.IObject;
import omero.model.ImageI;
import omero.model.PixelsI;
import omero.sys.ParametersI;
public class queries {

public static void main(String args[]) throws Exception {
omero.client client = new omero.client(args);
try {

ServiceFactoryPrx sf = client.createSession();
IQueryPrx q = sf.getQueryService();
String query_string = "select i from Image i where i.id = :id and name like␣

→˓:namedParameter";
ParametersI p = new ParametersI();
p.add("id", rlong(1L));
p.add("namedParameter", rstring("cell%mit%"));

(continues on next page)

3.7. More on API Usage 543

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/queries.m
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/queries.py

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

List<IObject> results = q.findAllByQuery(query_string, p);
} finally {

client.closeSession();
}

}
}

Example: examples/OmeroClients/queries.java

The query_string is an example of HQL. It looks a lot like SQL, but works with objects and fields rather
than tables and columns (though in OMERO these are usually named the same). The Parameters object al-
low for setting named parameters (:id) in the query to allow for re-use, and is the only other argument need
to IQueryPrx.findAllByQuery() to get a list of IObject instances back. They are guaranteed to be of type
omero::model::Image, but you may have to cast them to make full use of that information.

IUpdate

After you have successfully read objects, an obvious thing to do is create your own. Below is a simple example of
creating an image object:

#include <IceUtil/Time.h>
#include <omero/api/IUpdate.h>
#include <omero/client.h>
#include <omero/RTypesI.h>
#include <omero/model/ImageI.h>
using namespace omero::rtypes;
int main(int argc, char* argv[]) {

omero::client_ptr client = new omero::client(argc, argv);
omero::model::ImagePtr i = new omero::model::ImageI();
i->setName(rstring("name"));
i->setAcquisitionDate(rtime(IceUtil::Time::now().toMilliSeconds()));
omero::api::ServiceFactoryPrx sf = client->createSession();
omero::api::IUpdatePrx u = sf->getUpdateService();
i = omero::model::ImagePtr::dynamicCast(u->saveAndReturnObject(i));

}

Example: examples/OmeroClients/updates.cpp

[client,sf] = loadOmero;
try

i = omero.model.ImageI();
i.setName(omero.rtypes.rstring('name'));
i.setAcquisitionDate(omero.rtypes.rtime(java.lang.System.currentTimeMillis()));
u = sf.getUpdateService();
i = u.saveAndReturnObject(i);
disp(i.getId().getValue());

catch ME
disp(ME);
client.closeSession();

end

Example: examples/OmeroClients/updates.m

544 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/queries.java
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/updates.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/updates.m

OMERO, Release 5.6.5-SNAPSHOT-1

import sys
import time
import omero
import omero.clients
from omero.rtypes import *
client = omero.client(sys.argv)
try:

i = omero.model.ImageI()
i.name = rstring("name")
i.acquisitionDate = rtime(time.time() * 1000)
sf = client.createSession()
u = sf.getUpdateService()
i = u.saveAndReturnObject(i)

finally:
client.closeSession()

Example: examples/OmeroClients/updates.py

import java.util.List;
import static omero.rtypes.*;
import omero.api.ServiceFactoryPrx;
import omero.api.IUpdatePrx;
import omero.model.ImageI;
import omero.model.Image;
public class updates {

public static void main(String args[]) throws Exception {
omero.client client = new omero.client(args);
try {

Image i = new ImageI();
i.setName(rstring("name"));
i.setAcquisitionDate(rtime(System.currentTimeMillis()));
ServiceFactoryPrx sf = client.createSession();
IUpdatePrx u = sf.getUpdateService();
i = (Image) u.saveAndReturnObject(i);

} finally {
client.closeSession();

}
}

}

Example: examples/OmeroClients/updates.java

3.7. More on API Usage 545

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/updates.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/updates.java

OMERO, Release 5.6.5-SNAPSHOT-1

Examples

To tie together some of the topics which we have outlined above, we would like to eventually have several more or less
complete application examples which you can use to get started. For the moment, there is just one simpler example
TreeList, but more will certainly be added. Let us know any ideas you may have.

TreeList

No cpp example

function projects = AllProjects(query, username)
q = ['select p from Project p join fetch p.datasetLinks dil ',...

'join fetch dil.child where p.details.owner.omeName = :name'];
p = omero.sys.ParametersI();
p.add('name', omero.rtypes.rstring(username));
projects = query.findAllByQuery(q, p);

Example: examples/TreeList/AllProjects.m

import omero
from omero.rtypes import *
from omero_sys_ParametersI import ParametersI
def getProjects(query_prx, username):

return query_prx.findAllByQuery(
"select p from Project p join fetch p.datasetLinks dil join fetch dil.child␣

→˓where p.details.owner.omeName = :name",
ParametersI().add("name", rstring(username)))

Example: examples/TreeList/AllProjects.py

import java.util.List;
import omero.model.Project;
import omero.api.IQueryPrx;
import omero.sys.ParametersI;
import static omero.rtypes.*;
public class AllProjects {

public static List<Project> getProjects(IQueryPrx query, String username) throws␣
→˓Exception {

List rv = query.findAllByQuery(
"select p from Project p join fetch p.datasetLinks dil join fetch dil.child␣

→˓where p.details.owner.omeName = :name",
new ParametersI().add("name", rstring(username)));

return (List<Project>) rv;
}

}

Example: examples/TreeList/AllProjects.java

No cpp example

function PrintProjects(projects)
if (projects.size()==0)

(continues on next page)

546 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/AllProjects.m
https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/AllProjects.py
https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/AllProjects.java

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

return;
end;
for i=0:projects.size()-1,

project = projects.get(i);
disp(project.getName().getValue());
links = project.copyDatasetLinks();
if (links.size()==0)

return
end
for j=0:links.size()-1,

pdl = links.get(j);
dataset = pdl.getChild();
disp(sprintf(' %s', char(dataset.getName().getValue())));

end
end

Example: examples/TreeList/PrintProjects.m

def print_(projects):
for project in projects:

print(project.getName().val)
for pdl in project.copyDatasetLinks():

dataset = pdl.getChild()
print(" " + dataset.getName().val)

Example: examples/TreeList/PrintProjects.py

import java.util.List;
import omero.model.Project;
import omero.model.ProjectDatasetLink;
import omero.model.Dataset;
public class PrintProjects {

public static void print(List<Project> projects) {
for (Project project : projects) {

System.out.print(project.getName().getValue());
for (ProjectDatasetLink pdl : project.copyDatasetLinks()) {

Dataset dataset = pdl.getChild();
System.out.println(" " + dataset.getName().getValue());

}
}

}
}

Example: examples/TreeList/PrintProjects.java

#include <omero/client.h>
#include <Usage.h>
#include <AllProjects.h>
#include <PrintProjects.h>
int main(int argc, char* argv[]) {

std::string host, port, user, pass;
try {

host = argv[0];
(continues on next page)

3.7. More on API Usage 547

https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/PrintProjects.m
https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/PrintProjects.py
https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/PrintProjects.java

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

port = argv[1];
user = argv[2];
pass = argv[3];

} catch (...) {
Usage::usage();

}
omero::client client(argc, argv);
int rc = 0;
try {

omero::api::ServiceFactoryPrx factory = client.createSession(user, pass);
std::vector<omero::model::ProjectPtr> projects =␣

→˓AllProjects::getProjects(factory->getQueryService(), user);
PrintProjects::print(projects);

} catch (...) {
client.closeSession();

}
return rc;

}

Example: examples/TreeList/Main.cpp

function Main(varargin)
try

host = varargin{1};
port = varargin{2};
user = varargin{3};
pass = varargin{4};

catch ME
Usage

end
client = omero.client(host, port);
factory = client.createSession(user, pass);
projects = AllProjects(factory.getQueryService(), user);
PrintProjects(projects);
client.closeSession();

Example: examples/TreeList/Main.m

import sys
import omero
import Usage, AllProjects, PrintProjects
if __name__ == "__main__":

try:
host = sys.argv[1]
port = sys.argv[2]
user = sys.argv[3]
pasw = sys.argv[4]

except:
Usage.usage()

client = omero.client(sys.argv)
try:

factory = client.createSession(user, pasw)
(continues on next page)

548 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/Main.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/Main.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

projects = AllProjects.getProjects(factory.getQueryService(), user)
PrintProjects.print_(projects)

finally:
client.closeSession()

Example: examples/TreeList/Main.py

import omero.api.ServiceFactoryPrx;
import omero.model.Project;
import java.util.List;
public class Main {

public static void main(String args[]) throws Exception{
String host = null, port = null, user = null, pass = null;
try {

host = args[0];
port = args[1];
user = args[2];
pass = args[3];

} catch (Exception e) {
Usage.usage();

}
omero.client client = new omero.client(args);
try {

ServiceFactoryPrx factory = client.createSession(user, pass);
List<Project> projects = AllProjects.getProjects(factory.getQueryService(),␣

→˓user);
PrintProjects.print(projects);

} finally {
client.closeSession();

}
}

}

Example: examples/TreeList/Main.java

Advanced topics

Sudo

If you are familiar with the admin user concept in OMERO, you might wonder if it is possible for administrative users to
perform tasks for regular users. Under Unix-based systems this is commonly known as “sudo” functionality. Although
not (yet) as straightforward, it is possible to create sessions for other users and carry out actions on their behalf.

#include <iostream>
#include <omero/api/IAdmin.h>
#include <omero/api/ISession.h>
#include <omero/client.h>
#include <omero/model/Session.h>
int main(int argc, char* argv[]) {

Ice::StringSeq args1 = Ice::argsToStringSeq(argc, argv);
Ice::StringSeq args2(args1); // Copies

(continues on next page)

3.7. More on API Usage 549

https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/Main.py
https://github.com/ome/openmicroscopy/blob/develop/examples/TreeList/Main.java

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

// ticket:1246
Ice::InitializationData id1;
id1.properties = Ice::createProperties(args1);
Ice::InitializationData id2;
id2.properties = Ice::createProperties(args2);
omero::client_ptr client = new omero::client(id1);
omero::client_ptr sudoClient = new omero::client(id2);
omero::api::ServiceFactoryPrx sf = client->createSession();
omero::api::ISessionPrx sessionSvc = sf->getSessionService();
omero::sys::PrincipalPtr p = new omero::sys::Principal();
p->name = "root"; // Can change to any user
p->group = "user";
p->eventType = "User";
omero::model::SessionPtr sudoSession = sessionSvc->createSessionWithTimeout(p,␣

→˓3*60*1000L); // 3 minutes to live
omero::api::ServiceFactoryPrx sudoSf = sudoClient->joinSession(sudoSession->

→˓getUuid()->getValue());
omero::api::IAdminPrx sudoAdminSvc = sudoSf->getAdminService();
std::cout << sudoAdminSvc->getEventContext()->userName;

}

Example: examples/OmeroClients/sudo.cpp

client = omero.client();
sudoClient = omero.client();
try

sf = client.createSession('root','ome');
sessionSvc = sf.getSessionService();
p = omero.sys.Principal();
p.name = 'root'; % Can change to any user
p.group = 'user';
p.eventType = 'User';
sudoSession = sessionSvc.createSessionWithTimeout(p, 3*60*1000); % 3 minutes to␣

→˓live
sudoSf = sudoClient.joinSession(sudoSession.getUuid().getValue());
sudoAdminSvc = sudoSf.getAdminService();
disp(sudoAdmin.Svc.getEventContext().userName);

catch ME
sudoClient.closeSession();
client.closeSession();

end

Example: examples/OmeroClients/sudo.m

import sys
import omero
args = list(sys.argv)
client = omero.client(args)
sudoClient = omero.client(args)
try:

sf = client.createSession("root", "ome")
sessionSvc = sf.getSessionService()

(continues on next page)

550 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/sudo.cpp
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/sudo.m

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

p = omero.sys.Principal()
p.name = "root" # Can change to any user
p.group = "user"
p.eventType = "User"
sudoSession = sessionSvc.createSessionWithTimeout(p, 3*60*1000L) # 3 minutes to␣

→˓live
sudoSf = sudoClient.joinSession(sudoSession.getUuid().getValue())
sudoAdminSvc = sudoSf.getAdminService()
print(sudoAdminSvc.getEventContext().userName)

finally:
sudoClient.closeSession()
client.closeSession()

Example: examples/OmeroClients/sudo.py

import java.util.List;
import omero.api.IAdminPrx;
import omero.api.ISessionPrx;
import omero.api.ServiceFactoryPrx;
import omero.model.Session;
import omero.sys.Principal;
public class sudo {

public static void main(String args[]) throws Exception {
omero.client client = new omero.client(args);
omero.client sudoClient = new omero.client(args);
try {

ServiceFactoryPrx sf = client.createSession("root", "ome");
ISessionPrx sessionSvc = sf.getSessionService();
Principal p = new Principal();
p.name = "root"; // Can change to any user
p.group = "user";
p.eventType = "User";
Session sudoSession = sessionSvc.createSessionWithTimeout(p, 3*60*1000L); /

→˓/ 3 minutes to live
ServiceFactoryPrx sudoSf = sudoClient.joinSession(sudoSession.getUuid().

→˓getValue());
IAdminPrx sudoAdminSvc = sudoSf.getAdminService();
System.out.println(sudoAdminSvc.getEventContext().userName);

} finally {
sudoClient.closeSession();
client.closeSession();

}
}

}

Example: examples/OmeroClients/sudo.java

3.7. More on API Usage 551

https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/sudo.py
https://github.com/ome/openmicroscopy/blob/develop/examples/OmeroClients/sudo.java

OMERO, Release 5.6.5-SNAPSHOT-1

Proposed

Like the complete examples above, there are several topics which need to be covered in more detail:

• how to detect client/server version mismatches

• how to make asynchronous methods

• how to use client callbacks

• how to make use of your own ObjectFactory

Planned improvements and known issues

Topics to be added

Obviously, this introduction is still not exhaustive by any means. Some topics which we would like to see added here
in the near future include:

• more examples of working with the OME-Remote Objects

• examples of all services

• security and ownership

• performance

Code generation

Although not directly relevant to writing a client, it is important to note that much of the code for OMERO Python
language bindings, OMERO C++ language bindings, and OMERO Java language bindings is code generated by the
BlitzBuild. Therefore, many of the imported and included files in the examples above cannot be found in github.

We plan to include packages of the generated source code in future releases. Until then, it is possible to find our latest
builds on jenkins or to build them locally, although some of the generated files are later overwritten by hand-written
versions:

• model is located in components/tools/OmeroCpp/src/omero/model/

• OmeroPy is located in components/tools/OmeroPy/src/

Lazy loading and caching

Separate method calls will often return one and the same object, say Dataset#123. Your application, however, will not
necessarily recognize them as the same entity unless you explicitly check the id value. A client-side caching mechanism
would allow duplicate objects to be handled transparently, and would eventually facilitate lazy loading.

552 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy
https://ci.openmicroscopy.org/

OMERO, Release 5.6.5-SNAPSHOT-1

Helper classes

Several types are harder to use than they need be. omero.sys.Parameters, for example, is a class for which native
implementations are quite helpful. We have provided omero.sys.ParametersI in all supported languages, and will most
likely support more over time:

Other

• Superclasses need to be introduced where possible to replace the ome.model.* interfaces

• Annotation-link-loading can behave strangely if AnnotationLink.child is not loaded.

3.7.2 OMERO Application Programming Interface

All interaction with the OMERO server takes place via several API services available from a ServiceFactory. A service
factory is obtained from the client connection e.g. Python:

import omero.clients

client = omero.client("localhost")
session = client.createSession("username", "password") # this is the service factory
adminService = session.getAdminService() # now we can get/create services

• The Service factory API has methods for creating Stateless and Stateful services, see below.

– Stateless services are obtained using “getXXX” methods e.g. getQueryService()

– Stateful services are obtained using “createXXX” methods e.g. createRenderingEngine()

• Services will provide access to omero.model.objects. You will then need the API for these objects, e.g. Dataset,
Image, Pixels, etc.

• Some services or their operations may be marked as being deprecated. You may use them but do seek developer
support if you rely on them and can find no alternative as the deprecation means that you are at risk of our
removing them with no further notice.

Services list

The ome.api package in the common component defines the central “verbs” of the OMERO system. All external
interactions with the system should happen with these verbs, or services. Each OMERO service belongs to a particular
service level with each level calling only on services from lower levels.

Service Level 1 (direct database and Hibernate connections)

• AdminService: src, API for working with Experimenters, Groups and the current Context (switching groups
etc.).

• ConfigService: src, API for getting and setting config parameters.

• ContainerService: API for loading Project, Dataset, Image, Screen, Plate hierarchies.

• LdapService: src, API for communicating with LDAP servers.

• MetadataService: API for working with Annotation and retrieving acquisition metadata e.g. instrument.

3.7. More on API Usage 553

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ServiceFactory.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model.html
https://www.openmicroscopy.org/support/
https://www.openmicroscopy.org/support/
https://github.com/ome/omero-common/tree/v5.5.9/src/main/java/ome/api
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IAdmin.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IAdmin.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IConfig.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IConfig.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IContainer.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/ILdap.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ILdap.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IMetadata.html

OMERO, Release 5.6.5-SNAPSHOT-1

• PixelsService: API for pixels stats and creating Images with existing or new Pixels.

• ProjectionService API for performing projections of Pixels sets.

• QueryService: src, API for custom SQL-like queries.

• RenderingSettingsService API for copying, pasting & resetting rendering settings.

• RepositoryInfo API disk space stats.

• RoiService API working with ROIs (now deprecated).

• ScriptService API for uploading and launching Python scripts.

• SessionService API for creating and working with OMERO sessions.

• ShareService API (now deprecated).

• TimelineService API for queries based on time.

• TypesService API for Enumerations.

• UpdateService: src, API for saving and editing omero.model objects.

Service Level 2

• IContainer

• ITypes

Stateful/Binary Services

• RawFileStore: src, API for reading and writing files

• RawPixelsStore: src, API for reading and writing pixels data

• RenderingEngine: src, API for viewing images, see OMERO rendering engine for more details

• ThumbnailStore: src, API for retrieving thumbnails

• IScale for scaling rendered images

A complete list of service APIs can be found here and some examples of API usage in Python are provided. Java or
C++ code can use the same API in a very similar manner.

Discussion

Reads and writes

IQuery and IUpdate are the basic building blocks for the rest of the (non-binary) API. IQuery is based on QuerySources
and QueryParemeters which are explained under Using server queries internally. The goal of this design is to make
wildly separate definitions of queries (templates, db-stored, Java code, C# code, . . .) runnable on the server.

IUpdate takes any graph composed of IObject objects and checks them for dirtiness. All changes to the graph are stored
in the database if the user calling IUpdate has the proper permissions, otherwise an exception is thrown.

Dirty checks follow the Three Commandments:

1. Any IObject-valued field with unloaded set to true is treated as a proxy and is reloaded from the database.

2. Any collection-valued field with a null value is re-loaded from the database.

554 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IPixels.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IProjection.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IQuery.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IQuery.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IRenderingSettings.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IRepositoryInfo.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IRoi.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IScript.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ISession.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IShare.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ITimeline.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ITypes.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IUpdate.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IUpdate.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IContainer.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/ITypes.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/RawFileStore.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/RawFileStore.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/RawPixelsStore.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/RawPixelsStore.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/omeis/providers/re/RenderingEngine.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/RenderingEngine.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/ThumbnailStore.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/ThumbnailStore.html
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IScale.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api.html
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/IObject.java

OMERO, Release 5.6.5-SNAPSHOT-1

3. Any collection-valued field with the FILTERED flag is assumed to be dirty and is loaded from the database, with
the future option of examining the filtered collection for any new and updated values and applying them to the
real collection. Deletions cannot happen this way since it would be unclear if the object was filtered or deleted.

Administration

The IAdmin interface defines all the actions necessary to administer the Server security and firewalls. It is explained
further on the OMERO admin interface page.

Model Object Java

Certain operations, like those dealing with data management and viewing, happen more frequently than others e.g.
defining microscopes. Those have been collected in the IContainer interface. IContainer simplifies a few very
common queries, and there is a related package omero.gateway.model.* for working with the returned graphs.
OMERO.insight works almost exclusively with the IContainer interface mostly indirectly via the Java Gateway.

Examples

// Saving a simple change
Dataset d = iQuery.get(Dataset.class, 1L);
d.setName("test");
iUpdate.saveObject(d);

// Creating a new object
Dataset d = new Dataset();
d.setName("test"); // not-null fields must be filled in
iUpdate.saveObject(d);

// Retrieving a graph
Set<Dataset> ds = iQuery.findAllByQuery("from Dataset d left outer join d.images where d.
→˓name = 'test'", null);

Stateless versus stateful services

A stateless service has no client-noticeable lifecycle and all instances can be treated equally. A new stateful service,
on the other hand, will be created for each client-side proxy, see the ServiceFactory.createXXX methods. Once
obtained, a stateful service proxy can only be used by a single user. After task completion, the service should be closed
i.e. proxy.close() to free up server resources.

How to write a service

A tutorial is available at How To create a service. See Build System for more information on how the annotated service
will be deployed. In the case of OMERO.blitz, the service must be properly defined under src/main/slice/omero.

3.7. More on API Usage 555

https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IAdmin.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IContainer.java
https://github.com/ome/omero-blitz/tree/v5.5.10/src/main/slice/omero

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO annotations for validation

The server-side implementation of these interfaces makes use of Java annotations and an AOP interceptor to validate
all method parameters. Calls to pojos.findContainerHierarchies are first caught by a method interceptor, which
checks for annotations on the parameters and, if available, performs the necessary checks. The interceptor also makes
proactive checks. For a range of parameter types such as Java Collections it requires that annotations exist and will
refuse to proceed if not implemented.

An API call of the form:

pojos.findContainerHierarchies(Class, Set, Map)

is implemented as

pojos.findContainerHierarchies(@NotNull Class, @NotNull @Validate(Integer.class) Set,␣
→˓Map)

See also:
Using server queries internally, OMERO rendering engine, Exception handling

3.7.3 OMERO admin interface

The one central interface for administering the OMERO security system is IAdmin. Though several of the methods
are restricted to system users (root and other administrators), many are also for general use. The RolesAllowed
annotations on the LocalAdmin class define who can use which methods.

Actions available through IAdmin and IUpdate

A couple of the methods in the IAdmin interface are also available implicitly through IUpdate, the main interface for
updating the database. This duplication is mainly useful for large scale changes, such as changing the permissions to
an entire object graph.

• changePermissions

• changeGroup

The following shows how these methods can be equivalently used:

// setup
ServiceFactory sf = new ServiceFactory();
IAdmin iAdmin = sf.getAdminService();
IUpdate iUpdate = sf.getUpdateService();
Image myImg = ... ; //

// using IAdmin -- let's change the group of myImg
// and then make it group private.
iAdmin.changeGroup(myImg, new ExperimenterGroup(3L, false));
iAdmin.changePermissions(myImg, new Permissions(Permissions.GROUP_PRIVATE));

// and do the same using Details and IUpdate
myImg.getDetails().setPermissions(new Permissions(Permissions.GROUP_PRIVATE));
myImg.getDetails().setGroup(new ExperimenterGroup(3L, false));
iUpdate.saveObject(myImg);

556 Chapter 3. Developer Documentation

https://docs.oracle.com/javase/tutorial/java/annotations/basics.html
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/api/local/LocalAdmin.java

OMERO, Release 5.6.5-SNAPSHOT-1

The benefit of the second method is the batching of changes into a single call. The benefit of the first is at most
explicitness. Note, however, that changing any of the values of Details which are not also changeable through IAdmin
will result in a SecurityViolation.

Actions only available through IAdmin

The rest of the write methods provided by IAdmin are disallowed for IUpdate and will throw SecurityViolations.
This includes adding users, groups, user/group maps, events, enums, or similar. (Enums here are a special case, because
they are created not through IAdmin but through ITypes). A system administrator may be able to use IUpdate to create
these “System-Types” but using IAdmin is safer, cleaner, and guaranteed to work in the future.

The password methods and synchronizeLoginCache are also special cases in that they have no equivalent in any
other API.

Similarities between IAdmin and IQuery

All of the read methods provided by IAdmin are also available from IQuery, that is, the IAdmin (currently) pro-
vide no special context or security privileges. However, having all of the methods in one interface reduces code
duplication, which is especially useful when you want the entire user/group graph as provided by getExperi-
menter/getGroup/lookupExperimenter/lookupGroup.

See also:
OMERO Application Programming Interface

3.7.4 Deleting in OMERO

Deleting data in OMERO is complex due to the highly linked nature of data in the database. For example, an Image has
links to Datasets, Comments, Tags, Instrument, Acquisition metadata etc. If the image is deleted, some of this other
data should remain and some should be deleted with the image (since it has no other relevance).

In the 4.2.1 release of OMERO, an improved deleting service was introduced to fix several problems or requirements
related to the delete functionality (see #2615 for tickets):

• Need a better way to define what gets deleted when certain data gets deleted (e.g. Image case above)

• Need to be able to configure this definition, since different users have different needs

• Deleting large amounts of data (e.g. Plate of HCS data) was too memory-intensive (data was loaded from the
database during delete)

• Poor logging of deletes

• Large deletes (e.g. screen data) take time: Clients need to be able to keep working while deletes run ‘in the
background’

• Binary data (pixels, thumbnails, files etc) was not removed at delete time - required sysadmin to clean up later

Future releases will continue this work (see #2911) and the 5.1.0 release of OMERO offers a new implementation of
deletion.

3.7. More on API Usage 557

https://trac.openmicroscopy.org/ome/ticket/2615
https://trac.openmicroscopy.org/ome/ticket/2911

OMERO, Release 5.6.5-SNAPSHOT-1

Finality of deletion

Import in OMERO 5.x uploads the image and companion files intact and stores them within subdirectories of the
directory configured by the value of omero.managed.dir, typically ManagedRepository. The files relating to a
specific fileset are stored together on the server’s filesystem and they are read by Bio-Formats when images are viewed
in OMERO clients. If any of a fileset’s files, or the corresponding entries for them in the database, are deleted, then the
fileset may no longer be readable. If all the fileset’s files are deleted, the fileset will certainly be unreadable, and there
is no ‘undo’ that will bring it back.

Delete behavior (technical)

Configuring what gets deleted is done using XML files. Since OMERO 5.1, the delete behavior defaults to a Model
graph operations implementation that is configured by src/main/resources/ome/services/blitz-graph-rules.xml.

Delete Image

The general delete behavior for deleting an Image is to remove every piece of data from the database that was added
when the image was imported, removing pixel data and thumbnails from disk. In addition, the following data is deleted:

• Comments on the image

• Rating of the image

• ROIs for this image (see below)

• Image Rendering settings for yourself and other users

Optional - In OMERO.web and OMERO.insight, you will be asked whether you also want to delete:

• Files attached to the image (if not linked elsewhere). In that case, the binary data will be removed from disk too.

• Your own tags on the image (if not used elsewhere)

The same option is available when deleting dataset, project, plate, screen.

Delete Dataset or Project

When deleting a Project or Dataset, you have the option to also delete tags and annotations (as for Image above). You
also can choose whether to ‘delete contents’. This will delete any Datasets (or Images) that are contained in the Project
(or Dataset). However, Datasets and Images will not get deleted if they are also contained in other Projects or Datasets
respectively.

If a user decides to delete/keep the annotations (see Optional above) when deleting a Project (or Dataset) and its
contents, the rule associated to the annotation will be apply to all objects.

Delete Screen, Plate or Plate Acquisition

When deleting a Screen, you have the option to also delete tags and annotations. You also can choose whether to ‘delete
contents’. This will delete any Plates that are contained in the Screen. However, Plates will not get deleted if they are
also contained in other Screen.

When deleting a Plate, you have the option to also delete tags and annotations but NOT the option to ‘delete contents’.

If the Plate has Plate Acquisitions, you can delete one or more Plate Acquisition at once.

558 Chapter 3. Developer Documentation

https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-graph-rules.xml

OMERO, Release 5.6.5-SNAPSHOT-1

Delete Tag/Attachment

You can delete a Tag/Attachment, and it will be removed from all images. However you cannot delete a Tag/Attachment
if it has been used by another user in the same collaborative group. This is to prevent potential loss of significant amount
of annotation effort by other users. You will need to get the other users to first remove your Tag/Attachment where they
have used it, before you can delete it.

Known Issue: if the owner of the Tag/Attachment is also an owner of the group (e.g. PI), they will be able to delete
their Tag/Attachment, even if others have used it.

Delete multi-file Images and Image sets

An Image, or a set of Images, may come from a single file or a set of dependent files. For instance, a single Leica
LIF file may contain many Images, as may a Zeiss mdb file with lsm files. On the other hand, some file formats, like
Deltavision with log file, or the original ICS file format, use multiple files to represent a single Image. At import time,
these groups of related files and Images are organized into Filesets: a Fileset is a set of files that encode a set of Images.
The simplest case where there is one file per Image still has a corresponding Fileset.

Even if many Images come from the same file, they may be separately selected and viewed in client software. However,
at least at present, a Fileset may not be partially deleted: either all the files and Images from it are deleted, or none are.
So, for instance, the Images from the same Leica LIF file may be deleted only all at once, and the Deltavision log file is
not deleted separately from the main file. The same applies to high-content screening data: a Plate with its Wells and
Images are all stored in one Fileset and may be deleted only together.

Each Fileset has a corresponding directory on the server in which, perhaps in subdirectories, all its files are stored. All
the file paths for an Image’s Fileset can be accessed from the tool-bar at the top of the right-hand panel.

Delete in collaborative group

Some more discussion of delete issues in a collaborative group, where your data are linked to data of other users, can
be found on the Groups and permissions system page.

• A user cannot remove Images from another user’s Dataset, or remove Datasets (or Plates) from Projects (or
Screens).

• A user cannot delete anything that belongs to another user.

Group owner rights

An owner of the group, usually a PI, can delete anything that belongs to other members of the group.

Edge cases

These are ‘known issues’ that may cause problems for some users (not for most). These will be resolved in future
depending on priority.

• Other users’ ROIs (and associated measurements) are deleted from images.

• Multiply-linked objects are unlinked and not deleted e.g. Project p1 contains two Datasets d1 and d2, Project
p2 contains Dataset d1. If the Project p1 is deleted, the Dataset d1 is only unlinked from p1 and not completely
deleted.

3.7. More on API Usage 559

OMERO, Release 5.6.5-SNAPSHOT-1

Binary data

When Images, Plates or File Annotations have been successfully deleted from the database the corresponding binary
data is deleted from the binary repository. It is possible that some files may not be successfully deleted if they are
locked for any reason. In this case, the undeleted files can be removed manually via omero admin cleanse. This
also deletes any empty directories left behind after the binary data that they contained has been deleted.

3.7.5 OMERO Import Library

The Import Library is a re-usable framework for building import clients. Several are provided by the OMERO team
directly:

• the integrated importer

• Command Line Importer tool

Components

The primary classes which make up the Import Library are:

• ImportLibrary.java itself, which is the main driver

• ImportCandidates.java which takes file paths and determines the proper files to import

• ImportConfig.java, an extensible mechanism for storing the properties used during import

• ImportEvent.java, the various events raised during import to IObserverand IObservable implementations

• OMEROMetadataStoreClient.java, the low-level connection to the server

• OMEROWrapper.java, the OMERO adapter for the Bio-Formats ImageReaders class

• In OMERO.insight, the main entry point is the importImage method of OMEROGateway.java

• In the CLI, the main entry point is the CommandLineImporter class

Earlier Import Workflow

Prior to OMERO 5.0, the import workflow was very much client-side. Using the ImportLibrary a client would deter-
mine the import candidates and then import the image. The import phase would comprise copying the pixel data to the
OMERO data directory, writing the metadata into the database, and optionally copying the original file to the OMERO
data directory for archiving.

FS Managed Repository Import Workflow

From 5.0 the workflow has changed. The client still determines the import candidates but the client-side import process
simply uploads the original files to the OMERO data directory and then uses the ManagedRepository service to initiate
a server-side import. On the server the import is then completed by writing the metadata into the database. After
import, pixel data is accessed directly from the original files using Bio-Formats. This means that data files are no
longer duplicated and any nested directory structure is preserved. It also allows OMERO to take advantage of pre-
generated pyramids available in some formats e.g. dedicated whole slide imaging formats such as SVS (instead of
generating OMERO pyramids).

For full details of the import workflow see Import under OMERO.fs.

560 Chapter 3. Developer Documentation

https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/formats/importer/ImportLibrary.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/formats/importer/ImportCandidates.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/formats/importer/ImportConfig.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/formats/importer/ImportEvent.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/formats/OMEROMetadataStoreClient.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/formats/importer/OMEROWrapper.java
https://github.com/ome/omero-insight/blob/master/src/main/java/org/openmicroscopy/shoola/env/data/OMEROGateway.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/formats/importer/cli/CommandLineImporter.java
https://docs.openmicroscopy.org/bio-formats/6.9.1/formats/aperio-svs-tiff.html
https://docs.openmicroscopy.org/latest/ome-model/omero-pyramid/

OMERO, Release 5.6.5-SNAPSHOT-1

Example

The CommandLineImporter.java class shows a straightforward import. An ErrorHandler instance is passed both
to the ImportCandidates constructor (since errors can occur while parsing a directory) and to the ImportLibrary.
This and other handlers receive ImportEvents which notify listeners of the state of the current import.

3.7.6 TempFileManager

Class to be used by Working with OMERO and server components to allow a uniform creation of temporary files and
folders with a best-effort guarantee of deleting the resources on exit. The manager searches three locations in order,
taking the first which allows lockable write-access (See #1653):

• The environment property setting OMERO_TMPDIR

• The user’s home directory, for example specified in Java via System.getProperty("user.home")

• The system temp directory, in Java System.getProperty("java.io.tmpdir") and in Python tempfile.
gettempdir()

Creating temporary files

For the user “ralph”,

from omero.util.temp_files import create_path
path = create_path("omero",".tmp")

or

import omero.util.TempFileManager
File file = TempFileManager.create_path("omero",".tmp")

both produce a file under the directory:

/tmp/omero_ralph/$PID/omero$RANDOM.tmp

where $PID is the current process id and $RANDOM is some random sequence of alphanumeric characters.

Removing files

If remove_path is called on the return value of create_path, then the temporary resources will be cleaned up
immediately. Otherwise, when the Java or Python process exits, they will be deleted. This is achieved in Java through
Runtime#addShutdownHook(Thread) and in Python via atexit.register().

Creating directories

If an entire directory with a unique directory is needed, pass “true” as the “folder” argument of the create_path
method:

create_path("omero", ".tmp", folder = True)

and

3.7. More on API Usage 561

https://trac.openmicroscopy.org/ome/ticket/1653

OMERO, Release 5.6.5-SNAPSHOT-1

TempFileManager.create_path("omero", ".tmp", true);

Note: All contents of the generated directory will be deleted.

See also:
#1534

3.7.7 Exception handling

Client exceptions

The exceptions which can be received by a client due to a remote call on the OMERO server are all defined
in src/main/slice/omero/ServerErrors.ice (included below). This file contains two separate hierarchies rooted at
Ice::Exception and omero::ServerError.

For a better understanding of how to handle exceptions, please read both of the *.ice files carefully, and see Working
with OMERO for examples of exception handling.

/*
* Id
*
* Copyright 2007 Glencoe Software, Inc. All rights reserved.
* Use is subject to license terms supplied in LICENSE.txt
*
*/
#ifndef OMERO_SERVERERRORS_ICE
#define OMERO_SERVERERRORS_ICE
#include <Glacier2/Session.ice>
/**
* Exceptions thrown by OMERO server components. Exceptions thrown client side
* are available defined in each language binding separately, but will usually
* subclass from "ClientError"
*
* including examples of what a appropriate try/catch block would look like.
*
* <p>
* All exceptions that are thrown by a remote call (any call on a *Prx instance)
* will be either a subclass of [Ice::UserException] or [Ice::LocalException].
* <a href="https://doc.zeroc.com/display/Ice/Run-Time+Exceptions#Run-TimeExceptions-
→˓InheritanceHierarchyforExceptions">Inheritance Hierarchy for Exceptions
* from the Ice manual shows the entire exception hierarchy. The exceptions described in
* this file will subclass from [Ice::UserException]. Other Ice-runtime exceptions␣
→˓subclass
* from [Ice::LocalException].
* </p>
*
* <pre>
*
* OMERO Specific:
* ===============

(continues on next page)

562 Chapter 3. Developer Documentation

https://trac.openmicroscopy.org/ome/ticket/1534
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/ServerErrors.ice

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

* ServerError (root server exception)
* |
* |_ InternalException (server bug)
* |
* |_ ResourceError (non-recoverable)
* | _ NoProcessorAvailable
* |
* |_ ConcurrencyException (recoverable)
* | |_ ConcurrentModification (data was changed)
* | |_ OptimisticLockException (changed data conflicts)
* | |_ LockTimeout (took too long to acquire lock)
* | |_ TryAgain (some processing required before server is ready)
* | _ TooManyUsersException
* | _ DatabaseBusyException
* |
* |_ ApiUsageException (misuse of services)
* | |_ OverUsageException (too much)
* | |_ QueryException (bad query string)
* | _ ValidationException (bad data)
* |
* |_ SecurityViolation (some no-no)
* | _ GroupSecurityViolation
* | |_ PermissionMismatchGroupSecurityViolation
* | _ ReadOnlyGroupSecurityViolation
* |
* _SessionException
* |_ RemovedSessionException (accessing a non-extant session)
* |_ SessionTimeoutException (session timed out; not yet removed)
* _ ShutdownInProgress (session on this server will most likely be destroyed)
* </pre>
*
*
* <p>
* However, in addition to [Ice::LocalException] subclasses, the Ice runtime also
* defines subclasses of [Ice::UserException]. In some cases, OMERO subclasses
* from these exceptions. The subclasses shown below are not exhaustive, but show those
* which an application's exception handler may want to deal with.
* </p>
*
*
* <pre>
* Ice::Exception (root of all Ice exceptions)
* |
* |_ Ice::UserException (super class of all application exceptions)
* | |
* | |_ Glacier2::CannotCreateSessionException (1 of 2 exceptions throwable by␣
→˓createSession)
* | | |_ omero::AuthenticationException (bad login)
* | | |_ omero::ExpiredCredentialException (old password)
* | | |_ omero::WrappedCreateSessionException (any other server error during␣
→˓createSession)
* | | _ omero::licenses::NoAvailableLicensesException (see tools/licenses/
→˓resources/omero/LicensesAPI.ice) (continues on next page)

3.7. More on API Usage 563

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

* | |
* | _ Glacier2::PermissionDeniedException (other of 2 exceptions throwable by␣
→˓createSession)
* |
* _ Ice::LocalException (should generally be considered fatal. See exceptions below)
* |
* |_ Ice::ProtocolException (something went wrong on the wire. Wrong version?)
* |
* |_ Ice::RequestFailedException
* | |_ ObjectNotExistException (Service timeout or similar?)
* | _ OperationNotExistException (Improper use of uncheckedCast?)
* |
* |_ Ice::UknownException (server threw an unexpected exception. Bug!)
* |
* _ Ice::TimeoutException
* _ Ice::ConnectTimeoutException (Couldn't establish a connection. Retry?)
*
* </pre>
*
**/
module omero
{
/*
* Base exception. Equivalent to the ome.conditions.RootException.
* RootException must be split into a ServerError and a ClientError
* base-class since the two systems are more strictly split by the
* Ice-runtime than is done in RMI/Java.
*/
exception ServerError
{
string serverStackTrace;
string serverExceptionClass;
string message;

};
// SESSION EXCEPTIONS --------------------------------
/**
* Base session exception, though in the OMERO.blitz
* implementation, all exceptions thrown by the Glacier2
* must subclass CannotCreateSessionException. See below.
*/
exception SessionException extends ServerError
{
};

/**
* Session has been removed. Either it was closed, or it
* timed out and one "SessionTimeoutException" has already
* been thrown.
*/
exception RemovedSessionException extends SessionException
{
};

/**

(continues on next page)

564 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

* Session has timed out and will be removed.
*/
exception SessionTimeoutException extends SessionException
{
};

/**
* Server is in the progress of shutting down which will
* typically lead to the current session being closed.
*/
exception ShutdownInProgress extends SessionException
{
};

// SESSION EXCEPTIONS (Glacier2) ---------------------
/**
* createSession() is a two-phase process. First, a PermissionsVerifier is
* called which must return true; then a SessionManager is called to create
* the session (ServiceFactory). If the PermissionsVerifier returns false,
* then PermissionDeniedException will be thrown. This, however, cannot be
* subclassed and so string parsing must be used.
*/
/**
* Thrown when the information provided omero.createSession() or more
* specifically Glacier2.RouterPrx.createSession() is incorrect. This
* does -not- subclass from the omero.ServerError class because the
* Ice Glacier2::SessionManager interface can only throw CCSEs.
*/
exception AuthenticationException extends Glacier2::CannotCreateSessionException
{
};

/**
* Thrown when the password for a user has expried. Use: ISession.

→˓changeExpiredCredentials()
* and login as guest. This does -not- subclass from the omero.ServerError class␣

→˓because the
* Ice Glacier2::SessionManager interface can only throw CCSEs.
*/
exception ExpiredCredentialException extends Glacier2::CannotCreateSessionException
{
};

/**
* Thrown when any other server exception causes the session creation to fail.
* Since working with the static information of Ice exceptions is not as easy
* as with classes, here we use booleans to represent what has gone wrong.
*/
exception WrappedCreateSessionException extends Glacier2::CannotCreateSessionException
{
bool concurrency;
long backOff; /* Only used if ConcurrencyException */
string type; /* Ice static type information */

};
// OTHER SERVER EXCEPTIONS ------------------------------
/**

(continues on next page)

3.7. More on API Usage 565

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

* Programmer error. Ideally should not be thrown.
*/
exception InternalException extends ServerError
{
};

// RESOURCE
/**
* Unrecoverable error. The resource being accessed is not available.
*/
exception ResourceError extends ServerError
{
};

/**
* A script cannot be executed because no matching processor
* was found.
*/
exception NoProcessorAvailable extends ResourceError
{

/**
* Number of processors that responded to the inquiry.
* If 1 or more, then the given script was not acceptable
* (e.g. non-official) and a specialized processor may need
* to be started.
**/
int processorCount;

};
// CONCURRENCY
/**
* Recoverable error caused by simultaneous access of some form.
*/
exception ConcurrencyException extends ServerError
{

long backOff; /* Backoff in milliseconds */
};

/**
* Currently unused.
*/
exception ConcurrentModification extends ConcurrencyException
{
};

/**
* Too many simultaneous database users. This implies that a
* connection to the database could not be acquired, no data
* was saved or modifed. Clients may want to wait the given
* backOff period, and retry.
*/
exception DatabaseBusyException extends ConcurrencyException
{
};

/**
* Conflicting changes to the same piece of data.
*/

(continues on next page)

566 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

exception OptimisticLockException extends ConcurrencyException
{
};

/**
* Lock cannot be acquired and has timed out.
*/
exception LockTimeout extends ConcurrencyException
{

int seconds; /* Informational field on how long timeout was */
};

/**
* Background processing needed before server is ready
*/
exception TryAgain extends ConcurrencyException
{
};

exception MissingPyramidException extends ConcurrencyException
{

long pixelsID;
};
// API USAGE
exception ApiUsageException extends ServerError
{
};

exception OverUsageException extends ApiUsageException
{
};

/**
*
*/
exception QueryException extends ApiUsageException
{
};

exception ValidationException extends ApiUsageException
{
};

// SECURITY
exception SecurityViolation extends ServerError
{
};

exception GroupSecurityViolation extends SecurityViolation
{
};

exception PermissionMismatchGroupSecurityViolation extends SecurityViolation
{
};

exception ReadOnlyGroupSecurityViolation extends SecurityViolation
{
};

// OMEROFS
/**
* OmeroFSError

(continues on next page)

3.7. More on API Usage 567

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

*
* Just one catch-all UserException for the present. It could be
* subclassed to provide a finer grained level if necessary.
*
* It should be fitted into or subsumed within the above hierarchy
**/

exception OmeroFSError extends ServerError
{
string reason;

};
};
#endif // OMERO_SERVERERRORS_ICE

Server exceptions

Due to the strict API boundary enforced by Ice, the client and server exception hierarchies, though related, are distinct.
The discussion below is possibly of interest for server developers only. Client developers should refer to the information
and examples under Working with OMERO.

Interceptor

Exception handling in the OMERO is centralized in an Aspect-oriented programming interceptor (source code). All
exceptions thrown by code are caught in a try {} catch (Throwable t) {} block. Exceptions which do not
subclass ome.conditions.RootException are wrapped in an ome.conditions.InternalException.

The only exceptions to this are any interceptors which may be run before the exception handler is run. The order of
interceptors is defined in services.xml.

Hierarchy

The current exception hierarchy (package ome.conditions) used is as follows:

• RootException

– InternalException - should not reach the client; Bug! Contact administrator e.g. NullPointerException,
assertion failed, etc.

– ResourceError - fatal error in server, e.g. OutOfMemory, disk space full, the database is in illegal state, etc.

– DataAccessException

∗ SecurityViolation - do not do that! E.g. edit locked project, create new user.

∗ OptimisticLockException - re-load and compare e.g. “someone else has already updated this project”

∗ ApiUsageException - something wrong with how you did things e.g. IllegalStateException, object
uninitialized, etc.

∗ ValidationException - something wrong with what you sent; sends list of fields, etc.; edit and retry,
e.g. no “?” in image names.

where the colors indicate:

Abstract

FixAndRetryConditions

568 Chapter 3. Developer Documentation

https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/util/ServiceHandler.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/conditions/RootException.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/conditions/InternalException.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/services.xml
https://github.com/ome/omero-model/tree/v5.6.5/src/main/java/ome/conditions

OMERO, Release 5.6.5-SNAPSHOT-1

RetryConditions

NoRecourseConditions

Any other exception which reaches the client should be considered an OutOfServiceException, meaning that
something is (hopefully only) temporarily wrong with the server, e.g. no connection, server down, server restart-
ing. But since this cannot be caught since the server cannot be reached, there is no way to guarantee that a real
OutOfServiceException is thrown.

Moving forward

FixAndRetryConditions need to have information about what should be fixed, like a Validation object which lists
fields with error messages. A RetryCondition could have a back-off value to prevent too frequent retries.

Questions

• What data should be available in the exceptions?

• What other logic do we want on our exceptions, keeping in mind they will have to be re-implemented in all target
languages?

3.7.8 Omero logging

All OMERO components written in Java use the SLF4J logging facade, typically backed by Logback; all components
written in python use the built-in logging module.

Warning: Refrain from calling logging.basicConfig() anywhere in your module except in if __name__ ==
"__main__" blocks.

Java clients

Java clients log to $HOME/omero/log. The number of files and their size are limited.

logback-cli.xml controls the output for the command line importer: all logging goes to standard err, while useful output
(pixel ids, or used files) goes to standard out. It is contained within the omero-blitz.jar itself. Therefore, to modify
the settings use -Dlogback.configurationFile=/path/to/logback.xml or similar.

OMERO.insight logging is configured via logback.xml which is available in the config/ directory of any
OMERO.insight install.

Java servers

Java server components are configured by passing -Dlogback.configurationFile=etc/logback.xml to each
Java process. logback.xml includes the scan attribute so that changes to the logging configuration are automatically
reloaded at regular intervals.

By default, the output from logback is sent to: var/log/<servername>.log. Once files reach a size of 500MB, they
are rolled over to <servername>.log.1, <servername>.log.2, etc. Once the files have rolled over, you can safely
delete or compress (bzip2, gzip, zip) them. Alternatively, once you are comfortable with the stability of your server,
you can either reduce logging or the number and size of the files kept. Note: if something goes wrong with your server
installation, the log files can be very useful in tracking down issues.

3.7. More on API Usage 569

http://www.slf4j.org
http://logback.qos.ch/
https://github.com/ome/openmicroscopy/blob/develop/etc/logback-cli.xml
https://github.com/ome/openmicroscopy/blob/develop/etc/logback.xml
http://logback.qos.ch/manual/configuration.html#autoScan
http://logback.qos.ch/manual/configuration.html#autoScan

OMERO, Release 5.6.5-SNAPSHOT-1

In addition, each import process logs to a file under the managed repository which matches the timestamped fileset direc-
tory’s name. For example, if an imported fileset is uploaded to /OMERO/ManagedRepository/userA_1/2013-06/
17/12-00-00.000, then the log file can be found under /OMERO/ManagedRepository/userA_1/2013-06/17/
12-00-00.000.log.

Python servers

Python servers are configured by a call to omero.util.configure_server_logging(props). The property values
are taken from the configuration file passed to the server via icegridnode. For example, the config file for Processor-
0 can be found in var/master/servers/Processor-0/config/config. These values come from etc/grid/
templates.xml.

All the “omero.logging.*” properties can be overwritten in your etc/grid/default.xml file. See the “Profile”
properties block for how to configure for your site.

Similar to logback, logging is configured to be written to var/log/<servername>.log and to maintain 9 backups of
at most 500MB.

stdout and stderr

Though all components try to avoid it, some output will still go to stdout/stderr. On non-Windows systems, all of this
output will be sent to the var/log/master.out and var/log/master.err files.

Windows stdout and stderr

On Windows, the state of stdout and stderr is somewhat different. No information will be written to master.out, mas-
ter.err, or similar files. Instead, what logging is produced will go to the Windows Event Viewer, but finding error
situations can be considerably more challenging (See #1449 for more information).

3.7.9 Graph requests

Overview

The Blitz API offers several requests that are subclasses of GraphQuery. These may be submitted to the server for
asynchronous processing of linked graphs of OMERO model objects. This section gives a brief overview of the
graph requests and their purpose. Follow the links to see more details.

Querying the model object graph

GraphQuery (base class) The parent of the requests below, it includes a targetObjects property that specifies from
which model objects to start processing. The LegalGraphTargets request can be used to determine which types
of model object may be targeted.

DiskUsage2 Report on the disk usage of the target objects and their contents by type, user and group. Includes a
targetClasses property to allow specifying every visible instance of a type.

FindParents Find the parents of the target objects, both direct and indirect. typesOfParents specifies the types of
parents to report. stopBefore specifies types of model object to avoid in traversing the linked graph upward:
those subgraphs are ignored unless otherwise reachable.

570 Chapter 3. Developer Documentation

https://trac.openmicroscopy.org/ome/ticket/1449
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/GraphQuery.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/GraphQuery.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/LegalGraphTargets.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/DiskUsage2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/FindParents.html

OMERO, Release 5.6.5-SNAPSHOT-1

FindChildren Find the children of the target objects, both direct and indirect. typesOfChildren specifies the types of
children to report. stopBefore specifies types of model object to avoid in traversing the linked graph downward:
those subgraphs are ignored unless otherwise reachable.

Changing the model object graph

GraphModify2 (base class) The parent of the requests below, it includes a targetObjects property that specifies
from which model objects to start processing. The LegalGraphTargets request can be used to determine which
types of model object may be targeted.

The childOptions property lists how to process the contents of targeted objects.

Because these requests change the data stored by the server, a dryRun property is provided that enables attempting
to obtain the same response or error without actually making any changes.

ChildOption By default if a ‘child’ object is contained by a ‘parent’ targeted object then it is processed along with
its parent if it is not also contained by another parent object that is not targeted. Use requests’ childOptions
property to specify that children should be processed or not regardless of other parents.

The includeType and excludeType properties specify for which types of children to override the behavior.
For children that are annotations, the includeNs and excludeNs properties use the annotation namespace to
limit the applicability of the override.

Chgrp2 Change the group ID of the targeted objects and their contents. The objects are moved to the group specified
by the groupId property.

Chown2 Change the user ID of the targeted objects and their contents. The objects are given to the user specified by
the userId property.

Chmod2 Change the permissions for the targeted objects which must be groups. The permissions property specifies
the new group type.

Delete2 Delete the targeted objects and their contents. For original file instances the underlying file in the server’s
binary repository may be deleted also.

Duplicate Duplicate a subgraph from the model object graph, starting from the targeted objects and recursing to their
contents. The typesToDuplicate, typesToReference, typesToIgnore properties offer control over where
in the graph traversal to stop duplicating and with what in the original graph to link the duplicate subgraph.

SkipHead Defer processing to start only at specific contents of the targeted objects. The startFrom property specifies
the types of object to actually target with the processing and the request property, which may be any of the
other requests from this section, specifies what to do to those objects once identified.

Command-line interface

OMERO’s command-line interface client includes chgrp, chown, delete plugins that construct the corresponding
Chgrp2, Chown2, Delete2 requests. Additionally, the group plugin offers the Chmod2 request and the fs plugin
offers the DiskUsage2 request.

3.7. More on API Usage 571

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/FindChildren.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/GraphModify2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/LegalGraphTargets.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/graphs/ChildOption.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chgrp2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chown2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chmod2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Delete2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Duplicate.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/SkipHead.html

OMERO, Release 5.6.5-SNAPSHOT-1

Request builders for Java

The Java gateway includes the Requests.java class which offers Java developers a set of builders that use method-
chaining to allow convenient construction of new instances of the above requests.

3.7.10 Rewriting old graph requests

Migration is required

OMERO 5.1.0 introduced a new implementation of Model graph operations offered through the API via Chgrp2,
Chown2, Delete2, and their superclass GraphModify2. OMERO 5.1.2 added Chmod2. The corresponding deprecated
legacy request operations are removed in OMERO 5.3. Client code must be adjusted accordingly.

Target objects

For specifying which model objects to operate on, instead of using one request for each object, use GraphModify2’s
targetObjects which allows specification of multiple model object classes, each with an unordered list of IDs, all in
a single request. To specify a type, no longer use /-delimited paths, but instead just the class name, e.g. Image instead
of /Image. To achieve a root-anchored subgraph operation use SkipHead to wrap your request: for instance, for /
Image/Pixels/RenderingDef, set the SkipHead request’s targetObjects to the image(s), and set startFrom to
RenderingDef.

Translating options

GraphModify2 offers childOptions, an ordered list of ChildOption instances, each of which allows its applicability
to annotations to be limited by namespace. Some examples:

• To move a dataset with all its images, removing those images from other datasets where necessary, use Chgrp2
with a ChildOption’s includeType set to Image.

• To delete a dataset without deleting any images at all from it, use Delete2with a ChildOption’s excludeType
set to Image.

• To delete annotations except for the tags that are in a specific namespace, use Delete2 with a ChildOption’s
excludeType set to TagAnnotation and includeNs set to that namespace.

Examples in Python

Move images

chgrps = DoAll()
chgrps.requests = [Chgrp(type="/Image", id=n, grp=5) for n in [1,2,3]]
sf.submit(chgrps)

used in OMERO 5.0 should now be written as,

chgrp = Chgrp2(targetObjects={'Image': [1,2,3]}, groupId=5)
sf.submit(chgrp)

572 Chapter 3. Developer Documentation

https://github.com/ome/omero-gateway-java/blob/v5.6.9/src/main/java/omero/gateway/util/Requests.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chgrp2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chown2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Delete2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/GraphModify2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chmod2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/GraphModify2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/SkipHead.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/GraphModify2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/graphs/ChildOption.html

OMERO, Release 5.6.5-SNAPSHOT-1

Delete plate, but not annotations

keepAnn = {"/Annotation": "KEEP"}
delete = Delete(type="/Plate", id=8, options=keepAnn)
sf.submit(delete)

used in OMERO 5.0 should now be written as,

keepAnn = [ChildOption(excludeType=['Annotation'])]
delete = Delete2(targetObjects={'Plate': [8]}, childOptions=keepAnn)
sf.submit(delete)

Delete an image’s rendering settings

delete = Delete(type="/Image/Pixels/RenderingDef", id=6)
sf.submit(delete)

used in OMERO 5.0 should now be written as,

anchor = {'Image': [6]}
targets = ['RenderingDef']
delete = SkipHead(targetObjects=anchor, startFrom=targets,

request=Delete2())
sf.submit(delete)

Java request factory

A utility class Requests.java provides convenient instantiation of graph requests. This class allows the requests from
the above Python examples to be created by,

// move images
Chgrp2 example1 = Requests.chgrp().target("Image").id(1L,2L,3L)

.toGroup(5L).build();

// delete plate, but not annotations
ChildOption childOption = Requests.option()

.excludeType("Annotation").build();
Delete2 example2 = Requests.delete().target("Plate").id(8L)

.option(childOption).build();

// delete an image's rendering settings
SkipHead example3 = Requests.skipHead().target("Image").id(6L)

.startFrom("RenderingDef").request(Delete2.class).build();

3.7. More on API Usage 573

https://github.com/ome/omero-gateway-java/blob/v5.6.9/src/main/java/omero/gateway/util/Requests.java

OMERO, Release 5.6.5-SNAPSHOT-1

3.8 The OME Data Model

3.8.1 OME-Remote Objects

OMERO is based on the OME data model
which can appear overly complex for new
users. However, the core entities you need
for getting started are much simpler.

Images in OMERO are organized into
a many-to-many container hierarchy:
“Project” -> “Dataset” -> “Image”. These
containers (and various other objects) can
be annotated to link various types of data.
Annotation types include Comment (string),
Tag (short string), Boolean, Long, Xml, File
attachment etc.

Images are represented as Pixels with 5 di-
mensions: X, Y, Z, Channel, Time.

At the core of the work on the Open Mi-
croscopy Environment is the definition of a vocabulary for working with microscopic data. This vocabulary has a
representation in the XML specification, in the database (the data model), and in code. This last representation is the
object model with which we will concern ourselves here.

Because of its complexity, the object model is generated from a central definition using our own code-generator. It
relies on no libraries and can be used in both the server and the RMI clients. The relationships among the objects are
enumerated in a cross-referenced reference document. OMERO.blitz uses a second mapping to generate OMERO Java
language bindings, OMERO Python language bindings, and OMERO C++ language bindings classes, which can be
mapped back and forth to the server object model. This document discusses only the server object-model and how it is
used internally.

Instances of the object model have no direct interaction with the database, rather the mapping is handled externally
by the O/R framework, Hibernate. That means, by and large, generated classes are data objects, composed only of
getter and setter fields for fields representing columns in the database, and contain no business logic. However, to make
working with the model easier, and perhaps more powerful, there are several features which we have built in.

Note: The discussion here of object types is still relevant but uses the ome.model.* objects for examples. These are
server internal types which may lead to some confusion. Clients work with omero.model.* objects. This documentation
will eventually be updated to reflect both hierarchies.

OMERO type language

The Model has two general parts: first, the long-studied and well-established core model and second, the user-specified
portion. It is vital that there is a central definition of both parts of the object model. To allow users to easily define
new types, we need a simple domain specific language (or little language) which can be mapped to Hibernate mapping
files. See an example in omero-model at:

• src/main/resources/mappings/acquisition.ome.xml

From this DSL, various artifacts can be generated: XML Schema, Java classes, SQL for generating tables, etc. The
ultimate goal is to have no exceptions in the model.

574 Chapter 3. Developer Documentation

https://www.openmicroscopy.org
https://www.openmicroscopy.org
https://docs.openmicroscopy.org/latest/ome-model/ome-xml/
https://github.com/ome/omero-model/tree/v5.6.5/
https://github.com/ome/omero-dsl-plugin/tree/v5.5.1/
https://github.com/ome/omero-blitz/tree/v5.5.10/src/main/resources/templates
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/omero/util/IceMapper.java
http://www.hibernate.org
https://github.com/ome/omero-model
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/mappings/acquisition.ome.xml

OMERO, Release 5.6.5-SNAPSHOT-1

Conceptually, the XSD files under the
components/specification source
directory are the starting point for
all code generation. Currently how-
ever, the files in omero-model under
src/main/resources/mappings are hand-
written based on the XSD files.

The task created from the src Java files is
then used to turn the mapping files into
generated Java code in omero-model under
the build/classes/java/main directory.

These classes are all within the ome.model package. A few hand-written Java classes can also be found in
src/main/java/ome/model/internal.

Warning: The following paragraph is NOT up-to-date. Using build-schema no longer exists in 5.5.0 and has
not been replaced yet.

The build-schema ant target takes the generated ome.model classes as input and generates the sql/psql scripts which get
used by omero db script to generate a working OMERO database. Files named like OMEROVERSION__PATCH.sql
are hand-written update scripts.

The primary consumer of the ome.model classes at runtime is the omero-server.

The above classes are considered the internal server code, and are the only objects which can take part in Hibernate
transactions.

External to the server code is the omero-blitz layer. These classes are in the omero.model package. They are generated
by another call to the DSL task in order to generate the Java, Python, C++, and Ice files under, by default, build/psql/.

In omero-blitz, the generated Ice files along with the hand-written Ice files from src/main/slice/omero are then run
through the slice2cpp, slice2java, and slice2py command-line utilities in order to generate source code in each
of these languages. Clients pass in instances of these omero.model (or in the case of C++, omero::model) objects.
These are transformed to ome.model objects, and then persisted to the database.

If we take a concrete example, a C++ client might create an Image via new omero::model::ImageI(). The “I” suffix
represents an “implementation” in the Ice naming scheme and this subclasses from omero::model::Image. This can be
remotely passed to the server which will be deserialized as an omero.model.ImageI object. This will then get converted
to an ome.model.core.Image, which can finally be persisted to the database.

Keywords

Some words are not allowed as properties/fields of OMERO types. These include:

• id

• version

• details

• . . . any SQL keyword

3.8. The OME Data Model 575

https://github.com/ome/omero-model
https://github.com/ome/omero-model/tree/v5.6.5/src/main/resources/mappings
https://github.com/ome/omero-dsl-plugin/tree/v5.5.1/src
https://github.com/ome/omero-model
https://github.com/ome/omero-model/tree/v5.6.5/src/main/java/ome/model/internal
https://github.com/ome/openmicroscopy/tree/develop/sql/psql
https://github.com/ome/omero-server
https://github.com/ome/omero-blitz
https://github.com/ome/omero-blitz
https://github.com/ome/omero-blitz/tree/v5.5.10/src/main/slice/omero

OMERO, Release 5.6.5-SNAPSHOT-1

Improving generated data objects

Constructors

Two special constructors are generated for each model object. One is for creating proxy instances, and the other is for
filling all NOT-NULL fields:

Pixels p_proxy = new Pixels(Long, boolean);
Pixels p_filled = new Pixels(ome.model.core.Image, ome.model.enums.PixelsType,

java.lang.Integer, java.lang.Integer, java.lang.Integer, java.lang.Integer, java.
→˓lang.Integer,

java.lang.String, ome.model.enums.DimensionOrder, ome.model.core.
→˓PixelsDimensions);

The first should almost always be used as: new Pixels(5L, false). Passing in an argument of true would imply
that this object is actually loaded, and therefore the server would attempt to null all the fields on your object. See below
for a discussion on loadedness.

In the special case of Enumerations, a constructor is generated which takes the value field for the enumeration:

Format file_format = new Format("text/plain");

Further, this is the only example of a managed object which will be loaded by the server without its id. This allows
applications to record only the string "text/plain" and not need to know the actual id value for "text/plain".

Details

Each table in the database has several columns handling low-level matters such as security, ownership, and prove-
nance. To hide some of these details in the object model, each IObject instance contains an ome.model.internal.Details
instance.

Details works something like unix’s stat:

/Types/Images>ls -ltrAG
total 0
-rw------- 1 josh 0 2006-01-25 20:40 Image1
-rw------- 1 josh 0 2006-01-25 20:40 Image2
-rw------- 1 josh 0 2006-01-25 20:40 Image3
-rw-r--r-- 1 josh 0 2006-01-25 20:40 Image100
/Types/Images>stat Image1
File: `Image1'
Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: 1602h/5634d Inode: 376221 Links: 1
Access: (0600/-rw-------) Uid: (1003/ josh) Gid: (1001/ ome)
Access: 2006-01-25 20:40:30.000000000 +0100
Modify: 2006-01-25 20:40:30.000000000 +0100
Change: 2006-01-25 20:40:30.000000000 +0100

though it can also store arbitrary other attributes (meta-metadata, so to speak) about our model instances. See Dynamic
methods below for more information.

The main methods on Details are:

576 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Permissions Details.getPermissions();
List Details.getUpdates();
Event Details.getCreationEvent();
Event Details.getUpdateEvent();
Experimenter Details.getOwner();
ExperimenterGroup Details.getGroup();
ExternalInfo getExternalInfo();

though some of the methods will return null, if that column is not available for the given object. See Interfaces below
for more information.

Consumers of the API are encouraged to pass around Details instances rather than specifying particulars, like:

if (securitySystem.allowLoad(Project.class, project.getDetails())) {}
// and not
if (project.getDetails().getPermissions().isGranted(USER,READ) && project.getDetails().
→˓getOwner().getId(myId)) {...}

This should hopefully save a good deal of re-coding if we move to true ACL rather than the current filesystem-like
access control.

Because it is a field on every type, Details is also on the list of keywords in the type language (above).

Interfaces

To help work with the generated objects, several interfaces are added to their “implements” clause:

Property Applies_to Interface Notes
Base
owner ! global need sudo
group ! global need sudo
version ! immutable
creationEvent ! global
updateEvent ! global && ! immutable
permissions
externalInfo
Other
name Named
description Described
linkedAnnotationList IAnnotated

For example, ome.model.meta.Experimenter is a “global” type, therefore it has no Details.owner field. In order
to create this type of object, you will either need to have admin privileges, or in some cases, use the ome.api.IAdmin
interface directly (in the case of enums, you will need to use the ome.api.ITypes interface).

3.8. The OME Data Model 577

OMERO, Release 5.6.5-SNAPSHOT-1

Inheritance

Inheritance is supported in the object model. The superclass relationships can be defined simply in the mapping files.
One example in omero-model is the annotation hierarchy in src/main/resources/mappings/annotations.ome.xml. Hi-
bernate supports this polymorphism, and will search all subclasses when a superclass is returned. However, due to
Hibernate’s use of bytecode-generated proxies, testing for class equality is not always straightforward.

Hibernate uses CGLIB and Javassist and similar bytecode generation to perform much of its magic. For these
bytecode generated objects, the getClass() method returns something of the form ome.model.core.Image\
_$$_javassist which cannot be passed back into Hibernate. Instead, we must first parse that class String with
Utils#trueClass().

Model report objects

To support the Collection Counts requirement in which users would like to know how many objects are in a collection
by owner, it was necessary to add read-only Map<String, Long> fields to all objects with links. See the Collection
counts page for more information.

Dynamic methods

Finally, because not all programming fits into the static programming frame, the object model provides several methods
for working dynamically with all IObject subclasses.

fieldSet / putAt / retrieve

Each model class contains a public final static String for each field in that class (superclass fields are omitted). A copy
of all these fields is available through fieldSet(). This field identifier can be used in combination with the putAt and
retrieve methods to store arbitrary data in a class instance. Calls to putAt / retrieve with a string found in fieldSet
delegate to the traditional getters/setters. Otherwise, the value is stored in lazily-initialized Map (if no data is stored,
the map is null).

acceptFilter

An automation of calls to putAt / retrieve can be achieved by implementing an ome.util.Filter. A Filter is a
VisitorPattern-like interface which not only visits every field of an object, but also has the chance to replace the field
value with an arbitrary other value. Much of the internal functionality in OMERO is achieved through filters.

Limitations

• The filter methods override all standard checks such as IObject#isLoaded and so null-pointer exceptions etc. may
be thrown.

• The types stored in the dynamic map currently do not propagate to the OMERO.blitz model objects, since not all
java.lang.Objects can be converted.

578 Chapter 3. Developer Documentation

https://github.com/ome/omero-model
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/mappings/annotations.ome.xml
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/util/Utils.java

OMERO, Release 5.6.5-SNAPSHOT-1

Entity lifecycle

These additions make certain operations on the model objects easier and cleaner, but they do not save the developer
from understanding how each object interacts with Hibernate. Each object has a defined lifecycle and it is important
to know both the origin (client, server, or backend) as well as its current state to understand what will and can happen
with it.

States

Each instance can be found in one of several states. Quickly, they are:

transient The entity has been created ("new Image()") and not yet shown to the backend.

persistent The entity has been stored in the database and has a non-null id (IObject.getId()). Here Hibernate
differentiates between detached, managed, and deleted entities. Detached entities do not take part in lazy-loading
or dirty detection like managed entities do. They can, however, be re-attached (made “managed”). Deleted
entities cannot take part in most of the ORM activities, and exceptions will be thrown if they are encountered.

unloaded (a reference, or proxy) To solve the common problem of lazy loading exceptions found in many Hibernate
applications, we have introduced the concept of unloaded proxy objects which are objects with all fields nulled
other than the id. Attempts to get or set any other property will result in an exception. The backend detects these
proxies and restores their value before operating on the graph. There are two related states for collections – null
which is completely unloaded, and filtered in which certain items have been removed (more on this below).

Identity, references, and versions

Critical for understanding these states is understanding the concepts of identity and versioning as it relates to ORM.
Every object has an id field that if created by the backend will not be null. However, every table does not have a
primary key field – subclasses contain a foreign key link to their superclass. Therefore all objects without an id are
assumed to be non-persistent (i.e. transient).

Though the id cannot be the sole decider of equality since there are issues with the Java definition of equals() and
hashCode(), we often perform lookups based on the class and id of an instance. Here again caution must be taken not
to unintentionally use a possibly bytecode-generated subclass. See the discussion under Inheritance above.

Class/id-based lookup is in fact so useful that it is possible to take an model object and call obj.unload() to have a
“reference” – essentially a placeholder for a model object that contains only an id. Calls to any accessors other than
get/setId will throw an exception. An object can be tested for loadedness with obj.isLoaded().

A client can use unloaded instances to inform the backend that a certain information is not available and should be
filled in server-side. For example, a user can do the following:

Project p = new Project();
Dataset d = new Dataset(new Long(1), false); // this means create an already unloaded␣
→˓instance
p.linkDataset(d);
iUpdate.saveObject(p);

The server, in turn, also uses references to replace backend proxies that would otherwise throw
LazyInitializationExceptions on serialization. Clients, therefore, must code with the expectation that the
leaves in an object graph may be unloaded. Extending a query with “outer join fetch” will cause these objects to be
loaded as well. For example:

3.8. The OME Data Model 579

OMERO, Release 5.6.5-SNAPSHOT-1

580 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

select p from Project p
left outer join fetch p.datasetLinks as links
left outer join fetch links.child as dataset

but eventually in the complex OME metadata graph, it is certain that something will remain unloaded.

Versions are the last piece to understanding object identity. Two entities with the same id should not be considered
equal if they have differing versions. On each write operation, the version of an entity is incremented. This allows us
to perform optimistic locking so that two users do not simultaneously edit the same object. That works so:

1. User A and User B retrieve Object X id=1, version=0.

2. User A edits Object X and saves it. Version is incremented to 1.

3. User B edits Object X and tries to save it. The SQL generated is: UPDATE table SET value = newvalue WHERE
id = 1 and version = 0; which upates no rows.

4. The fact that no rows were altered is seen by the backend and an OptimisticLockException is thrown.

Identity and versioning make working with the object model difficult sometimes, but guarantee that our data is never
corrupted.

Working with the object model

With these states in mind, it is possible to start looking at how to actually use model objects. From the point of view
of the server, everything is either an assertion of an object graph (a “write”) or a request for an object graph (a “read”),
whether they are coming from an RMI client, an OMERO.blitz client, or even being generated internally.

Writing

Creating new objects is as simple as instantiating objects and linking them together. If all NOT-NULL fields are not
filled, then a ValidationException will be thrown by the server:

IUpdate update = new ServiceFactory().getUpdateService();
Image i = new Image();
try {

update.saveObject(i);
catch (ValidationException ve) {

// not ok.
}
i.setName("image");
return update.saveAndReturnObject(i); // ok.

Otherwise, the returned value will be the Image with its id field filled. This works on arbitrarily complex graphs of
objects:

Image i = new Image("image-name"); // This constructor exists because "name" is the only␣
→˓required field.
Dataset d = new Dataset("dataset-name");
TagAnnotation tag = new TagAnnotation();
tag.setTextValue("some-tag");
i.linkDataset(d);
i.linkAnnotation(tag);
update.saveAndReturnObject(i);

3.8. The OME Data Model 581

OMERO, Release 5.6.5-SNAPSHOT-1

Reading

Reading is a similarly straightforward operation. From a simple id-based lookup, iQuery.get(Experimenter.
class, 1L) to a search for an arbitrarily complex graph:

Image i = iQuery.findByQuery("select i from Image i "+
"join fetch i.datasetLinks as dlinks "+
"join fetch i.annotationLinks as alinks "+
"join fetch i.details.owner as owner "+
"join fetch owner.details.creationEvent "+
"where i.id = :id", new Parameters().addId(1L));

In the return graph, you are guaranteed that any two instances of the same class with the same id are the same object.
For example:

Image i = ...; // From query
Dataset d = i.linkedDatasetList().get(0);
Image i2 = d.linkedImageList().get(0);
if (i.getId().equals(i2.getId()) {
assert i == i2 : "Instances must be referentially equal";

}

Reading and writing

Complications arise when you try to mix objects from different read operations because of the difference in equality.
In all but the most straightforward applications, references to IObject instances from different return graphs will start
to intermingle. For example, when a user logins in, you might query for all Projects belonging to the user:

List<Project> projects = iQuery.findAllByQuery("select p from Project p where p.details.
→˓owner.omeName = someUser", null);
Project p = projects.get(0);
Long id = p.getId();

Later you might query for Datasets, and be returned some of the same Projects again within the same graph. You have
now possibly got two versions of the Project with a given id within your application. And if one of those Projects has
a new Dataset reference, then Hibernate would not know whether the object should be removed or not.

Project oldProject = ...; // Acquired from first query
// Do some other work
Dataset dataset = iQuery.findByQuery("select d from Dataset d "+

"join fetch d.projectsLinks links "+
"join fetch links.parent "+
"where d.id = :id", new Parameters().addId(5L));

Project newProject = dataset.linkedProjectList().get(0);
assert newProject.getId().equals(oldProject.getId()) : "same object";
assert newProject.sizeOfDatasetLinks() == oldProject.sizeOfDatasetLinks() :

"if this is false, then saving oldProject is a problem";

Without optimistic locks, trying to save oldProject would cause whatever Datasets were missing from it to be removed
from newProject as well. Instead, an OptimisticLockException is thrown if a user tries to change an older reference
to an entity. Similar problems also arise in multi-user settings, when two users try to access the same object, but it is
not purely due to multiple users or even multiple threads, but simply due to stale state.

582 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Note: There is an issue with multiple users in which a SecurityViolation is thrown instead of an
OptimisticLockException.

Various techniques to help to manage these duplications are:

• Copy all data to your own model.

• Return unloaded objects wherever possible.

• Be very careful about the operations you commit and about the order they take place in.

• Use a ClientSession.

Lazy loading

An issue related to identity is lazy loading. When an object graph is requested, Hibernate loads only the objects which
are directly requested. All others are replaced with proxy objects. Within the Hibernate session, these objects are
“active” and if accessed, they will be automatically loaded. This is taken care of by the first-level cache, and is also the
reason that referential equality is guaranteed within the Hibernate session. Outside of the session however, the proxies
can no longer be loaded and so they cannot be serialized to the client.

Instead, as the return value passes through OMERO’s AOP layer, they get disconnected. Single-valued fields are
replaced by an unloaded version:

OriginalFile ofile = ...; // Object to test
if (! Hibernate.isInitialized(ofile.getFormat()) {
ofile.setFormat(new Format(ofile.getFormat().getId(), false));

}

Multi-valued fields, or collections, are simply nulled. In this case, the sizeOfXXX method will return a value less than
zero:

Dataset d = ...; // Dataset obtained from a query. Didn't request Projects
assert d.sizeOfProjects() < 0 : "Projects should not be loaded";

This is why it is necessary to specify all “join fetch” clauses for instances which are required on the client-side. See
ProxyCleanupFilter for the implementation.

Collections

More than just the nulling during serialization, collections pose several interesting problems.

For example, a collection may be filtered on retrieval:

Dataset d = iQuery.findByQuery("select d from Dataset d "+
"join fetch d.projectLinks links "+
"where links.parent.id > 2000", null);

Some ProjectDatasetLink instances have been filtered from the projectLinks collection. If the client decides to
save this collection back, there is no way to know that it is incomplete, and Hibernate will remove the missing Projects
from the Dataset. It is the developer’s responsibility to know what state a collection is in. In the case of links, discussed
below, one solution is to use the link objects directly, even if they are largely hidden with the API, but the problem
remains for 1-N collections.

3.8. The OME Data Model 583

https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/tools/hibernate/ProxyCleanupFilter.java

OMERO, Release 5.6.5-SNAPSHOT-1

Links

A special form of links collection model the many-to-many relationship between two other objects. A Project
can contain any number of Datasets, and a Dataset can be in any number of Projects. This is achieved by
ProjectDatasetLinks, which have a Project “parent” and a Dataset “child” (the parent/child terms are somewhat
arbitrary but are intended to fit roughly with the users’ expectations for those types).

It is possible to both add and remove a link directly:

ProjectDatasetLink link = new ProjectDatasetLink();
link.setParent(someProject);
link.setChild(someDataset);
link = update.saveAndReturnObject(link);

// someDataset is now included in someProject

update.deleteObject(link);
// or update.deleteObject(new ProjectDatasetLink(link.getId(), false)); // a proxy

// Now the Dataset is not included,
// __unless__ there was already another link.

However, it is also possible to have the links managed for you:

someProject.linkDataset(someDataset); // This creates the link
update.saveObject(someProject); // Notices added link, and saves it

someProject.unlinkDataset(someDataset);
update.saveObject(someProject); // Notices removal, and deletes it

The difficulty with this approach is that unlinkDataset() will fail if the someDataset which you are trying to remove
is not referentially equal. That is:

someProject.linkDataset(someDataset);
updatedProject = update.saveAndReturnObject(someProject);

updatedProject.unlinkDataset(someDataset);
update.saveObject(updateProject); // will do __nothing__ !

does not work since someDataset is not included in updatedProject, but rather updatedDataset with the same id is.
Therefore, it would be necessary to do something along the following lines of:

updatedProject = ...; // As before
for (Dataset updatedDataset : updatedProject.linkedDatasetList()) {

if (updatedDataset.getId().equals(someDataset.getId())) {
updatedProject.unlinkDataset(updatedDataset);

}
}

The unlink method in this case, removes the link from both the Project.datasetLinks collection as well as from the
Dataset.projectLinks collection. Hibernate notices that both collections are in agreement, and deletes the Project-
DatasetLink (this is achieved via the “delete-orphan” annotation in Hibernate). If only one side of the collection has
had its link removed, an exception will be thrown.

584 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Synchronization

Another important point is that the model objects are in no way synchronized. All synchronization must occur within
application code.

Limitations

We try to minimize differences between the Model as described by the XML specification and its implementation in
the OMERO database but some Objects may behave in a more restricted fashion within OMERO. Examples include:

• ROIs and rendering settings can only belong to one Image

3.8.2 Working with annotations

Structured annotations permit the attachment of data and metadata outside the OMERO data model to certain types
within the model. The annotations are designed for individualized use by both sites and tools. Annotations can be
attached to multiple instances simultaneously to quickly annotate all entities in a view. Each annotation may have a
“namespace” (ns) set. Tools can recognize specific namespaces and interpret those annotations accordingly.

Annotated and annotating types

Each type which can be annotated implements ome.model.IAnnotated. Currently, these are:

• Project

• Dataset

• Image

• Pixels

• OriginalFile

• PlaneInfo

• Roi

• Channel

• Annotation and all annotation subtypes in order to form hierarchies

• ScreenPlateWell: Screen, ScreenAcquisition, Plate, Well, Reagent

• Folder

Annotation hierarchy

Though they largely are all String or numeric values, a hierarchy of annotations makes differentiating between just what
interpretation should be given to the annotation. This may eventually include validation of the input string and/or file.

Annotation (A*) A name field and a description
ListAnnotation Uses AnnotationAnnotation links to form a list␣

→˓of annotations
BasicAnnotation (A*) Literal or "primitive" values

BooleanAnnotation A simple true/false flag
TimeStampAnnotation A date/time

(continues on next page)

3.8. The OME Data Model 585

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

TermAnnotation A term used in an ontology
NumericAnnotation (A*) Floating point and integer values
DoubleAnnotation
LongAnnotation

MapAnnotation A list of key-value pairs
TextAnnotation (A*) A single text field
CommentAnnotation A user comment
TagAnnotation Interpreted as a Web 2.0 "tag" on an object,␣

→˓tags on tags form tag bundles
XmlAnnotation An xml snippet attached to some object

TypeAnnotation (A*) Links some entity to another (possibly to be␣
→˓replaced by <any/>)

FileAnnotation Uses the Format field on OriginalFile to specify␣
→˓type

A* = abstract

See also:
Schema documentation for Structured Annotations Section of the auto-generated schema documentation describ-

ing the structured annotations

Names and namespaces

Since arbitrary blobs or clobs can be attached to an entity, it is necessary for clients to have some way to differentiate
what it can parse. In many cases, the name might be a simple reminder for a user to find the file s/he has annotated. Ap-
plications, however, will most likely want to define a namespace, like http://name-of-application-provider.
com/name-of-application/file-type/version. Queries can then be produced which search for the proper
namespace or match on a part of the name space:

iQuery.findAllByQuery("select annotation from FileAnnotation where "+
"name like 'http://name-of-application-provider.com/name-of-application/%'");

Tags will most likely begin without a namespace. As a tag gets escalated to a common vocabulary, it might make sense
to add a possibly site-specific namespace with more well-defined semantics.

Descriptions

Unlike the previous, ImageAnnotation and DatasetAnnotation types, the new structured annotations do not have
a description field. The single description field was limited for multi-user scenarios, and can be fully replaced by
TextAnnotations attached to another annotation.

FileAnnotation fileAnnotation = ...;
TextAnnotation description = ...;
fileAnnotation.linkAnnotation(description);

586 Chapter 3. Developer Documentation

https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation

OMERO, Release 5.6.5-SNAPSHOT-1

Examples

Examples of creating various type of Annotations can also be found on the Java and Python pages.

Basics

import ome.model.IAnnotated;
import ome.model.annotations.FileAnnotation;
import ome.model.annotations.TagAnnotation;
import ome.model.core.OriginalFile;
import ome.model.display.Roi;

List<Annotation> list = iAnnotated.linkedAnnotationList();
// do something with list

Attaching a tag

TagAnnotation tag = new TagAnnotation();
tag.setTextValue("interesting");

Roi roi = ...; // Some region of interest
ILink link = roi.linkAnnotation(tag);

iUpdate.saveObject(link);

Attaching a file

// or attach something new
OriginalFile myOriginalFile = new OriginalFile();
myOriginalFile.setName("output.pdf");
// upload PDF

FileAnnotation annotation = new FileAnnotation();
annotation.setName("http://example.com/myClient/analysisOutput");
annotation.setFile(myOriginalFile);

ILink link = iAnnotated.linkAnnotation(annotation)
link = iUpdate.saveAndReturnObject(link);

All write changes are intended to occur through the IUpdate interface, whereas searching should be significantly easier
through ome.api.Search than IQuery.

See also:
Extending OMERO.server

Map annotations

3.8. The OME Data Model 587

OMERO, Release 5.6.5-SNAPSHOT-1

3.8.3 Glossary of all OMERO Model Objects

Overview

In navigating the model objects used by the OMERO API and in omero hql it is often useful to look up the names of
the object properties and the types of their values. This reference document lists every OMERO model object and their
more useful properties, with an emphasis on enumerating every direct relationship among the objects.

Reference

AcquisitionMode

Used by: LogicalChannel.mode

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

AdminPrivilege

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

AffineTransform

Used by: Shape.transform

Properties:
a00: double
a01: double
a02: double
a10: double
a11: double
a12: double
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
version: integer (optional), see IMutable

588 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

Annotation

Subclasses: BasicAnnotation, ListAnnotation, MapAnnotation, TextAnnotation, TypeAnnotation

Used by: AnnotationAnnotationLink.child, AnnotationAnnotationLink.parent, ChannelAnnotationLink.child,
DatasetAnnotationLink.child, DetectorAnnotationLink.child, DichroicAnnotationLink.child, ExperimenterAnnota-
tionLink.child, ExperimenterGroupAnnotationLink.child, FilesetAnnotationLink.child, FilterAnnotationLink.child,
FolderAnnotationLink.child, ImageAnnotationLink.child, InstrumentAnnotationLink.child, LightPathAnnota-
tionLink.child, LightSourceAnnotationLink.child, NamespaceAnnotationLink.child, NodeAnnotationLink.child,
ObjectiveAnnotationLink.child, OriginalFileAnnotationLink.child, PlaneInfoAnnotationLink.child, PlateAcquisi-
tionAnnotationLink.child, PlateAnnotationLink.child, ProjectAnnotationLink.child, ReagentAnnotationLink.child,
RoiAnnotationLink.child, ScreenAnnotationLink.child, SessionAnnotationLink.child, ShapeAnnotationLink.child,
WellAnnotationLink.child

Properties:
annotationLinks: AnnotationAnnotationLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
name: text (optional)
ns: text (optional)
version: integer (optional), see IMutable

AnnotationAnnotationLink

Used by: Annotation.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Annotation, see ILink
version: integer (optional), see IMutable

Arc

Properties:
annotationLinks: LightSourceAnnotationLink (multiple) from LightSource
details.creationEvent: Event from LightSource
details.externalInfo: ExternalInfo (optional) from LightSource
details.group: ExperimenterGroup from LightSource
details.owner: Experimenter from LightSource

3.8. The OME Data Model 589

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

details.updateEvent: Event from LightSource
instrument: Instrument from LightSource
lotNumber: string (optional) from LightSource
manufacturer: string (optional) from LightSource
model: string (optional) from LightSource
power.unit: enumeration of Power (optional) from LightSource
power.value: double (optional) from LightSource
serialNumber: string (optional) from LightSource
type: ArcType
version: integer (optional) from LightSource

ArcType

Used by: Arc.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

BasicAnnotation

Subclasses: BooleanAnnotation, NumericAnnotation, TermAnnotation, TimestampAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

Binning

Used by: DetectorSettings.binning

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

590 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Power.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

BooleanAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
boolValue: boolean (optional)
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

Channel

Used by: ChannelAnnotationLink.parent, LogicalChannel.channels, Pixels.channels

Properties:
alpha: integer (optional)
annotationLinks: ChannelAnnotationLink (multiple)
blue: integer (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
green: integer (optional)
logicalChannel: LogicalChannel
lookupTable: text (optional)
pixels: Pixels
red: integer (optional)
statsInfo: StatsInfo (optional)
version: integer (optional), see IMutable

ChannelAnnotationLink

Used by: Channel.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event

3.8. The OME Data Model 591

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html

OMERO, Release 5.6.5-SNAPSHOT-1

parent: Channel, see ILink
version: integer (optional), see IMutable

ChannelBinding

Used by: CodomainMapContext.channelBinding, RenderingDef.waveRendering

Properties:
active: boolean
alpha: integer
blue: integer
coefficient: double
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
family: Family
green: integer
inputEnd: double
inputStart: double
lookupTable: string (optional)
noiseReduction: boolean
red: integer
renderingDef: RenderingDef
spatialDomainEnhancement: CodomainMapContext (multiple)
version: integer (optional), see IMutable

ChecksumAlgorithm

Used by: OriginalFile.hasher

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

CodomainMapContext

Subclasses: ContrastStretchingContext, PlaneSlicingContext, ReverseIntensityContext

Used by: ChannelBinding.spatialDomainEnhancement

Properties:
channelBinding: ChannelBinding
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter

592 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

details.updateEvent: Event
version: integer (optional), see IMutable

CommentAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
textValue: text (optional) from TextAnnotation
version: integer (optional) from Annotation

ContrastMethod

Used by: LogicalChannel.contrastMethod

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

ContrastStretchingContext

Properties:
channelBinding: ChannelBinding from CodomainMapContext
details.creationEvent: Event from CodomainMapContext
details.externalInfo: ExternalInfo (optional) from CodomainMapContext
details.group: ExperimenterGroup from CodomainMapContext
details.owner: Experimenter from CodomainMapContext
details.updateEvent: Event from CodomainMapContext
version: integer (optional) from CodomainMapContext
xend: integer
xstart: integer
yend: integer
ystart: integer

3.8. The OME Data Model 593

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

Correction

Used by: Objective.correction

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

DBPatch

Properties:
currentPatch: integer
currentVersion: string
details.externalInfo: ExternalInfo (optional)
finished: timestamp (optional)
message: string (optional)
previousPatch: integer
previousVersion: string

Dataset

Used by: DatasetAnnotationLink.parent, DatasetImageLink.parent, ProjectDatasetLink.child

Properties:
annotationLinks: DatasetAnnotationLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
imageLinks: DatasetImageLink (multiple)
name: text
projectLinks: ProjectDatasetLink (multiple)
version: integer (optional), see IMutable

DatasetAnnotationLink

Used by: Dataset.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event

594 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html

OMERO, Release 5.6.5-SNAPSHOT-1

parent: Dataset, see ILink
version: integer (optional), see IMutable

DatasetImageLink

Used by: Dataset.imageLinks, Image.datasetLinks

Properties:
child: Image, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Dataset, see ILink
version: integer (optional), see IMutable

Detector

Used by: DetectorAnnotationLink.parent, DetectorSettings.detector, Instrument.detector

Properties:
amplificationGain: double (optional)
annotationLinks: DetectorAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
gain: double (optional)
instrument: Instrument
lotNumber: string (optional)
manufacturer: string (optional)
model: string (optional)
offsetValue: double (optional)
serialNumber: string (optional)
type: DetectorType
version: integer (optional), see IMutable
voltage.unit: enumeration of ElectricPotential (optional)
voltage.value: double (optional)
zoom: double (optional)

3.8. The OME Data Model 595

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/ElectricPotential.html

OMERO, Release 5.6.5-SNAPSHOT-1

DetectorAnnotationLink

Used by: Detector.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Detector, see ILink
version: integer (optional), see IMutable

DetectorSettings

Used by: LogicalChannel.detectorSettings

Properties:
binning: Binning (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
detector: Detector
gain: double (optional)
integration: integer (optional)
offsetValue: double (optional)
readOutRate.unit: enumeration of Frequency (optional)
readOutRate.value: double (optional)
version: integer (optional), see IMutable
voltage.unit: enumeration of ElectricPotential (optional)
voltage.value: double (optional)
zoom: double (optional)

DetectorType

Used by: Detector.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

596 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Frequency.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/ElectricPotential.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

Dichroic

Used by: DichroicAnnotationLink.parent, FilterSet.dichroic, Instrument.dichroic, LightPath.dichroic

Properties:
annotationLinks: DichroicAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
instrument: Instrument
lotNumber: string (optional)
manufacturer: string (optional)
model: string (optional)
serialNumber: string (optional)
version: integer (optional), see IMutable

DichroicAnnotationLink

Used by: Dichroic.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Dichroic, see ILink
version: integer (optional), see IMutable

DimensionOrder

Used by: Pixels.dimensionOrder

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

3.8. The OME Data Model 597

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

DoubleAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
doubleValue: double (optional)
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

Ellipse

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
locked: boolean (optional) from Shape
radiusX: double (optional)
radiusY: double (optional)
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape
x: double (optional)
y: double (optional)

598 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

Event

Used by: AffineTransform.details.creationEvent, AffineTransform.details.updateEvent, Annota-
tion.details.creationEvent, Annotation.details.updateEvent, AnnotationAnnotationLink.details.creationEvent,
AnnotationAnnotationLink.details.updateEvent, Channel.details.creationEvent, Channel.details.updateEvent,
ChannelAnnotationLink.details.creationEvent, ChannelAnnotationLink.details.updateEvent, ChannelBind-
ing.details.creationEvent, ChannelBinding.details.updateEvent, CodomainMapContext.details.creationEvent,
CodomainMapContext.details.updateEvent, Dataset.details.creationEvent, Dataset.details.updateEvent,
DatasetAnnotationLink.details.creationEvent, DatasetAnnotationLink.details.updateEvent, DatasetIm-
ageLink.details.creationEvent, DatasetImageLink.details.updateEvent, Detector.details.creationEvent, Detec-
tor.details.updateEvent, DetectorAnnotationLink.details.creationEvent, DetectorAnnotationLink.details.updateEvent,
DetectorSettings.details.creationEvent, DetectorSettings.details.updateEvent, Dichroic.details.creationEvent,
Dichroic.details.updateEvent, DichroicAnnotationLink.details.creationEvent, DichroicAnnotation-
Link.details.updateEvent, Event.containingEvent, EventLog.event, Experiment.details.creationEvent, Ex-
periment.details.updateEvent, ExperimenterAnnotationLink.details.creationEvent, ExperimenterAnnotation-
Link.details.updateEvent, ExperimenterGroupAnnotationLink.details.creationEvent, ExperimenterGroupAn-
notationLink.details.updateEvent, ExternalInfo.details.creationEvent, Fileset.details.creationEvent, File-
set.details.updateEvent, FilesetAnnotationLink.details.creationEvent, FilesetAnnotationLink.details.updateEvent,
FilesetEntry.details.creationEvent, FilesetEntry.details.updateEvent, FilesetJobLink.details.creationEvent,
FilesetJobLink.details.updateEvent, Filter.details.creationEvent, Filter.details.updateEvent, FilterAnnota-
tionLink.details.creationEvent, FilterAnnotationLink.details.updateEvent, FilterSet.details.creationEvent,
FilterSet.details.updateEvent, FilterSetEmissionFilterLink.details.creationEvent, FilterSetEmissionFilter-
Link.details.updateEvent, FilterSetExcitationFilterLink.details.creationEvent, FilterSetExcitationFilter-
Link.details.updateEvent, Folder.details.creationEvent, Folder.details.updateEvent, FolderAnnotation-
Link.details.creationEvent, FolderAnnotationLink.details.updateEvent, FolderImageLink.details.creationEvent,
FolderImageLink.details.updateEvent, FolderRoiLink.details.creationEvent, FolderRoiLink.details.updateEvent,
Image.details.creationEvent, Image.details.updateEvent, ImageAnnotationLink.details.creationEvent, Im-
ageAnnotationLink.details.updateEvent, ImagingEnvironment.details.creationEvent, ImagingEnviron-
ment.details.updateEvent, Instrument.details.creationEvent, Instrument.details.updateEvent, InstrumentAn-
notationLink.details.creationEvent, InstrumentAnnotationLink.details.updateEvent, Job.details.creationEvent,
Job.details.updateEvent, JobOriginalFileLink.details.creationEvent, JobOriginalFileLink.details.updateEvent,
LightPath.details.creationEvent, LightPath.details.updateEvent, LightPathAnnotationLink.details.creationEvent,
LightPathAnnotationLink.details.updateEvent, LightPathEmissionFilterLink.details.creationEvent, LightPath-
EmissionFilterLink.details.updateEvent, LightPathExcitationFilterLink.details.creationEvent, LightPathExcita-
tionFilterLink.details.updateEvent, LightSettings.details.creationEvent, LightSettings.details.updateEvent, Light-
Source.details.creationEvent, LightSource.details.updateEvent, LightSourceAnnotationLink.details.creationEvent,
LightSourceAnnotationLink.details.updateEvent, Link.details.creationEvent, Link.details.updateEvent, LogicalChan-
nel.details.creationEvent, LogicalChannel.details.updateEvent, MicrobeamManipulation.details.creationEvent,
MicrobeamManipulation.details.updateEvent, Microscope.details.creationEvent, Microscope.details.updateEvent,
NamespaceAnnotationLink.details.creationEvent, NamespaceAnnotationLink.details.updateEvent, NodeAn-
notationLink.details.creationEvent, NodeAnnotationLink.details.updateEvent, OTF.details.creationEvent,
OTF.details.updateEvent, Objective.details.creationEvent, Objective.details.updateEvent, ObjectiveAnnotation-
Link.details.creationEvent, ObjectiveAnnotationLink.details.updateEvent, ObjectiveSettings.details.creationEvent,
ObjectiveSettings.details.updateEvent, OriginalFile.details.creationEvent, OriginalFile.details.updateEvent,
OriginalFileAnnotationLink.details.creationEvent, OriginalFileAnnotationLink.details.updateEvent, Pix-
els.details.creationEvent, Pixels.details.updateEvent, PixelsOriginalFileMap.details.creationEvent, PixelsOrig-
inalFileMap.details.updateEvent, PlaneInfo.details.creationEvent, PlaneInfo.details.updateEvent, PlaneInfoAn-
notationLink.details.creationEvent, PlaneInfoAnnotationLink.details.updateEvent, Plate.details.creationEvent,
Plate.details.updateEvent, PlateAcquisition.details.creationEvent, PlateAcquisition.details.updateEvent, PlateAc-
quisitionAnnotationLink.details.creationEvent, PlateAcquisitionAnnotationLink.details.updateEvent, PlateAn-
notationLink.details.creationEvent, PlateAnnotationLink.details.updateEvent, Project.details.creationEvent,
Project.details.updateEvent, ProjectAnnotationLink.details.creationEvent, ProjectAnnotation-
Link.details.updateEvent, ProjectDatasetLink.details.creationEvent, ProjectDatasetLink.details.updateEvent,
ProjectionDef.details.creationEvent, ProjectionDef.details.updateEvent, QuantumDef.details.creationEvent,

3.8. The OME Data Model 599

OMERO, Release 5.6.5-SNAPSHOT-1

QuantumDef.details.updateEvent, Reagent.details.creationEvent, Reagent.details.updateEvent, ReagentAnnota-
tionLink.details.creationEvent, ReagentAnnotationLink.details.updateEvent, RenderingDef.details.creationEvent,
RenderingDef.details.updateEvent, Roi.details.creationEvent, Roi.details.updateEvent, RoiAnnota-
tionLink.details.creationEvent, RoiAnnotationLink.details.updateEvent, Screen.details.creationEvent,
Screen.details.updateEvent, ScreenAnnotationLink.details.creationEvent, ScreenAnnotationLink.details.updateEvent,
ScreenPlateLink.details.creationEvent, ScreenPlateLink.details.updateEvent, Session.events, SessionAnno-
tationLink.details.creationEvent, SessionAnnotationLink.details.updateEvent, Shape.details.creationEvent,
Shape.details.updateEvent, ShapeAnnotationLink.details.creationEvent, ShapeAnnotationLink.details.updateEvent,
StageLabel.details.creationEvent, StageLabel.details.updateEvent, StatsInfo.details.creationEvent,
StatsInfo.details.updateEvent, Thumbnail.details.creationEvent, Thumbnail.details.updateEvent, Trans-
mittanceRange.details.creationEvent, TransmittanceRange.details.updateEvent, Well.details.creationEvent,
Well.details.updateEvent, WellAnnotationLink.details.creationEvent, WellAnnotationLink.details.updateEvent,
WellReagentLink.details.creationEvent, WellReagentLink.details.updateEvent, WellSample.details.creationEvent,
WellSample.details.updateEvent

Properties:
containingEvent: Event (optional)
details.externalInfo: ExternalInfo (optional)
experimenter: Experimenter
experimenterGroup: ExperimenterGroup
logs: EventLog (multiple)
session: Session
status: string (optional)
time: timestamp
type: EventType

EventLog

Used by: Event.logs

Properties:
action: string
details.externalInfo: ExternalInfo (optional)
entityId: long
entityType: string
event: Event

EventType

Used by: Event.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

600 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

Experiment

Used by: Image.experiment, MicrobeamManipulation.experiment

Properties:
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
microbeamManipulation: MicrobeamManipulation (multiple)
type: ExperimentType
version: integer (optional), see IMutable

ExperimentType

Used by: Experiment.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Experimenter

Used by: AffineTransform.details.owner, Annotation.details.owner, AnnotationAnnotationLink.details.owner,
Channel.details.owner, ChannelAnnotationLink.details.owner, ChannelBinding.details.owner, Codomain-
MapContext.details.owner, Dataset.details.owner, DatasetAnnotationLink.details.owner, DatasetIm-
ageLink.details.owner, Detector.details.owner, DetectorAnnotationLink.details.owner, DetectorSet-
tings.details.owner, Dichroic.details.owner, DichroicAnnotationLink.details.owner, Event.experimenter, Ex-
periment.details.owner, ExperimenterAnnotationLink.details.owner, ExperimenterAnnotationLink.parent, Ex-
perimenterGroupAnnotationLink.details.owner, ExternalInfo.details.owner, Fileset.details.owner, FilesetAn-
notationLink.details.owner, FilesetEntry.details.owner, FilesetJobLink.details.owner, Filter.details.owner,
FilterAnnotationLink.details.owner, FilterSet.details.owner, FilterSetEmissionFilterLink.details.owner, Fil-
terSetExcitationFilterLink.details.owner, Folder.details.owner, FolderAnnotationLink.details.owner, Folder-
ImageLink.details.owner, FolderRoiLink.details.owner, GroupExperimenterMap.child, Image.details.owner,
ImageAnnotationLink.details.owner, ImagingEnvironment.details.owner, Instrument.details.owner, Instrumen-
tAnnotationLink.details.owner, Job.details.owner, JobOriginalFileLink.details.owner, LightPath.details.owner,
LightPathAnnotationLink.details.owner, LightPathEmissionFilterLink.details.owner, LightPathExcitation-
FilterLink.details.owner, LightSettings.details.owner, LightSource.details.owner, LightSourceAnnotation-
Link.details.owner, Link.details.owner, LogicalChannel.details.owner, MicrobeamManipulation.details.owner,
Microscope.details.owner, NamespaceAnnotationLink.details.owner, NodeAnnotationLink.details.owner,
OTF.details.owner, Objective.details.owner, ObjectiveAnnotationLink.details.owner, ObjectiveSettings.details.owner,
OriginalFile.details.owner, OriginalFileAnnotationLink.details.owner, Pixels.details.owner, PixelsOriginal-
FileMap.details.owner, PlaneInfo.details.owner, PlaneInfoAnnotationLink.details.owner, Plate.details.owner,
PlateAcquisition.details.owner, PlateAcquisitionAnnotationLink.details.owner, PlateAnnotationLink.details.owner,
Project.details.owner, ProjectAnnotationLink.details.owner, ProjectDatasetLink.details.owner, Projection-
Def.details.owner, QuantumDef.details.owner, Reagent.details.owner, ReagentAnnotationLink.details.owner,
RenderingDef.details.owner, Roi.details.owner, RoiAnnotationLink.details.owner, Screen.details.owner, ScreenAn-
notationLink.details.owner, ScreenPlateLink.details.owner, Session.owner, Session.sudoer, SessionAnnota-

3.8. The OME Data Model 601

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

tionLink.details.owner, Shape.details.owner, ShapeAnnotationLink.details.owner, ShareMember.child, Stage-
Label.details.owner, StatsInfo.details.owner, Thumbnail.details.owner, TransmittanceRange.details.owner,
Well.details.owner, WellAnnotationLink.details.owner, WellReagentLink.details.owner, WellSample.details.owner

Properties:
annotationLinks: ExperimenterAnnotationLink (multiple)
config: list (multiple)
details.externalInfo: ExternalInfo (optional)
email: securestring (optional)
firstName: securestring
groupExperimenterMap: GroupExperimenterMap (multiple)
institution: securestring (optional)
lastName: securestring
ldap: boolean
middleName: securestring (optional)
omeName: securestring
version: integer (optional), see IMutable

ExperimenterAnnotationLink

Used by: Experimenter.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Experimenter, see ILink
version: integer (optional), see IMutable

ExperimenterGroup

Used by: AffineTransform.details.group, Annotation.details.group, AnnotationAnnotationLink.details.group,
Channel.details.group, ChannelAnnotationLink.details.group, ChannelBinding.details.group, CodomainMap-
Context.details.group, Dataset.details.group, DatasetAnnotationLink.details.group, DatasetImageLink.details.group,
Detector.details.group, DetectorAnnotationLink.details.group, DetectorSettings.details.group, Dichroic.details.group,
DichroicAnnotationLink.details.group, Event.experimenterGroup, Experiment.details.group, ExperimenterAnnota-
tionLink.details.group, ExperimenterGroupAnnotationLink.details.group, ExperimenterGroupAnnotationLink.parent,
ExternalInfo.details.group, Fileset.details.group, FilesetAnnotationLink.details.group, FilesetEntry.details.group,
FilesetJobLink.details.group, Filter.details.group, FilterAnnotationLink.details.group, FilterSet.details.group, Filter-
SetEmissionFilterLink.details.group, FilterSetExcitationFilterLink.details.group, Folder.details.group, FolderAnnota-
tionLink.details.group, FolderImageLink.details.group, FolderRoiLink.details.group, GroupExperimenterMap.parent,
Image.details.group, ImageAnnotationLink.details.group, ImagingEnvironment.details.group, Instru-
ment.details.group, InstrumentAnnotationLink.details.group, Job.details.group, JobOriginalFileLink.details.group,
LightPath.details.group, LightPathAnnotationLink.details.group, LightPathEmissionFilterLink.details.group,
LightPathExcitationFilterLink.details.group, LightSettings.details.group, LightSource.details.group, Light-
SourceAnnotationLink.details.group, Link.details.group, LogicalChannel.details.group, MicrobeamManip-

602 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

ulation.details.group, Microscope.details.group, NamespaceAnnotationLink.details.group, NodeAnnotation-
Link.details.group, OTF.details.group, Objective.details.group, ObjectiveAnnotationLink.details.group, ObjectiveSet-
tings.details.group, OriginalFile.details.group, OriginalFileAnnotationLink.details.group, Pixels.details.group, Pixel-
sOriginalFileMap.details.group, PlaneInfo.details.group, PlaneInfoAnnotationLink.details.group, Plate.details.group,
PlateAcquisition.details.group, PlateAcquisitionAnnotationLink.details.group, PlateAnnotationLink.details.group,
Project.details.group, ProjectAnnotationLink.details.group, ProjectDatasetLink.details.group, Projection-
Def.details.group, QuantumDef.details.group, Reagent.details.group, ReagentAnnotationLink.details.group, Ren-
deringDef.details.group, Roi.details.group, RoiAnnotationLink.details.group, Screen.details.group, ScreenAnnota-
tionLink.details.group, ScreenPlateLink.details.group, SessionAnnotationLink.details.group, Shape.details.group,
ShapeAnnotationLink.details.group, Share.group, StageLabel.details.group, StatsInfo.details.group, Thumb-
nail.details.group, TransmittanceRange.details.group, Well.details.group, WellAnnotationLink.details.group, Well-
ReagentLink.details.group, WellSample.details.group

Properties:
annotationLinks: ExperimenterGroupAnnotationLink (multiple)
config: list (multiple)
description: text (optional)
details.externalInfo: ExternalInfo (optional)
groupExperimenterMap: GroupExperimenterMap (multiple)
ldap: boolean
name: string
version: integer (optional), see IMutable

ExperimenterGroupAnnotationLink

Used by: ExperimenterGroup.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: ExperimenterGroup, see ILink
version: integer (optional), see IMutable

ExternalInfo

Used by: AcquisitionMode.details.externalInfo, AdminPrivilege.details.externalInfo, AffineTrans-
form.details.externalInfo, Annotation.details.externalInfo, AnnotationAnnotationLink.details.externalInfo,
ArcType.details.externalInfo, Binning.details.externalInfo, Channel.details.externalInfo, ChannelAnnotation-
Link.details.externalInfo, ChannelBinding.details.externalInfo, ChecksumAlgorithm.details.externalInfo, Codomain-
MapContext.details.externalInfo, ContrastMethod.details.externalInfo, Correction.details.externalInfo, DB-
Patch.details.externalInfo, Dataset.details.externalInfo, DatasetAnnotationLink.details.externalInfo, DatasetIm-
ageLink.details.externalInfo, Detector.details.externalInfo, DetectorAnnotationLink.details.externalInfo, Detec-
torSettings.details.externalInfo, DetectorType.details.externalInfo, Dichroic.details.externalInfo, DichroicAn-
notationLink.details.externalInfo, DimensionOrder.details.externalInfo, Event.details.externalInfo, Event-
Log.details.externalInfo, EventType.details.externalInfo, Experiment.details.externalInfo, Experiment-
Type.details.externalInfo, Experimenter.details.externalInfo, ExperimenterAnnotationLink.details.externalInfo,

3.8. The OME Data Model 603

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

ExperimenterGroup.details.externalInfo, ExperimenterGroupAnnotationLink.details.externalInfo, External-
Info.details.externalInfo, Family.details.externalInfo, FilamentType.details.externalInfo, Fileset.details.externalInfo,
FilesetAnnotationLink.details.externalInfo, FilesetEntry.details.externalInfo, FilesetJobLink.details.externalInfo,
Filter.details.externalInfo, FilterAnnotationLink.details.externalInfo, FilterSet.details.externalInfo, FilterSetEmission-
FilterLink.details.externalInfo, FilterSetExcitationFilterLink.details.externalInfo, FilterType.details.externalInfo,
Folder.details.externalInfo, FolderAnnotationLink.details.externalInfo, FolderImageLink.details.externalInfo,
FolderRoiLink.details.externalInfo, Format.details.externalInfo, GroupExperimenterMap.details.externalInfo,
Illumination.details.externalInfo, Image.details.externalInfo, ImageAnnotationLink.details.externalInfo, Imag-
ingEnvironment.details.externalInfo, Immersion.details.externalInfo, Instrument.details.externalInfo, Instru-
mentAnnotationLink.details.externalInfo, Job.details.externalInfo, JobOriginalFileLink.details.externalInfo,
JobStatus.details.externalInfo, LaserMedium.details.externalInfo, LaserType.details.externalInfo, Light-
Path.details.externalInfo, LightPathAnnotationLink.details.externalInfo, LightPathEmissionFilter-
Link.details.externalInfo, LightPathExcitationFilterLink.details.externalInfo, LightSettings.details.externalInfo, Light-
Source.details.externalInfo, LightSourceAnnotationLink.details.externalInfo, Link.details.externalInfo, LogicalChan-
nel.details.externalInfo, Medium.details.externalInfo, MicrobeamManipulation.details.externalInfo, Microbeam-
ManipulationType.details.externalInfo, Microscope.details.externalInfo, MicroscopeType.details.externalInfo,
Namespace.details.externalInfo, NamespaceAnnotationLink.details.externalInfo, Node.details.externalInfo, NodeAn-
notationLink.details.externalInfo, OTF.details.externalInfo, Objective.details.externalInfo, ObjectiveAnnotation-
Link.details.externalInfo, ObjectiveSettings.details.externalInfo, OriginalFile.details.externalInfo, OriginalFileAnno-
tationLink.details.externalInfo, PhotometricInterpretation.details.externalInfo, Pixels.details.externalInfo, PixelsO-
riginalFileMap.details.externalInfo, PixelsType.details.externalInfo, PlaneInfo.details.externalInfo, PlaneInfoAnno-
tationLink.details.externalInfo, Plate.details.externalInfo, PlateAcquisition.details.externalInfo, PlateAcquisitionAn-
notationLink.details.externalInfo, PlateAnnotationLink.details.externalInfo, Project.details.externalInfo, ProjectAn-
notationLink.details.externalInfo, ProjectDatasetLink.details.externalInfo, ProjectionAxis.details.externalInfo,
ProjectionDef.details.externalInfo, ProjectionType.details.externalInfo, Pulse.details.externalInfo, Quan-
tumDef.details.externalInfo, Reagent.details.externalInfo, ReagentAnnotationLink.details.externalInfo, Ren-
deringDef.details.externalInfo, RenderingModel.details.externalInfo, Roi.details.externalInfo, RoiAnnota-
tionLink.details.externalInfo, Screen.details.externalInfo, ScreenAnnotationLink.details.externalInfo, Screen-
PlateLink.details.externalInfo, Session.details.externalInfo, SessionAnnotationLink.details.externalInfo,
Shape.details.externalInfo, ShapeAnnotationLink.details.externalInfo, ShareMember.details.externalInfo,
StageLabel.details.externalInfo, StatsInfo.details.externalInfo, Thumbnail.details.externalInfo, Transmit-
tanceRange.details.externalInfo, Well.details.externalInfo, WellAnnotationLink.details.externalInfo, Well-
ReagentLink.details.externalInfo, WellSample.details.externalInfo

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
entityId: long
entityType: string
lsid: string (optional)
uuid: string (optional)

604 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Family

Used by: ChannelBinding.family

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Filament

Properties:
annotationLinks: LightSourceAnnotationLink (multiple) from LightSource
details.creationEvent: Event from LightSource
details.externalInfo: ExternalInfo (optional) from LightSource
details.group: ExperimenterGroup from LightSource
details.owner: Experimenter from LightSource
details.updateEvent: Event from LightSource
instrument: Instrument from LightSource
lotNumber: string (optional) from LightSource
manufacturer: string (optional) from LightSource
model: string (optional) from LightSource
power.unit: enumeration of Power (optional) from LightSource
power.value: double (optional) from LightSource
serialNumber: string (optional) from LightSource
type: FilamentType
version: integer (optional) from LightSource

FilamentType

Used by: Filament.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

FileAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
file: OriginalFile (optional)

3.8. The OME Data Model 605

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Power.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

Fileset

Used by: FilesetAnnotationLink.parent, FilesetEntry.fileset, FilesetJobLink.parent, Image.fileset

Properties:
annotationLinks: FilesetAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
images: Image (multiple)
jobLinks: FilesetJobLink (multiple)
templatePrefix: text
usedFiles: FilesetEntry (multiple)
version: integer (optional), see IMutable

FilesetAnnotationLink

Used by: Fileset.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Fileset, see ILink
version: integer (optional), see IMutable

FilesetEntry

Used by: Fileset.usedFiles, OriginalFile.filesetEntries

Properties:
clientPath: text
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
fileset: Fileset

606 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

originalFile: OriginalFile
version: integer (optional), see IMutable

FilesetJobLink

Used by: Fileset.jobLinks

Properties:
child: Job, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Fileset, see ILink
version: integer (optional), see IMutable

Filter

Used by: FilterAnnotationLink.parent, FilterSetEmissionFilterLink.child, FilterSetExcitationFilterLink.child, Instru-
ment.filter, LightPathEmissionFilterLink.child, LightPathExcitationFilterLink.child

Properties:
annotationLinks: FilterAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
emissionFilterLink: FilterSetEmissionFilterLink (multiple)
excitationFilterLink: FilterSetExcitationFilterLink (multiple)
filterWheel: string (optional)
instrument: Instrument
lotNumber: string (optional)
manufacturer: string (optional)
model: string (optional)
serialNumber: string (optional)
transmittanceRange: TransmittanceRange (optional)
type: FilterType (optional)
version: integer (optional), see IMutable

3.8. The OME Data Model 607

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

FilterAnnotationLink

Used by: Filter.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Filter, see ILink
version: integer (optional), see IMutable

FilterSet

Used by: FilterSetEmissionFilterLink.parent, FilterSetExcitationFilterLink.parent, Instrument.filterSet, LogicalChan-
nel.filterSet, OTF.filterSet

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
dichroic: Dichroic (optional)
emissionFilterLink: FilterSetEmissionFilterLink (multiple)
excitationFilterLink: FilterSetExcitationFilterLink (multiple)
instrument: Instrument
lotNumber: string (optional)
manufacturer: string (optional)
model: string (optional)
serialNumber: string (optional)
version: integer (optional), see IMutable

FilterSetEmissionFilterLink

Used by: Filter.emissionFilterLink, FilterSet.emissionFilterLink

Properties:
child: Filter, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: FilterSet, see ILink
version: integer (optional), see IMutable

608 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

FilterSetExcitationFilterLink

Used by: Filter.excitationFilterLink, FilterSet.excitationFilterLink

Properties:
child: Filter, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: FilterSet, see ILink
version: integer (optional), see IMutable

FilterType

Used by: Filter.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Folder

Used by: Folder.childFolders, Folder.parentFolder, FolderAnnotationLink.parent, FolderImageLink.parent, Folder-
RoiLink.parent

Properties:
annotationLinks: FolderAnnotationLink (multiple)
childFolders: Folder (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
imageLinks: FolderImageLink (multiple)
name: text
parentFolder: Folder (optional)
roiLinks: FolderRoiLink (multiple)
version: integer (optional), see IMutable

3.8. The OME Data Model 609

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

FolderAnnotationLink

Used by: Folder.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Folder, see ILink
version: integer (optional), see IMutable

FolderImageLink

Used by: Folder.imageLinks, Image.folderLinks

Properties:
child: Image, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Folder, see ILink
version: integer (optional), see IMutable

FolderRoiLink

Used by: Folder.roiLinks, Roi.folderLinks

Properties:
child: Roi, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Folder, see ILink
version: integer (optional), see IMutable

610 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

Format

Used by: Image.format

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

GenericExcitationSource

Properties:
annotationLinks: LightSourceAnnotationLink (multiple) from LightSource
details.creationEvent: Event from LightSource
details.externalInfo: ExternalInfo (optional) from LightSource
details.group: ExperimenterGroup from LightSource
details.owner: Experimenter from LightSource
details.updateEvent: Event from LightSource
instrument: Instrument from LightSource
lotNumber: string (optional) from LightSource
manufacturer: string (optional) from LightSource
map: list (multiple)
model: string (optional) from LightSource
power.unit: enumeration of Power (optional) from LightSource
power.value: double (optional) from LightSource
serialNumber: string (optional) from LightSource
version: integer (optional) from LightSource

GroupExperimenterMap

Used by: Experimenter.groupExperimenterMap, ExperimenterGroup.groupExperimenterMap

Properties:
child: Experimenter, see ILink
details.externalInfo: ExternalInfo (optional)
owner: boolean
parent: ExperimenterGroup, see ILink
version: integer (optional), see IMutable

3.8. The OME Data Model 611

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Power.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

Illumination

Used by: LogicalChannel.illumination

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Image

Used by: DatasetImageLink.child, Fileset.images, FolderImageLink.child, ImageAnnotationLink.parent, Pixels.image,
Roi.image, WellSample.image

Properties:
acquisitionDate: timestamp (optional)
annotationLinks: ImageAnnotationLink (multiple)
archived: boolean (optional)
datasetLinks: DatasetImageLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
experiment: Experiment (optional)
fileset: Fileset (optional)
folderLinks: FolderImageLink (multiple)
format: Format (optional)
imagingEnvironment: ImagingEnvironment (optional)
instrument: Instrument (optional)
name: text
objectiveSettings: ObjectiveSettings (optional)
partial: boolean (optional)
pixels: Pixels (multiple)
rois: Roi (multiple)
series: integer (optional)
stageLabel: StageLabel (optional)
version: integer (optional), see IMutable
wellSamples: WellSample (multiple)

612 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

ImageAnnotationLink

Used by: Image.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Image, see ILink
version: integer (optional), see IMutable

ImagingEnvironment

Used by: Image.imagingEnvironment

Properties:
airPressure.unit: enumeration of Pressure (optional)
airPressure.value: double (optional)
co2percent: double (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
humidity: double (optional)
map: list (multiple)
temperature.unit: enumeration of Temperature (optional)
temperature.value: double (optional)
version: integer (optional), see IMutable

Immersion

Used by: Objective.immersion

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

3.8. The OME Data Model 613

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Pressure.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Temperature.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

ImportJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
imageDescription: text
imageName: text
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job

Warning: This model object is deprecated.

IndexingJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job

614 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Instrument

Used by: Detector.instrument, Dichroic.instrument, Filter.instrument, FilterSet.instrument, Image.instrument, Instru-
mentAnnotationLink.parent, LightSource.instrument, OTF.instrument, Objective.instrument

Properties:
annotationLinks: InstrumentAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
detector: Detector (multiple)
dichroic: Dichroic (multiple)
filter: Filter (multiple)
filterSet: FilterSet (multiple)
lightSource: LightSource (multiple)
microscope: Microscope (optional)
objective: Objective (multiple)
otf: OTF (multiple)
version: integer (optional), see IMutable

InstrumentAnnotationLink

Used by: Instrument.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Instrument, see ILink
version: integer (optional), see IMutable

IntegrityCheckJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job

3.8. The OME Data Model 615

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job

Job

Subclasses: ImportJob, IndexingJob, IntegrityCheckJob, MetadataImportJob, ParseJob, PixelDataJob, ScriptJob,
ThumbnailGenerationJob, UploadJob

Used by: FilesetJobLink.child, JobOriginalFileLink.parent

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
finished: timestamp (optional)
groupname: string
message: string
originalFileLinks: JobOriginalFileLink (multiple)
scheduledFor: timestamp
started: timestamp (optional)
status: JobStatus
submitted: timestamp
type: string
username: string
version: integer (optional), see IMutable

JobOriginalFileLink

Used by: Job.originalFileLinks

Properties:
child: OriginalFile, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Job, see ILink
version: integer (optional), see IMutable

616 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

JobStatus

Used by: Job.status

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Label

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
locked: boolean (optional) from Shape
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape
x: double (optional)
y: double (optional)

3.8. The OME Data Model 617

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

Laser

Properties:
annotationLinks: LightSourceAnnotationLink (multiple) from LightSource
details.creationEvent: Event from LightSource
details.externalInfo: ExternalInfo (optional) from LightSource
details.group: ExperimenterGroup from LightSource
details.owner: Experimenter from LightSource
details.updateEvent: Event from LightSource
frequencyMultiplication: integer (optional)
instrument: Instrument from LightSource
laserMedium: LaserMedium
lotNumber: string (optional) from LightSource
manufacturer: string (optional) from LightSource
model: string (optional) from LightSource
pockelCell: boolean (optional)
power.unit: enumeration of Power (optional) from LightSource
power.value: double (optional) from LightSource
pulse: Pulse (optional)
pump: LightSource (optional)
repetitionRate.unit: enumeration of Frequency (optional)
repetitionRate.value: double (optional)
serialNumber: string (optional) from LightSource
tuneable: boolean (optional)
type: LaserType
version: integer (optional) from LightSource
wavelength.unit: enumeration of Length (optional)
wavelength.value: double (optional)

LaserMedium

Used by: Laser.laserMedium

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

LaserType

Used by: Laser.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

618 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Power.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Frequency.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

LightEmittingDiode

Properties:
annotationLinks: LightSourceAnnotationLink (multiple) from LightSource
details.creationEvent: Event from LightSource
details.externalInfo: ExternalInfo (optional) from LightSource
details.group: ExperimenterGroup from LightSource
details.owner: Experimenter from LightSource
details.updateEvent: Event from LightSource
instrument: Instrument from LightSource
lotNumber: string (optional) from LightSource
manufacturer: string (optional) from LightSource
model: string (optional) from LightSource
power.unit: enumeration of Power (optional) from LightSource
power.value: double (optional) from LightSource
serialNumber: string (optional) from LightSource
version: integer (optional) from LightSource

LightPath

Used by: LightPathAnnotationLink.parent, LightPathEmissionFilterLink.parent, LightPathExcitationFilter-
Link.parent, LogicalChannel.lightPath

Properties:
annotationLinks: LightPathAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
dichroic: Dichroic (optional)
emissionFilterLink: LightPathEmissionFilterLink (multiple)
excitationFilterLink: LightPathExcitationFilterLink (multiple)
version: integer (optional), see IMutable

LightPathAnnotationLink

Used by: LightPath.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: LightPath, see ILink

3.8. The OME Data Model 619

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Power.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html

OMERO, Release 5.6.5-SNAPSHOT-1

version: integer (optional), see IMutable

LightPathEmissionFilterLink

Used by: LightPath.emissionFilterLink

Properties:
child: Filter, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: LightPath, see ILink
version: integer (optional), see IMutable

LightPathExcitationFilterLink

Used by: LightPath.excitationFilterLink

Properties:
child: Filter, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: LightPath, see ILink
version: integer (optional), see IMutable

LightSettings

Used by: LogicalChannel.lightSourceSettings, MicrobeamManipulation.lightSourceSettings

Properties:
attenuation: double (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
lightSource: LightSource
microbeamManipulation: MicrobeamManipulation (optional)
version: integer (optional), see IMutable
wavelength.unit: enumeration of Length (optional)
wavelength.value: double (optional)

620 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

LightSource

Subclasses: Arc, Filament, GenericExcitationSource, Laser, LightEmittingDiode

Used by: Instrument.lightSource, Laser.pump, LightSettings.lightSource, LightSourceAnnotationLink.parent

Properties:
annotationLinks: LightSourceAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
instrument: Instrument
lotNumber: string (optional)
manufacturer: string (optional)
model: string (optional)
power.unit: enumeration of Power (optional)
power.value: double (optional)
serialNumber: string (optional)
version: integer (optional), see IMutable

LightSourceAnnotationLink

Used by: LightSource.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: LightSource, see ILink
version: integer (optional), see IMutable

Line

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape

3.8. The OME Data Model 621

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Power.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
locked: boolean (optional) from Shape
markerEnd: string (optional)
markerStart: string (optional)
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape
x1: double (optional)
x2: double (optional)
y1: double (optional)
y2: double (optional)

Link

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
version: integer (optional), see IMutable

ListAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

622 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

LogicalChannel

Used by: Channel.logicalChannel

Properties:
channels: Channel (multiple)
contrastMethod: ContrastMethod (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
detectorSettings: DetectorSettings (optional)
emissionWave.unit: enumeration of Length (optional)
emissionWave.value: double (optional)
excitationWave.unit: enumeration of Length (optional)
excitationWave.value: double (optional)
filterSet: FilterSet (optional)
fluor: string (optional)
illumination: Illumination (optional)
lightPath: LightPath (optional)
lightSourceSettings: LightSettings (optional)
mode: AcquisitionMode (optional)
name: text (optional)
ndFilter: double (optional)
otf: OTF (optional)
photometricInterpretation: PhotometricInterpretation (optional)
pinHoleSize.unit: enumeration of Length (optional)
pinHoleSize.value: double (optional)
pockelCellSetting: integer (optional)
samplesPerPixel: integer (optional)
version: integer (optional), see IMutable

LongAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
longValue: long (optional)
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

3.8. The OME Data Model 623

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

MapAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
mapValue: list (multiple)
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

Mask

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
bytes: binary (optional)
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
height: double (optional)
locked: boolean (optional) from Shape
pixels: Pixels (optional)
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape
width: double (optional)

624 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

x: double (optional)
y: double (optional)

Medium

Used by: ObjectiveSettings.medium

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

MetadataImportJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job
versionInfo: list (multiple)

MicrobeamManipulation

Used by: Experiment.microbeamManipulation, LightSettings.microbeamManipulation

Properties:
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
experiment: Experiment
lightSourceSettings: LightSettings (multiple)
type: MicrobeamManipulationType

3.8. The OME Data Model 625

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

version: integer (optional), see IMutable

MicrobeamManipulationType

Used by: MicrobeamManipulation.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Microscope

Used by: Instrument.microscope

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
lotNumber: string (optional)
manufacturer: string (optional)
model: string (optional)
serialNumber: string (optional)
type: MicroscopeType
version: integer (optional), see IMutable

MicroscopeType

Used by: Microscope.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Namespace

Used by: NamespaceAnnotationLink.parent

Properties:
annotationLinks: NamespaceAnnotationLink (multiple)
description: text (optional)
details.externalInfo: ExternalInfo (optional)
display: boolean (optional)
displayName: text (optional)
keywords: list (optional)
multivalued: boolean (optional)

626 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

name: text
version: integer (optional), see IMutable

NamespaceAnnotationLink

Used by: Namespace.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Namespace, see ILink
version: integer (optional), see IMutable

Node

Used by: NodeAnnotationLink.parent, Session.node

Properties:
annotationLinks: NodeAnnotationLink (multiple)
conn: securestring
details.externalInfo: ExternalInfo (optional)
down: timestamp (optional)
scale: integer (optional)
sessions: Session (multiple)
up: timestamp
uuid: securestring
version: integer (optional), see IMutable

NodeAnnotationLink

Used by: Node.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Node, see ILink
version: integer (optional), see IMutable

3.8. The OME Data Model 627

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

NumericAnnotation

Subclasses: DoubleAnnotation, LongAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

OTF

Used by: Instrument.otf , LogicalChannel.otf

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
filterSet: FilterSet (optional)
instrument: Instrument
objective: Objective
opticalAxisAveraged: boolean
path: string
pixelsType: PixelsType
sizeX: integer
sizeY: integer
version: integer (optional), see IMutable

Objective

Used by: Instrument.objective, OTF.objective, ObjectiveAnnotationLink.parent, ObjectiveSettings.objective

Properties:
annotationLinks: ObjectiveAnnotationLink (multiple)
calibratedMagnification: double (optional)
correction: Correction
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup

628 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

details.owner: Experimenter
details.updateEvent: Event
immersion: Immersion
instrument: Instrument
iris: boolean (optional)
lensNA: double (optional)
lotNumber: string (optional)
manufacturer: string (optional)
model: string (optional)
nominalMagnification: double (optional)
serialNumber: string (optional)
version: integer (optional), see IMutable
workingDistance.unit: enumeration of Length (optional)
workingDistance.value: double (optional)

ObjectiveAnnotationLink

Used by: Objective.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Objective, see ILink
version: integer (optional), see IMutable

ObjectiveSettings

Used by: Image.objectiveSettings

Properties:
correctionCollar: double (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
medium: Medium (optional)
objective: Objective
refractiveIndex: double (optional)
version: integer (optional), see IMutable

3.8. The OME Data Model 629

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

OriginalFile

Used by: FileAnnotation.file, FilesetEntry.originalFile, JobOriginalFileLink.child, OriginalFileAnnotation-
Link.parent, PixelsOriginalFileMap.parent, Roi.source

Properties:
annotationLinks: OriginalFileAnnotationLink (multiple)
atime: timestamp (optional)
ctime: timestamp (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
filesetEntries: FilesetEntry (multiple)
hash: text (optional)
hasher: ChecksumAlgorithm (optional)
mimetype: string (optional)
mtime: timestamp (optional)
name: text
path: text
pixelsFileMaps: PixelsOriginalFileMap (multiple)
repo: string (optional)
size: long (optional)
version: integer (optional), see IMutable

OriginalFileAnnotationLink

Used by: OriginalFile.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: OriginalFile, see ILink
version: integer (optional), see IMutable

630 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

ParseJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
params: binary (optional)
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job

Path

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
d: text (optional)
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
locked: boolean (optional) from Shape
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape

3.8. The OME Data Model 631

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape

Warning: This model object is deprecated.

PhotometricInterpretation

Used by: LogicalChannel.photometricInterpretation

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

PixelDataJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job

Pixels

Used by: Channel.pixels, Image.pixels, Mask.pixels, Pixels.relatedTo, PixelsOriginalFileMap.child, PlaneInfo.pixels,
RenderingDef.pixels, Thumbnail.pixels

Properties:
channels: Channel (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event

632 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

dimensionOrder: DimensionOrder
image: Image
methodology: string (optional)
physicalSizeX.unit: enumeration of Length (optional)
physicalSizeX.value: double (optional)
physicalSizeY.unit: enumeration of Length (optional)
physicalSizeY.value: double (optional)
physicalSizeZ.unit: enumeration of Length (optional)
physicalSizeZ.value: double (optional)
pixelsFileMaps: PixelsOriginalFileMap (multiple)
pixelsType: PixelsType
planeInfo: PlaneInfo (multiple)
relatedTo: Pixels (optional) (deprecated)
settings: RenderingDef (multiple)
sha1: string
significantBits: integer (optional)
sizeC: integer
sizeT: integer
sizeX: integer
sizeY: integer
sizeZ: integer
thumbnails: Thumbnail (multiple)
timeIncrement.unit: enumeration of Time (optional)
timeIncrement.value: double (optional)
version: integer (optional), see IMutable
waveIncrement: integer (optional)
waveStart: integer (optional)

Warning: This model object has a deprecated property.

PixelsOriginalFileMap

Used by: OriginalFile.pixelsFileMaps, Pixels.pixelsFileMaps

Properties:
child: Pixels, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: OriginalFile, see ILink
version: integer (optional), see IMutable

3.8. The OME Data Model 633

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Time.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

PixelsType

Used by: OTF.pixelsType, Pixels.pixelsType

Properties:
bitSize: integer (optional)
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

PlaneInfo

Used by: Pixels.planeInfo, PlaneInfoAnnotationLink.parent

Properties:
annotationLinks: PlaneInfoAnnotationLink (multiple)
deltaT.unit: enumeration of Time (optional)
deltaT.value: double (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
exposureTime.unit: enumeration of Time (optional)
exposureTime.value: double (optional)
pixels: Pixels
positionX.unit: enumeration of Length (optional)
positionX.value: double (optional)
positionY.unit: enumeration of Length (optional)
positionY.value: double (optional)
positionZ.unit: enumeration of Length (optional)
positionZ.value: double (optional)
theC: integer
theT: integer
theZ: integer
version: integer (optional), see IMutable

PlaneInfoAnnotationLink

Used by: PlaneInfo.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event

634 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Time.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Time.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html

OMERO, Release 5.6.5-SNAPSHOT-1

parent: PlaneInfo, see ILink
version: integer (optional), see IMutable

PlaneSlicingContext

Properties:
channelBinding: ChannelBinding from CodomainMapContext
constant: boolean
details.creationEvent: Event from CodomainMapContext
details.externalInfo: ExternalInfo (optional) from CodomainMapContext
details.group: ExperimenterGroup from CodomainMapContext
details.owner: Experimenter from CodomainMapContext
details.updateEvent: Event from CodomainMapContext
lowerLimit: integer
planePrevious: integer
planeSelected: integer
upperLimit: integer
version: integer (optional) from CodomainMapContext

Plate

Used by: PlateAcquisition.plate, PlateAnnotationLink.parent, ScreenPlateLink.child, Well.plate

Properties:
annotationLinks: PlateAnnotationLink (multiple)
columnNamingConvention: string (optional)
columns: integer (optional)
defaultSample: integer (optional)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
externalIdentifier: string (optional)
name: text
plateAcquisitions: PlateAcquisition (multiple)
rowNamingConvention: string (optional)
rows: integer (optional)
screenLinks: ScreenPlateLink (multiple)
status: text (optional)
version: integer (optional), see IMutable
wellOriginX.unit: enumeration of Length (optional)
wellOriginX.value: double (optional)
wellOriginY.unit: enumeration of Length (optional)
wellOriginY.value: double (optional)

3.8. The OME Data Model 635

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

wells: Well (multiple)

PlateAcquisition

Used by: Plate.plateAcquisitions, PlateAcquisitionAnnotationLink.parent, WellSample.plateAcquisition

Properties:
annotationLinks: PlateAcquisitionAnnotationLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
endTime: timestamp (optional)
maximumFieldCount: integer (optional)
name: text (optional)
plate: Plate
startTime: timestamp (optional)
version: integer (optional), see IMutable
wellSample: WellSample (multiple)

PlateAcquisitionAnnotationLink

Used by: PlateAcquisition.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: PlateAcquisition, see ILink
version: integer (optional), see IMutable

PlateAnnotationLink

Used by: Plate.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event

636 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html

OMERO, Release 5.6.5-SNAPSHOT-1

parent: Plate, see ILink
version: integer (optional), see IMutable

Point

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
locked: boolean (optional) from Shape
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape
x: double (optional)
y: double (optional)

Polygon

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape

3.8. The OME Data Model 637

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
locked: boolean (optional) from Shape
points: text (optional)
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape

Polyline

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
locked: boolean (optional) from Shape
markerEnd: string (optional)
markerStart: string (optional)
points: text (optional)
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape

638 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

Project

Used by: ProjectAnnotationLink.parent, ProjectDatasetLink.parent

Properties:
annotationLinks: ProjectAnnotationLink (multiple)
datasetLinks: ProjectDatasetLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
name: text
version: integer (optional), see IMutable

ProjectAnnotationLink

Used by: Project.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Project, see ILink
version: integer (optional), see IMutable

ProjectDatasetLink

Used by: Dataset.projectLinks, Project.datasetLinks

Properties:
child: Dataset, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Project, see ILink
version: integer (optional), see IMutable

3.8. The OME Data Model 639

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

ProjectionAxis

Used by: ProjectionDef.axis

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

ProjectionDef

Used by: RenderingDef.projections

Properties:
active: boolean
axis: ProjectionAxis
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
endPlane: integer (optional)
renderingDef: RenderingDef
startPlane: integer (optional)
stepping: integer (optional)
type: ProjectionType
version: integer (optional), see IMutable

ProjectionType

Used by: ProjectionDef.type

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

Pulse

Used by: Laser.pulse

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

640 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html

OMERO, Release 5.6.5-SNAPSHOT-1

QuantumDef

Used by: RenderingDef.quantization

Properties:
bitResolution: integer
cdEnd: integer
cdStart: integer
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
version: integer (optional), see IMutable

Reagent

Used by: ReagentAnnotationLink.parent, Screen.reagents, WellReagentLink.child

Properties:
annotationLinks: ReagentAnnotationLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
name: text (optional)
reagentIdentifier: string (optional)
screen: Screen
version: integer (optional), see IMutable
wellLinks: WellReagentLink (multiple)

ReagentAnnotationLink

Used by: Reagent.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Reagent, see ILink
version: integer (optional), see IMutable

3.8. The OME Data Model 641

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

Rectangle

Properties:
annotationLinks: ShapeAnnotationLink (multiple) from Shape
details.creationEvent: Event from Shape
details.externalInfo: ExternalInfo (optional) from Shape
details.group: ExperimenterGroup from Shape
details.owner: Experimenter from Shape
details.updateEvent: Event from Shape
fillColor: integer (optional) from Shape
fillRule: string (optional) from Shape
fontFamily: string (optional) from Shape
fontSize.unit: enumeration of Length (optional) from Shape
fontSize.value: double (optional) from Shape
fontStyle: string (optional) from Shape
height: double (optional)
locked: boolean (optional) from Shape
roi: Roi from Shape
strokeColor: integer (optional) from Shape
strokeDashArray: string (optional) from Shape
strokeWidth.unit: enumeration of Length (optional) from Shape
strokeWidth.value: double (optional) from Shape
textValue: text (optional)
theC: integer (optional) from Shape
theT: integer (optional) from Shape
theZ: integer (optional) from Shape
transform: AffineTransform (optional) from Shape
version: integer (optional) from Shape
width: double (optional)
x: double (optional)
y: double (optional)

RenderingDef

Used by: ChannelBinding.renderingDef , Pixels.settings, ProjectionDef.renderingDef

Properties:
compression: double (optional)
defaultT: integer
defaultZ: integer
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
model: RenderingModel
name: text (optional)

642 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html

OMERO, Release 5.6.5-SNAPSHOT-1

pixels: Pixels
projections: ProjectionDef (multiple)
quantization: QuantumDef
version: integer (optional), see IMutable
waveRendering: ChannelBinding (multiple)

RenderingModel

Used by: RenderingDef.model

Properties:
details.externalInfo: ExternalInfo (optional)
value: string, see IEnum

ReverseIntensityContext

Properties:
channelBinding: ChannelBinding from CodomainMapContext
details.creationEvent: Event from CodomainMapContext
details.externalInfo: ExternalInfo (optional) from CodomainMapContext
details.group: ExperimenterGroup from CodomainMapContext
details.owner: Experimenter from CodomainMapContext
details.updateEvent: Event from CodomainMapContext
reverse: boolean
version: integer (optional) from CodomainMapContext

Roi

Used by: FolderRoiLink.child, Image.rois, RoiAnnotationLink.parent, Shape.roi

Properties:
annotationLinks: RoiAnnotationLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
folderLinks: FolderRoiLink (multiple)
image: Image (optional)
name: text (optional)
shapes: Shape (multiple)
source: OriginalFile (optional)
version: integer (optional), see IMutable

3.8. The OME Data Model 643

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IEnum.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

RoiAnnotationLink

Used by: Roi.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Roi, see ILink
version: integer (optional), see IMutable

Screen

Used by: Reagent.screen, ScreenAnnotationLink.parent, ScreenPlateLink.parent

Properties:
annotationLinks: ScreenAnnotationLink (multiple)
description: text (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
name: text
plateLinks: ScreenPlateLink (multiple)
protocolDescription: text (optional)
protocolIdentifier: string (optional)
reagentSetDescription: text (optional)
reagentSetIdentifier: string (optional)
reagents: Reagent (multiple)
type: string (optional)
version: integer (optional), see IMutable

ScreenAnnotationLink

Used by: Screen.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event

644 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html

OMERO, Release 5.6.5-SNAPSHOT-1

parent: Screen, see ILink
version: integer (optional), see IMutable

ScreenPlateLink

Used by: Plate.screenLinks, Screen.plateLinks

Properties:
child: Plate, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Screen, see ILink
version: integer (optional), see IMutable

ScriptJob

Properties:
description: string (optional)
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job

3.8. The OME Data Model 645

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

Session

Subclasses: Share

Used by: Event.session, Node.sessions, SessionAnnotationLink.parent

Properties:
annotationLinks: SessionAnnotationLink (multiple)
closed: timestamp (optional)
defaultEventType: string
details.externalInfo: ExternalInfo (optional)
events: Event (multiple)
message: text (optional)
node: Node
owner: Experimenter
started: timestamp
sudoer: Experimenter (optional)
timeToIdle: long
timeToLive: long
userAgent: string (optional)
uuid: securestring
version: integer (optional), see IMutable

SessionAnnotationLink

Used by: Session.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Session, see ILink
version: integer (optional), see IMutable

Shape

Subclasses: Ellipse, Label, Line, Mask, Path, Point, Polygon, Polyline, Rectangle

Used by: Roi.shapes, ShapeAnnotationLink.parent

Properties:
annotationLinks: ShapeAnnotationLink (multiple)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter

646 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

details.updateEvent: Event
fillColor: integer (optional)
fillRule: string (optional)
fontFamily: string (optional)
fontSize.unit: enumeration of Length (optional)
fontSize.value: double (optional)
fontStyle: string (optional)
locked: boolean (optional)
roi: Roi
strokeColor: integer (optional)
strokeDashArray: string (optional)
strokeWidth.unit: enumeration of Length (optional)
strokeWidth.value: double (optional)
theC: integer (optional)
theT: integer (optional)
theZ: integer (optional)
transform: AffineTransform (optional)
version: integer (optional), see IMutable

ShapeAnnotationLink

Used by: Shape.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Shape, see ILink
version: integer (optional), see IMutable

Share

Used by: ShareMember.parent

Properties:
active: boolean
annotationLinks: SessionAnnotationLink (multiple) from Session
closed: timestamp (optional) from Session
data: binary
defaultEventType: string from Session
details.externalInfo: ExternalInfo (optional) from Session
events: Event (multiple) from Session
group: ExperimenterGroup
itemCount: long

3.8. The OME Data Model 647

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

message: text (optional) from Session
node: Node from Session
owner: Experimenter from Session
started: timestamp from Session
sudoer: Experimenter (optional) from Session
timeToIdle: long from Session
timeToLive: long from Session
userAgent: string (optional) from Session
uuid: securestring from Session
version: integer (optional) from Session

ShareMember

Properties:
child: Experimenter, see ILink
details.externalInfo: ExternalInfo (optional)
parent: Share, see ILink
version: integer (optional), see IMutable

StageLabel

Used by: Image.stageLabel

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
name: text
positionX.unit: enumeration of Length (optional)
positionX.value: double (optional)
positionY.unit: enumeration of Length (optional)
positionY.value: double (optional)
positionZ.unit: enumeration of Length (optional)
positionZ.value: double (optional)
version: integer (optional), see IMutable

648 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

StatsInfo

Used by: Channel.statsInfo

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
globalMax: double
globalMin: double
version: integer (optional), see IMutable

TagAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
textValue: text (optional) from TextAnnotation
version: integer (optional) from Annotation

TermAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
termValue: text (optional)
version: integer (optional) from Annotation

3.8. The OME Data Model 649

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

TextAnnotation

Subclasses: CommentAnnotation, TagAnnotation, XmlAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
textValue: text (optional)
version: integer (optional) from Annotation

Thumbnail

Used by: Pixels.thumbnails

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
mimeType: string
pixels: Pixels
ref: string (optional)
sizeX: integer
sizeY: integer
version: integer (optional), see IMutable

ThumbnailGenerationJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job

650 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job

TimestampAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
timeValue: timestamp (optional)
version: integer (optional) from Annotation

TransmittanceRange

Used by: Filter.transmittanceRange

Properties:
cutIn.unit: enumeration of Length (optional)
cutIn.value: double (optional)
cutInTolerance.unit: enumeration of Length (optional)
cutInTolerance.value: double (optional)
cutOut.unit: enumeration of Length (optional)
cutOut.value: double (optional)
cutOutTolerance.unit: enumeration of Length (optional)
cutOutTolerance.value: double (optional)
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
transmittance: double (optional)
version: integer (optional), see IMutable

3.8. The OME Data Model 651

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

TypeAnnotation

Subclasses: FileAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
version: integer (optional) from Annotation

UploadJob

Properties:
details.creationEvent: Event from Job
details.externalInfo: ExternalInfo (optional) from Job
details.group: ExperimenterGroup from Job
details.owner: Experimenter from Job
details.updateEvent: Event from Job
finished: timestamp (optional) from Job
groupname: string from Job
message: string from Job
originalFileLinks: JobOriginalFileLink (multiple) from Job
scheduledFor: timestamp from Job
started: timestamp (optional) from Job
status: JobStatus from Job
submitted: timestamp from Job
type: string from Job
username: string from Job
version: integer (optional) from Job
versionInfo: list (multiple)

Well

Used by: Plate.wells, WellAnnotationLink.parent, WellReagentLink.parent, WellSample.well

Properties:
alpha: integer (optional)
annotationLinks: WellAnnotationLink (multiple)
blue: integer (optional)
column: integer (optional)
details.creationEvent: Event

652 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
externalDescription: text (optional)
externalIdentifier: string (optional)
green: integer (optional)
plate: Plate
reagentLinks: WellReagentLink (multiple)
red: integer (optional)
row: integer (optional)
status: string (optional)
type: string (optional)
version: integer (optional), see IMutable
wellSamples: WellSample (multiple)

WellAnnotationLink

Used by: Well.annotationLinks

Properties:
child: Annotation, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Well, see ILink
version: integer (optional), see IMutable

WellReagentLink

Used by: Reagent.wellLinks, Well.reagentLinks

Properties:
child: Reagent, see ILink
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
parent: Well, see ILink
version: integer (optional), see IMutable

3.8. The OME Data Model 653

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/ILink.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html

OMERO, Release 5.6.5-SNAPSHOT-1

WellSample

Used by: Image.wellSamples, PlateAcquisition.wellSample, Well.wellSamples

Properties:
details.creationEvent: Event
details.externalInfo: ExternalInfo (optional)
details.group: ExperimenterGroup
details.owner: Experimenter
details.updateEvent: Event
image: Image
plateAcquisition: PlateAcquisition (optional)
posX.unit: enumeration of Length (optional)
posX.value: double (optional)
posY.unit: enumeration of Length (optional)
posY.value: double (optional)
timepoint: timestamp (optional)
version: integer (optional), see IMutable
well: Well

XmlAnnotation

Properties:
annotationLinks: AnnotationAnnotationLink (multiple) from Annotation
description: text (optional) from Annotation
details.creationEvent: Event from Annotation
details.externalInfo: ExternalInfo (optional) from Annotation
details.group: ExperimenterGroup from Annotation
details.owner: Experimenter from Annotation
details.updateEvent: Event from Annotation
name: text (optional) from Annotation
ns: text (optional) from Annotation
textValue: text (optional) from TextAnnotation
version: integer (optional) from Annotation

3.8.4 Units

A number of properties in the OME model are physical measurements which inherently have a unit associated with
them. Earlier versions of OME defined a default unit for the measurement. Now users, clients, and acquisition systems
can specify the unit themselves rather than converting their internal unit to the OME default.

See also:
Data Model documentation for units

654 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/units/Length.html
https://docs.openmicroscopy.org/omero-model/5.6.5/javadoc/ome/model/IMutable.html
https://docs.openmicroscopy.org/latest/ome-model/developers/ome-units.html

OMERO, Release 5.6.5-SNAPSHOT-1

Supported units

• Electric potential

• Frequency

• Length

• Power

• Pressure

• Temperature

• Time

Each of the supported units contain a number of values from the International System of Units (SI) in the most common
prefixes from yotta (10^24) to yocto (10^-24). The Length unit also contains values from the Imperial system as well
as internal values which are internal to OME: reference frame and pixel.

Unit fields

The following fields in the OMERO model have a unit type:

Class Field Type Default value
Channel EmissionWavelength Length nm
Channel ExcitationWavelength Length nm
Channel PinholeSize Length µm
Detector Voltage ElectricPotential V
DetectorSettings ReadOutRate Frequency MHz
DetectorSettings Voltage ElectricPotential V
ImagingEnvironment AirPressure Pressure mbar
ImagingEnvironment Temperature Temperature °C
Laser RepetitionRate Frequency Hz
Laser Wavelength Length nm
LightSource Power Power mW
LightSourceSettings Wavelength Length nm
Objective WorkingDistance Length µm
Pixels PhysicalSizeX Length µm
Pixels PhysicalSizeY Length µm
Pixels PhysicalSizeZ Length µm
Pixels TimeIncrement Time s
Plane DeltaT Time s
Plane ExposureTime Time s
Plane PositionX Length reference frame
Plane PositionY Length reference frame
Plane PositionZ Length reference frame
Plate WellOriginX Length reference frame
Plate WellOriginY Length reference frame
Shape FontSize Length pt
Shape StrokeWidth Length pixel
StageLabel X Length reference frame
StageLabel Y Length reference frame
StageLabel Z Length reference frame

continues on next page

3.8. The OME Data Model 655

https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/model/ElectricPotentialI.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/model/FrequencyI.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/model/LengthI.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/model/PowerI.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/model/PressureI.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/model/TemperatureI.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/model/TimeI.html

OMERO, Release 5.6.5-SNAPSHOT-1

Table 1 – continued from previous page
Class Field Type Default value
TransmittanceRange CutIn Length nm
TransmittanceRange CutInTolerance Length nm
TransmittanceRange CutOut Length nm
TransmittanceRange CutOutTolerance Length nm
WellSample PositionX Length reference frame
WellSample PositionY Length reference frame

Units of type reference frame cannot be assumed comparable to units from other properties including those with type
reference frame.

Unit objects

Each unit quantity consists of a double-precision scalar and an enumeration which chooses one of the pre-defined values
from the model. In code, uppercase spellings of the enumerations are used, while in the schema, in OME-XML files,
and in the database, the Unicode symbol for the unit is used.

Language Representation
Ice enum UnitsLength { MICROM, . . . };
Java and Python omero.model.enums.UnitsLength.MICROM
C++ omero::model::enums::MICROM
PostgreSQL ‘µm’::unitslength

Defining a unit

Pixels p = ...; // Defined elsewhere
Length l = new LengthI(2.1, UnitsLength.MICROM); // µm
p.setPhysicalSizeX(l);
p.setPhysicalSizeY(l);
iUpdatePrx.saveObject(p);

The above stores a Pixels object in the database with X and Y physical lengths of “µm”.

Converting a unit

Often a measurement will not be in the most convenient unit for display, e.g. 0.00001 mm. could better be expressed in
microns. In order to convert between units, pass the measurement that you have available to a constructor of the same
type, passing in the target unit that you would like to see:

Pixels p = ...; // As saved above
Length l1 = p.getPhysicalSizeX(); // 2.1 microns
Length l2 = new LengthI(x1, UnitsLength.NM); // As nanometers

656 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Getting a symbol

The enumerations used in the “units” field of each measurement is of type omero.model.enums.UnitsNAME where
NAME is Length, Temperature, etc. These members of that enumeration are all uppercased, code-safe versions of the
unit name. To get the symbol as defined in the SI specification, for example, use the getSymbol method:

Length l1 = ...; // As above
l1.getSymbol(); // Returns "µm"

Querying units

In HQL queries, the scalar and the enumeration value can be separately retrieved.

select planeInfo.exposureTime.value from PlaneInfo planeInfo ...

will retrieve just the double scalar value while

select planeInfo.exposureTime.unit from PlaneInfo planeInfo ...

will retrieve a string representation of the enum which can be used in each language to create an enum object, e.g.:

UnitsTime.valueOf(unit); // Java
getattr(UnitsTime, unit) # Python

To load the symbolic representation of the enum which is used internally in the database and is more concise, use an
HQL cast:

select cast(planeInfo.exposureTime.unit as text) from PlaneInfo planeInfo ...

Returning the entire unit quantity will result in a hash map with the various representations:

select planeInfo.exposureTime from PlaneInfo planeInfo ...
{'symbol': 's', 'unit': 'SECOND', 'value': 1.2000000476837158}

See also:
• https://en.wikipedia.org/wiki/Units_of_measurement

• https://en.wikipedia.org/wiki/System_of_measurement

• https://en.wikipedia.org/wiki/International_System_of_Units

3.8.5 Map annotations

Ongoing advancements in microscopic techniques, analysis systems, and other areas for which OME attempts to provide
metadata exchange require a certain flexibility in the OME model. There is a need to store instrument configuration,
script parameters, and similar for later use.

Basic text representations are too difficult to parse to be of significant use. An XML format can be more easily parsed,
but a single format would have to be agreed upon by all users. Therefore, it is useful to add particular extension points
to the model for which no consensus on a data format has been reached, but where more structure than just text is
needed.

A hash map was the most likely candidate for this data; however, rather than limit this to traditional associative arrays,
OME maps are defined as a “ordered list of key-value pairs”. The benefit of this representation is that configuration

3.8. The OME Data Model 657

https://en.wikipedia.org/wiki/Units_of_measurement
https://en.wikipedia.org/wiki/System_of_measurement
https://en.wikipedia.org/wiki/International_System_of_Units

OMERO, Release 5.6.5-SNAPSHOT-1

files which are standard for Java java.util.Properties objects can be represented fully in a single map. Duplicates
are maintained since there is no unique constraint on the list of pairs.

In most cases, the interpretation of the ordered list will be such that the final value for a particular key “wins” as if each
value were placed into a hash map in order, with duplicate values replacing previous ones.

OME-XML

In the OME-XML model, these maps are represented in a compact format. Any map field is defined by the MapPairs
complex type which consists of M elements of the form:

<M K="key">value</M>

OMERO languages

In OMERO, a slightly more verbose representation of these objects is used. Each map type consists of a list or vector
in the respective language, composed of NamedValue objects and possibly nulls.

// OMERO.java
ImagingEnvironment environment = new ImagingEnvironmentI();
environment.setMap(new List<NamedValue>());
environment.getMap().add(new NamedValue("altitude", "1000m"));
image.setImagingEnvironment(environment);

Fields

The concrete fields which are present in the model are currently:

• ExperimenterGroup.config

• GenericExcitationSource.map

• ImagingEnvironment.map

• ImportJob.versionInfo

More will be added as demand increases.

MapAnnotations

In addition to the fields above, there is also a structured annotation which contains a key-valued pair, the
MapAnnotation.

// OMERO.cpp
MapAnnotation ann = new MapAnnotationI();
ann->getMapValue().push_back(new NamedValueI("run", "5.0"));
ann->getMapValue().push_back(new NamedValueI("run", "4.9"));
ann->getMapValue().push_back(new NamedValueI("run", "5.1"));

This permits the flexible attachment of key-value pairs to any of the OME types which are annotatable. Such annotations
attached to key UI elements like images and datasets will be presented by the clients, and can be edited with the
appropriate permissions. See Managing Data on OMERO User Help for more information. See examples of creating
MapAnnotations in Java and Python pages.

658 Chapter 3. Developer Documentation

https://help.openmicroscopy.org/managing-data.html#keyvalue
https://help.openmicroscopy.org/

OMERO, Release 5.6.5-SNAPSHOT-1

Storage and queries

Each map-based field in the OMERO model is represented by an extra table of the form $className_$fieldName. For
example, MapAnnotation.mapValue becomes annotation.mapValue, where the loss of “map” from the class name is
due to the subclassing of Annotation by MapAnnotation.

In general, use of the specific tables is not necessary and it suffices to write HQL queries based on the classes and field
names themselves.

Find the value for a key

select nv.value from MapAnnotation ann
join ann.mapValue as nv

where nv.name = 'altitude'

Finding objects with a key

select ann from MapAnnotation ann
join ann.mapValue as nv

where nv.name = 'altitude'

Finding objects without a key

select ann from MapAnnotation ann
where not exists(
from MapAnnotation m2
join m2.mapValue as nv2
where nv2.name like 'size%')

Finding objects with multiple values

select ann from MapAnnotation ann
join ann.mapValue as nv1
join ann.mapValue as nv2

where nv1.name = 'date'
and nv2.name = 'owner'

3.8. The OME Data Model 659

OMERO, Release 5.6.5-SNAPSHOT-1

3.8.6 Available transformations

Available transforms Direction Status
2003-FC-to-2007-06.xsl upgrade excellent
2003-FC-to-2008-09.xsl upgrade excellent
2007-06-to-2008-02.xsl upgrade excellent
2007-06-to-2008-09.xsl upgrade excellent
2008-02-to-2008-09.xsl upgrade excellent
2008-09-to-2009-09.xsl upgrade excellent
2009-09-to-2010-04.xsl upgrade excellent
2010-04-to-2010-06.xsl upgrade excellent
2010-06-to-2011-06.xsl upgrade excellent
2011-06-to-2012-06.xsl upgrade excellent
2012-06-to-2013-06.xsl upgrade excellent
2013-06-to-2015-01.xsl upgrade excellent
2010-06-to-2003-FC.xsl downgrade poor (very lossy)
2010-06-to-2008-02.xsl downgrade fair (lossy)
2011-06-to-2010-06.xsl downgrade good
2012-06-to-2011-06.xsl downgrade good
2013-06-to-2012-06.xsl downgrade good
2015-01-to-2013-06.xsl downgrade good

Quality of transformations

 Targets
Source /2003-FC/ /2007-06/ /2008-02/ /2008-09/ /2009-09/ /2010-04/ /2010-06/ /2011-06/ /2012-06/ /2013-06/ /2015-01/
/2003-FC/ — excellent excellent excellent excellent excellent excellent excellent excellent excellent excellent
/2007-06/ poor — excellent excellent excellent excellent excellent excellent excellent excellent excellent
/2008-02/ poor poor — excellent excellent excellent excellent excellent excellent excellent excellent
/2008-09/ poor poor poor — excellent excellent excellent excellent excellent excellent excellent
/2009-09/ poor poor poor poor — excellent excellent excellent excellent excellent excellent
/2010-04/ poor poor poor fair fair — excellent excellent excellent excellent excellent
/2010-06/ poor poor fair fair fair fair — excellent excellent excellent excellent
/2011-06/ poor poor fair fair fair fair good — excellent excellent excellent
/2012-06/ poor poor fair fair fair fair good good — excellent excellent
/2013-06/ poor poor fair fair fair fair good good good — excellent
/2015-01/ poor poor fair fair fair fair good good good good —

U
pg

ra
de

s

Downgrades

Key to quality

• poor (very lossy) - the bare minimum of metadata is preserved to allow image display, all other metadata is lost

• fair (lossy) - a portion of the metadata is preserved, at least enough to display the image and some other data, it
will be far from complete however

• good - most information is preserved, it may be possible to do a better job but could be difficult for technical
reasons or require custom code not just a transform

• excellent - as much information as possible is preserved, some values can still be lost if there are completely
incompatible with the new schema

660 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Matrix of transformation paths

This shows the sequence of transformations used to convert one version of the schema to another version.

Targets

Source /2003-FC/ /2003-FC/-
TIFF

/2007-06/ /2007-06/ V2 /2008-02/ /2008-02/ V2 /2008-09/ /2009-09/ /2010-04/ /2010-06/ /2011-06/ /2012-06/ /2013-06/ /2015-01/

/2003-FC/ — code xslt: very lossy xslt: very lossy via: /2007-06/
very lossy

via: /2007-06/
very lossy

xslt: good via: /2008-09/
good

via: /2008-09/
& /2009-09/

good

via: /2008-09/
& /2009-09/ & /
2010-04/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /

2011-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/ & /

2012-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/ & /
2012-06/& /

2013-06/ good

/2003-FC/-TIFF code — xslt: very lossy xslt: very lossy via: /2007-06/
very lossy

via: /2007-06/
very lossy

xslt: good via: /2008-09/
good

via: /2008-09/
& /2009-09/

good

via: /2008-09/
& /2009-09/ & /
2010-04/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /

2011-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /

2012-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /
2012-06/& /

2013-06/ good

/2007-06/ via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ very

lossy

— — xslt: very lossy xslt: very lossy xslt: good via: /2008-09/
good

via: /2008-09/
& /2009-09/

good

via: /2008-09/
& /2009-09/ & /
2010-04/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /

2011-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /

2012-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /
2012-06/& /

2013-06/ good

/2007-06/ V2 via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

— — xslt: very lossy xslt: very lossy xslt: good via: /2008-09/
good

via: /2008-09/
& /2009-09/

good

via: /2008-09/
& /2009-09/ & /
2010-04/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /

2011-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /

2012-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /
2012-06/& /

2013-06/ good

/2008-02/ via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: /2003-FC/
& /2008-09/ & /

2009-09/ & /
2010-04/ & /
2010-06/very

lossy

via: /2003-FC/
& /2008-09/ & /

2009-09/ & /
2010-04/ & /
2010-06/very

lossy

— — xslt: good via: /2008-09/
good

via: /2008-09/
& /2009-09/

good

via: /2008-09/
& /2009-09/ & /
2010-04/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /

2011-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /

2012-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /
2012-06/& /

2013-06/ good

/2008-02/ V2 via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: 2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: /2003-FC/
& /2008-09/ & /

2009-09/ & /
2010-04/ & /
2010-06/very

lossy

via: /2003-FC/
& /2008-09/ & /

2009-09/ & /
2010-04/ & /
2010-06/very

lossy

— — xslt: good via: /2008-09/
good

via: /2008-09/
& /2009-09/

good

via: /2008-09/
& /2009-09/ & /
2010-04/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /

2011-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /

2012-06/ good

via: /2008-09/
& /2009-09/ & /

2010-04/ & /
2010-06/ & /
2011-06/& /
2012-06/& /

2013-06/ good

/2008-09/ via: /2009-09/
& /2010-04/ & /

2010-06/very
lossy

via: /2009-09/
& /2010-04/ & /

2010-06/very
lossy

via: /2003-FC/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: /2003-FC/
& /2009-09/ & /

2010-04/ & /
2010-06/very

lossy

via: /2009-09/
& /2010-04/ & /
2010-06/ lossy

via: /2009-09/
& /2010-04/ & /
2010-06/ lossy

— xslt: good via: /2009-09/
good

via: /2009-09/
& /2010-04

good

via: /2009-09/
& /2010-04 & /
2010-06/good

via: /2009-09/
& /2010-04 & /
2010-06/ & /

2011-06/ good

via: /2009-09/
& /2010-04 & /
2010-06/ & /
2011-06/& /

2012-06/ good

via: /2009-09/
& /2010-04 & /
2010-06/ & /
2011-06/& /
2012-06/& /

2013-06/ good

/2009-09/ via: /2010-04/
& /2010-06/

very lossy

via: /2010-04/
& /2010-06/

very lossy

via: /2003-FC/
& /2010-04/ & /

2010-06/very
lossy

via: /2003-FC/
& /2010-04/ & /

2010-06/very
lossy

via: /2010-04/
& /2010-06/

lossy

via: /2010-04/
& /2010-06/

lossy

via: /2010-04/
& /2010/06/ & /
2008-02/ lossy

— xslt: good via: /2010-04/
good

via: /2010-04/
& /2010-06/

good

via: /2010-04/
& /2010-06/ & /
2011-06/ good

via: /2010-04/
& /2010-06/ & /

2011-06/& /
2012-06/ good

via: /2010-04/
& /2010-06/ & /

2011-06/& /
2012-06/& /

2013-06/ good

/2010-04/ via: /2010-06/
very lossy

via: /2010-06/
very lossy

via: /2003-FC/
& /2010-06/

very lossy

via: /2003-FC/
& /2010-06/

very lossy

via: /2010-06/
lossy

via: /2010-06/
lossy

via: /2010/06/
& /2008-02/

lossy

via: /2010/06/
& /2008-02/ & /
2008-09/ lossy

— xslt: good via: /2010-06/
good

via: /2010-06/
& /2011-06/

good

via: /2010-06/
& /2011-06/& /
2012-06/ good

via: /2010-06/
& /2011-06/& /

2012-06/& /
2013-06/ good

/2010-06/ xslt: very lossy xslt: very lossy via: /2003-FC/
very lossy

via: /2003-FC/
very lossy

xslt: lossy xslt: lossy via: /2008-02/
lossy

via: /2008-02/
& /2008-09/

lossy

via: /2008-02/
& /2008-09/ & /
2009-09/ lossy

— xslt: good via: /2011-06
good

via: /2011-06/
& /2012-06/

good

via: /2011-06/
& /2012-06/& /
2013-06/ good

/2011-06/ via: /2010-06/
very lossy

via: /2010-06/
very lossy

via: /2010-06/
& /2003-FC/

very lossy

via: /2010-06/
& /2003-FC/

very lossy

via: /2010-06/
lossy

via: /2010-06/
lossy

via: /2010-06/
& /2008-02/

lossy

via: /2010-06/
& /2008-02/ & /
2008-09/ lossy

via: /2010-06/
& /2008-02/ & /

2008-09/ & /
2009-09/ lossy

xslt: good — xslt: good via: /2012-06/
good

via: /2012-06/
& /2013-06/

good

/2012-06/ via: /2011-06/
& /2010-06/

very lossy

via: /2011-06/
& /2010-06/

very lossy

via: /2011-06/
& /2010-06/ & /
2003-FC/ very

lossy

via: /2011-06/
& /2010-06/ & /
2003-FC/ very

lossy

via: /2011-06/
& /2010-06/

lossy

via: /2011-06/
& /2010-06/

lossy

via: /2011-06/
& /2010-06/ & /
2008-02/ lossy

via: /2011-06/
& /2010-06/ & /

2008-02/ & /
2008-09/ lossy

via: /2011-06/
& /2010-06/ & /

2008-02/ & /
2008-09/ & /

2009-09/ lossy

via: /2011-06
good

xslt: good — xslt: good via: /2013-06/
good

/2013-06/ via: /2012-06/
& /2011-06/ & /
2010-06/ very

lossy

via: /2012-06/
& /2011-06/ & /
2010-06/ very

lossy

via: /2012-06/
& /2011-06/ & /

2010-06/ & /
2003-FC/ very

lossy

via: /2012-06/
& /2011-06/ & /

2010-06/ & /
2003-FC/ very

lossy

via: /2012-06/
& /2011-06/ & /
2010-06/ lossy

via: /2012-06/
& /2011-06/ & /
2010-06/ lossy

via: /2012-06/
& /2011-06/ & /

2010-06/ & /
2008-02/ lossy

via: /2012-06/
& /2011-06/ & /

2010-06/ & /
2008-02/ & /

2008-09/ lossy

via: /2012-06/
& /2011-06/ & /

2010-06/ & /
2008-02/ & /
2008-09/ & /

2009-09/ lossy

via: /2012-06/
& /2011-06

good

via: /2012-06/
good

xslt: good — xslt: good

/2015-01/ via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ very

lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ very

lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ & /
2003-FC/ very

lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ & /
2003-FC/ very

lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ & /

2008-02/ lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ & /
2008-02/ & /

2008-09/ lossy

via: /2013-06/
& /2012-06/ & /

2011-06/ & /
2010-06/ & /
2008-02/ & /
2008-09/ & /

2009-09/ lossy

via: /2013-06/
& /2012-06/ & /
2011-06 good -

units lost

via: /2013-06/
& /2012-06/

good - units lost

via: /2013-06/
good - units lost

xslt: good -
units lost

—

3.8.7 Folders in the OMERO model

OMERO offers both Projects that contain only Datasets and Datasets that contain only Images. Images may thus be
organized within a two-level container hierarchy.

Reflecting the June 2016 release of the OME Data Model, OMERO 5.3’s object model adds a new kind of container, the
Folder. In many respects they are rather like Datasets: for example, Folders have a description, they may be annotated
and they may contain Images. However, they are different from Datasets in important respects.

Folders may contain:

• Images

• Regions of Interest (ROIs)

• other Folders

3.8. The OME Data Model 661

https://docs.openmicroscopy.org/latest/ome-model/schemas/june-2016.html
https://docs.openmicroscopy.org/latest/ome-model/developers/model-overview.html

OMERO, Release 5.6.5-SNAPSHOT-1

or a heterogeneous mix of the above.

For organizing data one may use Folder hierarchies of arbitrary depth. Just as an Image may be in multiple Datasets at
once, the same Folder may be in multiple Folders at once. However, there is an acyclicity constraint: a Folder may not
contain itself, even indirectly.

The OMERO graphical clients offer very limited support for Folders. At present Folders may be most useful for those
working with their data via the OMERO Application Programming Interface and its gateways or with the OMERO.cli
obj plugin. The measurement tool in OMERO.insight shows the Folders that ROIs are in. OMERO.web is yet to provide
support for Folders.

3.9 Searching

3.9.1 OMERO search

OMERO.server uses Lucene to index all string and timestamp information in the database, as well as all OriginalFile
which can be parsed to simple text (see File parsers for more information). The index is stored under /OMERO/
FullText or the FullText subdirectory of your omero.data.dir, and can be searched with Google-like queries.

Once an entity is indexed, it is possible to start writing querying against the server via IQuery.
findAllByFullText(). Use new Parameters(new Filter().owner()) and .group() to restrict your search.
Or alternatively use the ome.api.Search interface (below).

See also:
Search and indexing configuration Section of the sysadmin documentation describing the configuration of the search

and indexing for the server.

Field names

Each row in the database becomes a single Lucene Document parsed into the several Fields. A field is referenced by
prefixing a search term with the field name followed by a colon. For example, name:myImage searches for myImage
anywhere in the name field.

Field Comments
Any unprefixed field searches the combination of all fields together i.e. a search for cell
AND name:myImage gets translated to combined_fields:cell AND name:myImage.

<field name> Each string, timestamp, or Details field of the entity also gets its own Field entry, like the
name field above

de-
tails.owner.omeName

Login name of the owner of the object

de-
tails.owner.firstName

First name of the owner of the object

de-
tails.owner.lastName

Last name of the owner of the object

details.group.name Group name of the owning group of the object
de-
tails.creationEvent.id

Id of the Event of this objects creation

de-
tails.creationEvent.time

When that Event took place

de-
tails.updateEvent.id

Id of the Event of this objects last modification

continues on next page

662 Chapter 3. Developer Documentation

https://help.openmicroscopy.org/measurement-tool.html
https://lucene.apache.org

OMERO, Release 5.6.5-SNAPSHOT-1

Table 2 – continued from previous page
Field Comments
de-
tails.updateEvent.time

When that Event took place

details.permissions Permissions in the form rwrwrw or rw-
tag Contents from a TagAnnotation.
annotation Contents from annotations, including TagAnnotation and any TextAnnotation

on another TextAnnotation (a.k.a. a description). Non-string annotations like
FileAnnotation are not covered by this definition and are handled separately. See be-
low.

annotation.ns Namespace (if present) for any annotations on an object
annotation.type Short type name, e.g. TextAnnotation or FileAnnotation for any annotations on an

object
channel.name Name of the Channel object
channel.fluor Fluor value of the Channel object (e.g. “Alex Fluor 488” or “DAPI”)
channel.mode Mode of the Channel object (e.g. “BrightField” or “SPIM”)
chan-
nel.photometricInterpretation

Name of the Channel object (e.g. “RGB” or “Monochrome”)

file.name For FileAnnotation and objects they are attached to, the name of the OriginalFile
file.format For FileAnnotation and objects they are attached to, the format of the OriginalFile
file.path For FileAnnotation and objects they are attached to, the path of the OriginalFile
file.sha1 For FileAnnotation and objects they are attached to, the sha1 of the OriginalFile
file.contents For FileAnnotation and objects they are attached to as well as the OriginalFile itself,

the file contents themselves if their Format is configured with the File parsers.
fileset.entry.name Name of an imported file.
file-
set.entry.clientPath

Original, client-side path of an imported file.

file-
set.templatePrefix

Location of the import in the managed repository.

${NAME} For MapAnnotation and objects they are attached to, dynamic fields are gener-
ated for each of the NamedValue entries in the annotation. For example, if
NamedValue('temperature', '37') is one such value, a field named temperature
will exist.

has_key As ${NAME}, but a single field of name has_key is generated for each NamedValue entry
with a value of the key such that a search for has_key:temperature in the example above
is possible.

Internal
combined_fields The default field prefix.
_hibernate_class Used by Hibernate Search to record the entity type. The class value, e.g.

ome.model.core.Image is also entered in combined_fields. Unimportant for the casual users.
id The primary key of the entity. Unimportant for the casual user

Queries

Search queries are very similar to Google searches. When search terms are entered without a prefix (“name:”), then the
default field will be used which combines all available fields. Otherwise, a prefix can be added to restrict the search.
The search term is first split into “tokens” and these are combined into a search query. The tokenizing happens on all
non-alpha-numerical characters, such as space, underscore, hyphen etc. The query is built by combining the tokens
with an “OR” operator (see examples in the “Indexing” paragraph). The search terms or the tokens created from them
as above must precisely match the indexed entries. This means for example that a search term tes will not match the
indexed entry test and the search will accordingly give no result.

3.9. Searching 663

OMERO, Release 5.6.5-SNAPSHOT-1

Indexing

Successful searching depends on understanding how the text is indexed. The default analyzer used is the FullTextAn-
alyzer.

1. Desktop/image_GFP-H2B_1.dv ---> "desktop", "image", "gfp", "h2b", "1", "dv"
2. Desktop/image_GFP-H2B_2.dv ---> "desktop", "image", "gfp", "h2b", "2", "dv
3. Desktop/image_GFP_01-H2B.dv ---> "desktop", "image", "gfp", "01", "h2b", "dv"
4. Desktop/image_GFP-CSFV_a.dv ---> "desktop", "image", "gfp", "csfv", "a", "dv"

Assuming these entries above for Image.name:

• searching for GFP-H2B returns 1, 2, 3 and 4, because of the tokenizing on the hyphen and joining of the tokens
by an OR.

• searching for “GFP H2B” or “GFP-H2B” only returns 1 and 2, since the quotes enforce the exact sequence of
the tokens and the query is built with an AND.

• searching for GFP H2B returns 1, 2, 3 and 4, since the two tokens are joined by an OR.

With the same entries as above and adding a wildcard:

• searching for *FP returns 1, 2, 3 and 4. As this example shows, leading wildcards in the Graphical User
Interface are allowed, but must be explicitly enabled when using the API directly, see below in the developers
section.

• searching for GF* returns 1, 2, 3 and 4.

• searching for GFP-* returns no results, but GFP.* returns 1, 2, 3 and 4. Only hyphen and underscore do not
return results in this situation, the other non-alpha-numerical characters do.

Wildcards and quotations:

Wildcard inside quotations is not parsed as a wilcard, but as a non-alpha-numerical character on which the tokenizing
happens.

• searching for “*FP-H2B” returns no results, since it is the same as searching for “FP-H2B”.

• searching for “GF*” returns no results, since it is the same as searching for “GF”.

• searching for “GFP-*” returns 1, 2, 3 and 4, since it is the same as searching for “GFP-”.

• searching for “GFP*H2B” returns 1 and 2, since it is the same as searching for “GFP H2B”.

Information for developers

ome.api.IQuery

The current IQuery implementation restricts searches to a single class at a time.

• findAllByFullText(Image.class, "metaphase") – Images which contain or are annotated with
“metaphase”

• findAllByFullText(Image.class, "annotation:metaphase") – Images which are annotated with
“metaphase”

• findAllByFullText(Image.class, "tag:metaphase") – Images which are tagged with “metaphase”
(specialization of the previous)

• findAllByFullText(Image.class, "file.contents:metaphase") – Images which have files attached
containing “metaphase”

664 Chapter 3. Developer Documentation

https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/fulltext/FullTextAnalyzer.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/fulltext/FullTextAnalyzer.java

OMERO, Release 5.6.5-SNAPSHOT-1

• findAllByFullText(OriginalFile.class, "file.contents:metaphase") – File containing
“metaphase”

ome.api.Search

The Search API offers a number of different queries along with various filters and settings which are all maintained on
the server.

The matrix below show which combinations of parameters and queries are supported (S), will throw an exception (X),
and which will simply silently be ignored (I).

Query Method –> byGroupForT-
ags/byTagsForGroup

byFull-
Text/SomeMustNone

byAnnotated-
With

Parameters
annotated between S S S
annotated by S S S
annotated by S I I
created between S I I
modified between S I (Immutable) S
owned by S S S
all types X I X
1 type S I S
N types X I X
only ids S I S
Ordering / Fetches
orderBy S I S
fetchAnnotations 1 I 2

Other
setProjections3 X X X
current*Metdata4 X X X

Leading wildcard searches

Leading wildcard searches are disallowed by default. “?omething” or “*hatever”, for example, would both throw
exceptions. They can be run by using:

Search search = serviceFactory.createSearchService();
search.setAllowLeadingWildcards(true);

There is a performance penalty, however. In addition, wildcard searches get expanded on the server to boolean queries.
For example, assuming “ACELL”, “BCELL”, and “CCELL” are all terms in your index, then the query:

*CELL

gets expanded to:

1 Any fetchAnnotation() argument to byFullText() or related queries, returns all annotations.
2 byAnnotatedWith() does not accept a fetchAnnotation() argument of Annotation.class.
3 setProjects may need to be removed if Lucene cannot handle OMERO’s security requirements.
4 Not yet implemented.

3.9. Searching 665

OMERO, Release 5.6.5-SNAPSHOT-1

ACELL OR BCELL OR CCELL

If there are too many terms in the expansion then an exception will be thrown. This requires the user to enter a more
refined search, but not because there are too many results, only because there is not enough room in memory to search
on all terms at once.

Extension points

Two extension points are currently available for searching. The first are the File parsers mentioned above. By configur-
ing the map of Formats (roughly mime-types) of files to parser instances, extracting information from attached binary
files can be made quick and straightforward.

Similarly, Search bridges provide a mechanism for parsing all metadata entering the system. One built in bridge (the
FullTextBridge) parses out the fields mentioned above, but by creating your own bridge it is possible to extract more
information specific to your site.

See also:
Working with annotations, Search bridges, File parsers, Query Parser Syntax,

Luke a Java application which you can download and point at your /OMERO/FullText directory to get a better feeling
for Lucene queries.

3.9.2 File parsers

File parsers extract text from various file types and provide it as a Reader to the FullTextBridge for use during
search indexing. Plain text formats can use the default fileParser bean, but any specialized format, such as PDF or
RTF requires special libraries and special registration.

Configuration

Currently, configuration takes places solely in service-ome.api.Search.xml. Eventually, it should be able to replace file
parsers at configuration or even runtime.

Available parsers

File type Parser
application/pdf https://pdfbox.apache.org
text/xml (internal)
text/plain (internal)
text/csv (internal)

The base class for File parsers are FileParser.java

See also:
OMERO search

666 Chapter 3. Developer Documentation

https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/fulltext/FullTextBridge.java
https://lucene.apache.org/core/3_6_0/queryparsersyntax.html
https://code.google.com/archive/p/luke/
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/service-ome.api.Search.xml
https://pdfbox.apache.org
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/fulltext/FileParser.java

OMERO, Release 5.6.5-SNAPSHOT-1

3.9.3 Search bridges

Warning: All search bridge classes have been deprecated in 5.3.0. This extension has never been widely used and
is now out of date, causing a bottleneck in performance and preventing the upgrade of Hibernate. A new modern
search functionality is under development.

A “bridge” is the mapping between your metadata and how it is stored in the ` Lucene <https://lucene.apache.org>`_
index. OMERO search uses one internal bridge to parse all of your metadata for later searching. If, however, there is
more metadata that you would like to add to the index, you can implement the org.hibernate.search.bridge.
FieldBridge interface yourself, or subclass the helper class src/main/java/ome/services/fulltext/BridgeHelper.java

Example

Assume you wanted to be able to search for a project based on the name of all images contained in that project. In the
set method,

public void set(final String name, final Object value,
final Document document, final Field.Store store,
final Field.Index index, final Float boost) {

you would need to add a field to the Document for each Image.

Project p = (Project) value;
List<Image> images = getImages(p);
for (Image image : images) {

add(document, "image_name", image.getName(), store, index, boost);

}

Configuration

Custom bridges are configured in Search but can be overridden via the standard configuration mechanisms. The
omero.search.bridges property defines a comma-separated list of bridge classes which will be passed to
src/main/java/ome/services/fulltext/FullTextBridge.java.

See Java deployment for how to have your bridge classes included on the server’s classpath if it doesn’t get built by the
Build System.

Available bridges

See src/main/java/ome/services/fulltext/bridges for a list of provided (example) bridges.

3.9. Searching 667

https://lucene.apache.org
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/fulltext/BridgeHelper.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/fulltext/FullTextBridge.java
https://github.com/ome/omero-server/tree/v5.6.3/src/main/java/ome/services/fulltext/bridges

OMERO, Release 5.6.5-SNAPSHOT-1

Re-indexing

BridgeHelper provides two methods – reindex(IObject) and reindexAll(List<IObject>) – for keeping the
indexes for objects in sync.

For example, if the image.name above were to be changed, the index for the Projectwould be stale until the Project
itself were re-indexed. Custom bridges can call reindex(Project) while indexing the image to have the Project re-
indexed from the backlog. Before any new changes are processed, the backlog is always first cleared. One caveat:
while processing the backlog, no new objects can be added to it.

For bridge writers, this means concretely that implementations should check for all related types and index them in
groups, rather than relying on transitivity. For example,

if (value instanceof Project) {
final Project p = (Project) value;
handleProject(p, document, store, index, boost);

for (final ProjectDatasetLink pdl : p.unmodifiableDatasetLinks()) {
final Dataset d = pdl.child();
reindex.add(d);
handleDataset(d, document, store, index, boost);

for (final DatasetImageLink dil : d.unmodifiableImageLinks()) {
final Image i = dil.child();
reindex.add(i);
handleImage(document, store, index, two_step_boost, i);

}
}

} else if (value instanceof Dataset) {
final Dataset d = (Dataset) value;
handleDataset(d, document, store, index, boost);

for (final ProjectDatasetLink pdl : d.unmodifiableProjectLinks()) {
final Project p = pdl.parent();
reindex.add(p);
handleProject(p, document, store, index, two_step_boost);

}

for (final DatasetImageLink dil : d.unmodifiableImageLinks()) {
final Image i = dil.child();
reindex.add(i);
handleImage(document, store, index, two_step_boost, i);

}

} else if (value instanceof Image) {

final Image i = (Image) value;
handleImage(document, store, index, two_step_boost, i);

for (final DatasetImageLink dil : i.unmodifiableDatasetLinks()) {
final Dataset d = dil.parent();
reindex.add(d);
handleDataset(d, document, store, index, boost);

(continues on next page)

668 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

for (final ProjectDatasetLink pdl : d
.unmodifiableProjectLinks()) {

final Project p = pdl.parent();
reindex.add(p);
handleProject(p, document, store, index, boost);

}
}

}

//
// Handle re-indexing
//
if (reindex.size() > 0) {

reindexAll(reindex);
}

}

In which case, regardless of whether an Image, Dataset, or Project is indexed, all related objects are simultaneously
added to the backlog, which will be processed in the next cycle, but their indexing will not add any new values to the
backlog.

See #955 and #1102

See also:
OMERO search

3.10 Authentication and Security

3.10.1 Password Provider

A Password Provider is an implementation of the Java interface ome.security.auth.PasswordProvider. Several imple-
mentations exist currently:

• ome.security.auth.JdbcPasswordProvider is the most common provider, and uses the “password” table for storing
passwords hashed using MD5 and salt per user.

• ome.security.auth.FilePasswordProvider is rarely used, but in some scenarios may be useful since it permits
setting usernames and passwords in a plain text file.

• ome.security.auth.LdapPasswordProvider is a highly configurable provider which provides READ-ONLY access
to an LDAP server and can create users and groups on the fly. See LDAP plugin design for more information.

The “chainedPasswordProvider” (ome.security.auth.PasswordProviders) is configured for use by default in Security
under omero.security.password_provider. It first checks with the LdapPasswordProvider and then falls back
to the JdbcPasswordProvider.

To write your own provider, you can either subclass from ome.security.auth.ConfigurablePasswordProvider as the
providers above do, or write your own implementation from scratch. You will need to define your object in a Spring
XML file matching the pattern ome/services/db-*.xml. See Extending OMERO.server more for information.

3.10. Authentication and Security 669

https://trac.openmicroscopy.org/ome/ticket/955
https://trac.openmicroscopy.org/ome/ticket/1102
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/PasswordProvider.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/JdbcPasswordProvider.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/FilePasswordProvider.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/LdapPasswordProvider.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/PasswordProviders.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/ConfigurablePasswordProvider.java

OMERO, Release 5.6.5-SNAPSHOT-1

Things to keep in mind

• All the existing implementations take care to publish a LoginAttemptMessage so that any LoginAttemptListener
implementation can properly react to failed logins. Your implementation should probably do the same.

• When dealing with chains of password providers, an implementation can safely return null from checkPassword
to say “I don’t know anything about this”. This is only important if you configure your own chained password
provider with your new implementation as one of the elements.

3.10.2 LoginAttemptListener

All the Password Provider implementations provided by default publish a “LoginAttemptMessage”
every time they check a password value. This permits any org.springframework.context.
ApplicationListener<LoginAttemptMessage> to react to the login. Only one implementation is active by
default (as of 4.2.1): ome.security.auth.LoginAttemptListener which throttles logins after a given number of failed
attempts. Configuration for this listener is available in Security:

omero.security.login_failure_throttle_count=1 # Number of failed attempts before␣
→˓throttling begins
omero.security.login_failure_throttle_time=3000 # Time in milliseconds

A more sophisticated listener would lock the user’s account until an administrator intervenes. This is the goal of #3139.

3.10.3 LDAP plugin design

Once configured, LDAP authentication allows sysadmins to control OMERO’s user and group creation via an external,
locally-maintained LDAP server. Due to the flexibility of LDAP, each instance may have a number of requirements
that cannot be supported out of the box. Below, we discuss the design of the LDAP plugin as well as how it can be
extended for local use.

Simple walkthrough

The LDAP plugin follows these steps:

1. Sysadmin configures properties mapping users and groups from LDAP to OMERO.

2. Once LDAP is enabled, any OMERO user who has a value of true in the ldap column of the experimenter
table will have their password checked against LDAP and not against OMERO (changing the password via
OMERO is not supported). This functionality is provided by the Password Provider. The DN (Distinguished
Name) is not stored in the OMERO DB and is retrieved from the LDAP server on each user login.

3. If there is no OMERO user for a given name, the LDAP plugin will use omero.ldap.user_filter and omero.
ldap.user_mapping to look for a valid user:

1. The user_mapping property is of the form: omeName=<ldap attribute>;
firstName=<ldapAttribute>;...

2. For looking up new users, the plugin will only use the omeName attribute. For example, if a user tries to
login with “emma” and the user_mapping starts with omeName=cn; then the LDAP search will be for
(cn=emma).

3. The (cn=emma) LDAP filter is then added to the value of omero.ldap.user_filter. For exam-
ple, if the user filter is (objectClass=inetOrgPerson), the full query for the new user will be:
(&(objectClass=inetOrgPerson)(cn=emma))

670 Chapter 3. Developer Documentation

https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/messages/LoginAttemptMessage.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/messages/LoginAttemptMessage.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/LoginAttemptListener.java
https://trac.openmicroscopy.org/ome/ticket/3139

OMERO, Release 5.6.5-SNAPSHOT-1

4. If the search returns a single LDAP user, then an OMERO user will be created with all properties mapped
according to omero.ldap.user_mapping and the ldap property set to true.

5. Then the user will be placed in groups according to the value of omero.ldap.new_user_group, which are
created if necessary. Details of the various options can be found under LDAP authentication. Each option is
handled by a different NewUserGroupBean implementation.

NewUserGroupBean.java

The interface described for the “:bean:” new_user_group prefix, is ome.security.auth.NewUserGroupBean. It de-
fines a single method: groups(..., AttributeSet set) which returns a list of ExperimenterGroup ids
(List<Long>) which the user should be added to.

Other prefix handlers also implement the interface as examples. In the same package are:

• :attribute: - AttributeNewUserGroupBean.java

• :ou: - OrgUnitNewUserGroupBean

• :query: - QueryNewUserGroupBean

See also:
OMERO.server installation Instructions for installing OMERO.server on UNIX and UNIX-like platforms

Server security and firewalls General instructions on server security

3.10.4 OMERO roles

There are two areas where roles are used. The first is in service-level security (deciding who can make what calls)
and the second is in object-level security (who can read and edit individual objects). Both of these sets of roles are
composed of “ExperimenterGroups”.

Setting roles

An Experimenter is given a role by being a member of an ExperimenterGroup (specifically, this means that there exists
a GroupExperimenterMap where child == the experimenter id and parent == the experimenter group id). Creating a
GroupExperimenterMap is generally done transparently by IAdmin service. Instead, administrators call:

• IAdmin.createUser(user)

• IAdmin.createGroup(group)

• IAdmin.addGroups(user, group, group, ...)

• IAdmin.removeGroups(user, group, group, ...)

• IAdmin.createSystemUser(user)

3.10. Authentication and Security 671

https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/NewUserGroupBean.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/AttributeNewUserGroupBean.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/OrgUnitNewUserGroupBean.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/auth/QueryNewUserGroupBean.java

OMERO, Release 5.6.5-SNAPSHOT-1

Service-level

The two main roles that are distinguished at the service-level are “system” and “user” groups. These
groups are created during installation and must not be configured by administrators. All users added through
IAdmin.createUser(user) are automatically added to the “user” group, and all users added through IAdmin.
createSystemUser(user) are added to both “system” and “user” groups.

During login, a user is checked against all groups for membership in “user” or “system”, and no special action needs
to be taken by the user or client developer.

Note: Although currently all methods in the session beans are labelled as @RolesAllowed("user") or
@RolesAllowed("system"), there is nothing stopping a developer from writing a service method which accepts
another role, as long as that role has been created in the ExperimenterGroup table.

Object-level

Object-level security is more complicated. When execution reaches the EventHandler, a second login takes place to
authorize the user with the OMERO security system. This second authorization process takes into account the group
that (can be) passed into the client ServiceFactory\ (Login) via Login(String,String,String,String). If
a user has not set the group name or the default “user” group has been set, then the default group for that user will be
used (a user is not allowed to use the “user” group for object updates). If the group is set to “system”, then the “system”
group will be used, and a user is granted admin privileges for object updates. This means that a user could be authorized
to call a method by being in the “system” group, but if the “system” group is not specified, SecurityViolations will
most likely be thrown.

Special privileges for PIs

There is one other special, implicit role which is group leader. The user listed as “owner” for a group is considered the
group leader, also known as the PI (principal investigator) of that group. For all objects that are assigned to that group,
the PI has near-admin access. Objects which are set to unreadable (“-wu-wu-wu”) will still be visible to the PI. The
same objects can also be updated regardless of the permissions set.

3.10.5 OMERO security system

The OMERO security system is intended to be as transparent as possible while permitting users to configure the vis-
ibility of their data. For the user, this means that with no special actions, data and metadata created will be readable
by both members of the same group and by other users, but will be writable by no one, comparable to a umask of 755
on Unix. For the developer, transparency means that there is little or no code that must be written to prevent security
violations, and simple mechanisms for allowing restricted operations when the time comes.

Other links which may be of use:

• OMERO admin interface

• OMERO roles

• Groups and permissions system

• OMERO permissions querying, usage and history

672 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Concepts

Several concepts and/or components from our and other code bases play a role in OMERO security:

Hibernate Listeners and Events listeners and events are the two extension points provided by Hibernate for respond-
ing to and influencing internal actions. Essentially any method on the org.hibernate.Session interface has
a corresponding event, and almost the same is true for the interceptor. Additionally interceptors can change the
state of the objects before INSERT and UPDATE, and after SELECT.

Hibernate Filters filters are a mechanism for injecting SQL clauses into the SELECT statements generated by Hiber-
nate. Similar to listeners and events for write actions, filters allow us to extend Hibernate functionality with our
own logic.

Handler/interceptor as outlined in Aspect-oriented programming, OMERO makes extensive use of method intercep-
tors to relieve the developer of some coding burden. Transactions, session management, and, naturally, security
are handled largely by our interceptors (or “handlers”).

Events Every write action produces an Event in the database. This database contains several EventLogswhich specify
exactly what was created or altered during that specific event.

Participants

Now, with the concepts cleared up, we can take a look at all of the concrete source artifacts (“participants”) which are
important for security.

Top-level and build

omero-model.properties contains login and connection information for the database.

build.properties.example contains the default root password. This can be overridden with your own etc/local.
properties file.

hibernate.properties contains default connection information for the database, this includes the user name and if
necessary the user password. These values can be overridden in local.properties.

omero.properties contains a default user group, event type, and connection information for logging in from the client
side, if no Login or Server is specified to ServiceFactory. These values can be overridden in local.properties.

object.vm specifies the default permissions that all objects will have after construction, as well as attaches the security
filter to all classes and collections.

psql-footer.vm used by DSLTask to generate psql-footer.sql which is used to bootstrap the database security system
(root et al).

Client and common

The server uses the information in etc/local.properties to create a Login object. If no Login, Server, or Properties
is provided to the ServiceFactory constructor, the empty properties defined in ome/config.xml are used.

IAdmin.java main interface for administering accounts and privileges. See OMERO admin interface for more.

ITypes.java only related to security by necessity. The security system disallows the creation of certain “System-
Types”. Enumerations are one of these. ITypes, however, provides a createEnumeration method with general
access.

3.10. Authentication and Security 673

https://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/events.html
https://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/filters.html
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/omero-model.properties
https://github.com/ome/openmicroscopy/blob/develop/etc/build.properties
https://github.com/ome/openmicroscopy/blob/develop/etc/hibernate.properties
https://github.com/ome/openmicroscopy/blob/develop/etc/omero.properties
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/templates/object.vm
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/templates/psql-footer.vm
https://github.com/ome/omero-common/blob/v5.5.9/src/main/resources/ome/config.xml
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IAdmin.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/ITypes.java

OMERO, Release 5.6.5-SNAPSHOT-1

GraphHolder.java all model objects (implementations of IObject have a never-null GraphHolder instance available.
This graph holder is responsible for various OMERO and Hibernate internal processes. One of these is the
exchange of Tokens. For the server, the existence of a special token within the GraphHolder grants certain
privileges to that IObject. This logic is encapsulated within the SecuritySystem.

Details.java contains all the fields necessary to perform access control, such as owner, group, and permissions.

Permissions.java representation of rights and roles. For more information, see Groups and permissions system.

Token.java an extremely simple class (“public class Token {}”) which is only significant when it is equivalent (“==”)
to a privileged Token stored within the SecuritySystem.

IEnum.java the only non-access control related types which are considered “System-Types” are enumerations. IEnum
is a marker interface for all enumerations and creation of IEnum implementations can only be performed through
ITypes.

SecurityViolation.java the exception thrown by the OMERO security system at the first hint of misdoings.

Principal.java an Omero-speciific implementation of the java.security.Principal interface. Carries in addition to the
typical name field, information about the user group, the event type, and the session umasks.

meta.ome.xml

JBoss-only

ServiceFactory.java Login.java Server.java

Server side

AdminImpl.java CurrentDetails.java SecureAction.java SecuritySystem.java BasicSecuritySystem.java ACLEventLis-
tener.java EventHandler.java MergeEventListener.java OmeroInterceptor.java SessionHandler.java SecurityFilter.java
EventLogListener.java EventListenersFactoryBean.java LocalAdmin.java hibernate.xml sec-system.xml services.xml

End-to-end

Build system

Security starts with the build system and installation. During the generation of the model (by the DSLTask), a sql
script is created called “data.sql”. After ddl.sql creates the database, data.sql bootstraps the security system by creating
the initial (root) experimenter, and event, and then creates the “system” group and the “user” group. It then creates a
password table and sets the root password to “ome”. (It also creates all of the enumeration values, but that is unimportant
for security).

Note: The password table is not mapped into Hibernate, and is only accessible via the OMERO admin interface.

674 Chapter 3. Developer Documentation

https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/internal/GraphHolder.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/internal/Details.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/internal/Permissions.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/internal/Token.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/IEnum.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/conditions/SecurityViolation.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/Principal.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/mappings/meta.ome.xml
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/ServiceFactory.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/Login.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/Server.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/logic/AdminImpl.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/CurrentDetails.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/SecureAction.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/SecuritySystem.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/BasicSecuritySystem.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/ACLEventListener.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/ACLEventListener.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/EventHandler.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/MergeEventListener.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/OmeroInterceptor.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/tools/hibernate/SessionHandler.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/SecurityFilter.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/EventLogListener.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/EventListenersFactoryBean.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/api/local/LocalAdmin.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/hibernate.xml
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/sec-system.xml
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/services.xml

OMERO, Release 5.6.5-SNAPSHOT-1

Client-side

To begin the runtime security process, a user logs in by providing a Login and/or a Server instance to ServiceFactory.
These types are immutable and their values remain constant for the lifetime of the ServiceFactory. The user can also
set the umask property on ServiceFactory_. This value is mutable and can be set at anytime.

The values are converted to java.util.Properties which are merged with the properties from the *.properties files to create
the client OmeroContext (also known as the “application context”). The context contains a Principal and user credentials
(password, etc.) which are associated with the thread before each method execution in a specialized TargetSource.
Finally, these objects are serialized to the application server along with the method arguments.

Application server

The application server first performs one query (most likely SQL) to check that the credentials match those for the given
user name. A second query is executed to retrieve all roles/groups for the given user. If the roles returned are allowed
to invoke the desired method, invocation continues with the queried user and roles stored in the InvocationContext.

Server code

Execution then passes to OMERO code, specifically to the interceptors and lifecycle methods defined on our session
beans. This intercepting code checks the passed Principal for OMERO-specific information. If this information is
available, it is passed into the SecuritySystem through the login method. Finally, execution is returned to the actual
bean which can either delegate to OMERO services or perform logic themselves.

Interceptors

All calls to the delegates (and in the future all calls on the session beans) are also caught intercepted by Spring-
configured interceptors. These guarantee that the system is always in a valid and secure state. In stack order they
are:

• the service handler, which handles logging and checks all arguments against ServiceInterface annotations;

• the proxy handler, which after execution, removes all uninitialized Hibernate objects to prevent exceptions (spe-
cial logic allows this to happen See unloaded objects);

• the transaction handler, which binds a transaction to the thread,

• the session handler, which uses the now prepared transaction to initialize either a new or a cached (in the case of
stateful session beans) session and also bind it to the thread;

• and finally, the event handler, which performs what one might actually consider login. It instatiates Experimenter,
ExperimenterGroup, and Event objects from Hibernate and gives them a special Token so that they can authenti-
cate themselves later to the SecuritySystem and turns session read security on for the entirety of execution below
its frame.

3.10. Authentication and Security 675

OMERO, Release 5.6.5-SNAPSHOT-1

Services

Finally execution has reached the OMERO services and can begin to perform logic. Because of these layers, almost
no special logic (other than eviction and not calling write methods from within read methods. see #223) needs to be
considered. There are, however, a few special cases.

IQuery (within the application server), for example will always return a graph of active Hibernate objects. Changes to
them will be persisted to the database on flush.

IUpdate, on the other hand, does contain some logic for easing persistence, though this will eventually be ported to the
Hibernate event system. This includes pre-saving the newly created event and the work of UpdateFilter like reloading
objects unloaded by the proxy handler (above).

Finally, IAdmin is special in that it and it alone access the non-Hibernate password data store and even access appli-
cation server APIs (like JMX) in order to make authentication and authorization function properly.

Hibernate

Once execution has left this service layer, it enters the world of Hibernate ORM. Here we cannot actively change func-
tionality but only provide callbacks like the OmeroInterceptor and EventListeners. The OmeroInterceptor instance
registered with the Hibernate SessionFactory (via Spring) is allowed for calling back to the often mentioned Secu-
ritySystem to determine what objects can be saved and which deleted. It also properly sets the, for a user mostly
unimportant, Details object. The EventListeners are more comprehensive than the OmeroInterceptor and can influence
almost every phase of the Hibernate lifecycle, specifically every method on the Session interface.

The event listeners which implement AbstractSaveEventListener (i.e. MergeEventListener, SaveOrUpdateEventLis-
tener, etc.) are responsible for reloading unloaded objects (and will hopefully take this functionality fully from IUpdate)
and provide special handling for enums and other system types. There are also event listeners which are the equivalent
of database triggers (pre-update, post-delete, etc.) and these are used for generating our audit log.

So much for write activities. Select queries are, as mentioned above, secured through the use of Hibernate filters which
add join and where clauses dynamically to queries. For example an HQL query of the form:

select i from Image i

would be filtered so that the current user does not receive references to any objects with reduced visibility:

select i from Image i where (current_user = :root OR i.permissions = :readable)

The actual clauses added are much more complex and are added for each joined entity type (i.e. table) which apears in
a query.

select i from Image i join i.defaultPixels p

would contain the “(current_user = :root . . .)” clause twice.

Currently, subqueries are an issue in that the clauses do not get added to them. This may cause consternation for some
particular queries.

676 Chapter 3. Developer Documentation

https://trac.openmicroscopy.org/ome/ticket/223

OMERO, Release 5.6.5-SNAPSHOT-1

Security system

All of this is supported by an implementation of the SecuritySystem interface which encapsulates all logic regarding
security. It also hides as much as it can, and if not specifically needed should be ignored. However, before you attempt
to manually check security, by all means use the security system, and for that, it may need to be acquired from the
server-side OmeroContext. Currently, there is no client-side security system. See #234.

The OMERO security system and its current only implementation BasicSecuritySystem are somewhat inert and expect
well-defined and trusted (see #235) methods to invoke callbacks during the proper Hibernate phase.

Logging in (client-side)

When using the client library and the ServiceFactory, logging in is trivial. One need only set several System properties
or place them in an omero.properties file somewhere on the classpath. Internally, Spring takes the System properties
and creates an ome.system.Principal instance. This is then passed to the server on each invocation of a proxy obtained
from JNDI.

Logging in (server-side)

Much of this infrastructure is not available to server-side code (no ome/client/spring.xml, no ServiceFactory, etc.). As
such, the Principal needs to be manually created and provided to the server-side SecuritySystem.java.

Basically it amounts to this:

Principal p = new Principal(omeroUserName, omeroGroupName, omeroEventTypeValue);
securitySystem.login(p);

This must be run otherwise the EventHandler will throw a security exception.

Note: The code above is being run in a secure context (i.e. you are root). Please be careful.

3.10.6 OMERO permissions querying, usage and history

Working with the OMERO 5.6.4 permissions system

Example environment

• OMERO 5.6.4 server

• IPython shell initiated by running omero shell --login

3.10. Authentication and Security 677

https://trac.openmicroscopy.org/ome/ticket/234
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/BasicSecuritySystem.java
https://trac.openmicroscopy.org/ome/ticket/235
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/Principal.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/SecuritySystem.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/EventHandler.java

OMERO, Release 5.6.5-SNAPSHOT-1

Group membership

User private-1 read-only-1 read-write-1 read-annotate-1
user-2 Yes Yes No No
user-3 No Yes No Yes

Simple inserts and queries

While the ‘Default Group’ is essentially a deprecated concept, a user must be logged into one to provide a default
context. It is still possible to change this default group but it is no longer required to make queries in other permissions
contexts.

All remote calls to an OMERO server, since well before version 4.1.x, have the option of taking an Ice context object.
Through this object, and manipulations thereof, we can affect our query context. What follows is a series of examples
exploring inserts and queries using contexts that span a single group at a time.

Retrieving a user’s event context and group membership

#!python
Session that has already been created for user-2
session = client.getSession()

Retrieve the services we are going to use
admin_service = session.getAdminService()

ec = admin_service.getEventContext()
print(ec)
groups = [admin_service.getGroup(v) for v in ec.memberOfGroups]
for group in groups:

print('Group name: %s' % group.name.val)

Example output:

object #0 (::omero::sys::EventContext)
{

shareId = -1
sessionId = 1783
sessionUuid = 213adc46-2c5f-449b-81fc-fe24dec38b58
userId = 10
userName = user-2
groupId = 9
groupName = private-1
isAdmin = False
eventId = -1
eventType = User
memberOfGroups =
{

[0] = 9
[1] = 8
[2] = 1

(continues on next page)

678 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

}
leaderOfGroups =
{
}
groupPermissions = object #1 (::omero::model::Permissions)
{

_restrictions =
{
}
_perm1 = -120

}
}

Group name: private-1
Group name: read-only-1
Group name: user

Here you can see and validate that, when logged in as user-2, we are a member of both the private-1 and
read-only-1 groups. Membership of the user group is required in order to login. This group essentially acts as
a role, letting the OMERO security system know whether or not the user is active.

Inserting and querying data from specific groups

For the purposes of this example, we will prepare a single Project in both the private-1 and read-only-1 groups
and then perform various queries on those Projects.

#!python
from omero.model import *
from omero.rtypes import *
from omero.sys import ParametersI
from omero.cmd import Delete
from omero.callbacks import CmdCallbackI

Session that has already been created for user-2
session = client.getSession()

Project object instantiation
private_project = ProjectI()
private_project.name = rstring('private-1 project')
read_only_project = ProjectI()
read_only_project.name = rstring('read-only-1 project')

Retrieve the services we are going to use
update_service = session.getUpdateService()
admin_service = session.getAdminService()
query_service = session.getQueryService()

Groups we are going to write data into
private_group = admin_service.lookupGroup('private-1')
read_only_group = admin_service.lookupGroup('read-only-1')

(continues on next page)

3.10. Authentication and Security 679

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

Save and return our two projects, setting the context correctly for each
ctx = {'omero.group': str(private_group.id.val)}
private_project = update_service.saveAndReturnObject(private_project, ctx)
ctx = {'omero.group': str(read_only_group.id.val)}
read_only_project = update_service.saveAndReturnObject(read_only_project, ctx)

private_project_id = private_project.id.val
read_only_project_id = read_only_project.id.val
print('Created Project:%d in group private-1' % (private_project_id))
print('Created Project:%d in group read-only-1' % (read_only_project_id))

Query for the private project we created using private-1
#
You will notice that this returns the Project as we have specified
the group that the Project is in within the context passed to the
query service.
ctx = {'omero.group': str(private_group.id.val)}
params = ParametersI()
params.addId(private_project_id)
projects = query_service.findAllByQuery(

'select p from Project as p ' \
'where p.id = :id', params, ctx)

print('Found %d Project(s) with ID %d in group private-1' %
(len(projects), private_project_id))

Query for the private project we created using read-only-1
#
You will notice that this does not return the Project as we have **NOT**
specified the group that the Project is in within the context
passed to the query service.
ctx = {'omero.group': str(read_only_group.id.val)}
params = ParametersI()
params.addId(private_project_id)
projects = query_service.findAllByQuery(

'select p from Project as p ' \
'where p.id = :id', params, ctx)

print('Found %d Project(s) with ID %d in group read-only-1' %
(len(projects), private_project_id))

Use the OMERO 4.3.x introduced delete service to clean up the Projects
we have just created.
handle = session.submit(Delete('/Project', private_project_id, None))
try:

callback = CmdCallbackI(client, handle)
callback.loop(10, 1000) # Loop a maximum of ten times each 1000ms

finally:
Safely ensure that the Handle to the delete request is cleaned up,
otherwise there is the possibility of resource leaks server side that
will only be cleaned up periodically.
handle.close()

(continues on next page)

680 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

handle = session.submit(Delete('/Project', read_only_project_id, None))
try:

callback = CmdCallbackI(client, handle)
callback.loop(10, 1000) # Loop a maximum of ten times each 1000ms

finally:
handle.close()

Example output:

Created Project:113 in group private-1
Created Project:114 in group read-only-1
Found 1 Project(s) with ID 113 in group private-1
Found 0 Project(s) with ID 113 in group read-only-1

Advanced queries

In OMERO 4.4.0, cross group querying was reintroduced. Again, we make use of the Ice context object. Through this
object, and manipulations thereof, we can expand our query context to span all groups via the use of -1. What follows
is a series of example queries using contexts that span all groups.

Querying data across groups

#!python
from omero.model import *
from omero.rtypes import *
from omero.sys import ParametersI
from omero.cmd import Delete, DoAll
from omero.callbacks import CmdCallbackI

Session that has already been created for user-2
session = client.getSession()

Project object instantiation
private_project = ProjectI()
private_project.name = rstring('private-1 project')
read_only_project = ProjectI()
read_only_project.name = rstring('read-only-1 project')

Retrieve the services we are going to use
update_service = session.getUpdateService()
admin_service = session.getAdminService()
query_service = session.getQueryService()

Groups we are going to write data into
private_group = admin_service.lookupGroup('private-1')
read_only_group = admin_service.lookupGroup('read-only-1')

Save and return our two projects, setting the context correctly for each.
ALL interactions with the update service where NEW objects are concerned

(continues on next page)

3.10. Authentication and Security 681

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

must be passed an explicit context and NOT '-1'. Otherwise the server
has no idea which set of owners to assign to the object when persisted.
ctx = {'omero.group': str(private_group.id.val)}
private_project = update_service.saveAndReturnObject(private_project, ctx)
ctx = {'omero.group': str(read_only_group.id.val)}
read_only_project = update_service.saveAndReturnObject(read_only_project, ctx)

private_project_id = private_project.id.val
read_only_project_id = read_only_project.id.val
print('Created Project:%d in group private-1' % (private_project_id))
print('Created Project:%d in group read-only-1' % (read_only_project_id))

Query for the private project we created using private-1
#
You will notice that this returns both Projects as we have specified
'-1' in the context passed to the query service.
ctx = {'omero.group': '-1'}
params = ParametersI()
params.addIds([private_project_id, read_only_project_id])
projects = query_service.findAllByQuery(

'select p from Project as p ' \
'where p.id in (:ids)', params, ctx)

print('Found %d Project(s)' % (len(projects)))

Use the OMERO 4.3.x introduced delete service to clean up the Projects
we have just created. The delete service uses '-1' by default for all its
internal queries. We are also introducing the 'DoAll' command, which
allows for the aggregation of 'Delete' commands.
delete_requests = [

Delete('/Project', private_project_id, None),
Delete('/Project', read_only_project_id, None)

]
handle = session.submit(DoAll(delete_requests))
try:

callback = CmdCallbackI(client, handle)
callback.loop(10, 1000) # Loop a maximum of ten times each 1000ms

finally:
Safely ensure that the Handle to the delete request is cleaned up,
otherwise there is the possibility of resource leaks server side that
will only be cleaned up periodically.
handle.close()

Example output:

Created Project:117 in group private-1
Created Project:118 in group read-only-1
Found 2 Project(s)

682 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Querying data across users in the same group

Through the use of an omero.sys.ParametersI filter, restricting a query to a given user is possible. For the purposes
of these examples, we will assume that both user-2 and user-3 have a single project each in the read-only-1 group.

#!python
from omero.model import *
from omero.rtypes import *
from omero.sys import ParametersI

Session that has already been created for user-2
session = client.getSession()

Retrieve the services we are going to use
admin_service = session.getAdminService()
query_service = session.getQueryService()

Groups we are going to query
read_only_group = admin_service.lookupGroup('read-only-1')

Users we are going to query
user_2 = admin_service.lookupExperimenter('user-2')
user_3 = admin_service.lookupExperimenter('user-3')

Print the members of 'read-only-1'
print('Members of "read-only-1" (experimenter_id, username): %r' %

[(v.id.val, v.omeName.val) for v in read_only_group.linkedExperimenterList()])

Query for all projects
ctx = {'omero.group': str(read_only_group.id.val)}
projects = query_service.findAllByQuery(

'select p from Project as p', None, ctx)
print('All projects in "read-only-1" (project_id, owner_id): %r' %

[(v.id.val, v.details.owner.id.val) for v in projects])

Query for projects owned by 'user-2'
ctx = {'omero.group': str(read_only_group.id.val)}
params = ParametersI()
params.addId(user_2.id.val)
projects = query_service.findAllByQuery(

'select p from Project as p ' \
'where p.details.owner.id = :id', params, ctx)

print('Projects owned by "user-2" in "read-only-1" (project_id, owner_id): %r' %
[(v.id.val, v.details.owner.id.val) for v in projects])

Query for projects owned by 'user-3'
ctx = {'omero.group': str(read_only_group.id.val)}
params = ParametersI()
params.addId(user_3.id.val)
projects = query_service.findAllByQuery(

'select p from Project as p ' \
'where p.details.owner.id = :id', params, ctx)

print('Projects owned by "user-3" in "read-only-1" (project_id, owner_id): %r' %
(continues on next page)

3.10. Authentication and Security 683

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

[(v.id.val, v.details.owner.id.val) for v in projects])

Example output:

Members of "read-only-1" (experimenter_id, username): [(10L, 'user-2'), (9L, 'user-3')]
All projects in "read-only-1" (project_id, owner_id): [(4L, 10L), (7L, 9L)]
Projects owned by "user-2" in "read-only-1" (project_id, owner_id): [(4L, 10L)]
Projects owned by "user-3" in "read-only-1" (project_id, owner_id): [(7L, 9L)]

Utilizing the Permissions object

Every object that is retrieved from the server via the query service, regardless of the context used, has a fully functional
omero.model.PermissionsI object. This object contains various methods to allow the caller to interrogate the
operations that are possible by the current user on the object:

• canAnnotate()

• canChgrp()

• canChown()

• canDelete()

• canEdit()

• canLink()

Troubleshooting permissions issues

Data disappears after a change of the primary group of a user

As outlined above, changes were made so that by default queries do not span multiple groups and the ‘Primary or
Default Group’ is essentially a deprecated concept. If you have multiple groups and you are attempting to make
queries by switching the ‘Active Group’ via the setSecurityContext() method of an active session (omero.cmd.
SessionPrx), those queries will be scoped only to that group. If you want your queries to act more like they did in
4.1.x, setting omero.group=-1 will achieve that.

However, the reasons we made these changes have more to them than just API usage and the OMERO client history of
only showing the data from one group at a time. Changing the ‘Active Group’ is both expensive because of the atomicity
requirements the server enforces and can create dangerous concurrency situations. This is further complicated by the
addition of the change group and delete background processes since 4.1.x. Manipulating a session’s ‘Primary or Default
Group’ during these tasks can have drastic effects. Changing the ‘Active Group’ is forbidden if there are any stateful
services (omero.api.RenderingPrx for example) currently open.

In short, in OMERO 5.6.4 you absolutely should not be switching the ‘Primary or Default Group’ of the user, or the
‘Active Group’ of a session, as a means to achieve cross group querying.

684 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Permissions.html#canAnnotate
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Permissions.html#canChgrp
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Permissions.html#canChown
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Permissions.html#canDelete
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Permissions.html#canEdit
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/Permissions.html#canLink

OMERO, Release 5.6.5-SNAPSHOT-1

Listing other users’ data in read-only groups

In order to list other users’ data associated with read-only groups of which you are a member, you can also use the
context object and set the omero.group to -1. In addition, you can add a filter to the query to only select the other
users’ data. You can do this either by using the omero.sys.ParametersI object’s exp() method when using the
IContainer service, or by an explicit query when using IQuery service.

Is the default group the primary group when not specifying the context?

The value of the groupId property of the omero.sys.EventContext is the “Active Group” for the created session.
It can be modified as described above with the restrictions outlined. Unless the session has been created by means
other than createSession() on an omero.client object, this will be the user’s “Primary or Default Group.” A
user’s ‘Primary or Default Group’ is the first group in the collection that describes the relation Experimenter <-->
ExperimenterGroup. It can be set by the setDefaultGroup() method on the IAdmin service.

What about when importing data without specifying the context object?

Exactly as outlined above. Import does nothing different or special. If you want the operating context of an import to
be different from the default you must specify it as such.

Specifying the group context as -1 when deleting data

There is no need to do this. Complete graphs cannot span multiple groups and queries are only (unless otherwise
filtered) restricted at the group level and not at the level of the user. Furthermore, the delete service always internally
performs all its queries in the omero.group=-1 context unless another more explicit one is specified.

History

The OMERO permissions model has had a significant overhaul from version 4.1.x to 4.4.x. Users and groups have
existed in OMERO since well before the initial 4.1.x releases and numerous permissions levels were possible in the
4.1.x series but it was largely assumed that an Experimenter belonged to a single Group and that the permissions of
that Group were private.

The OMERO permissions system received its first significant update in 4.2.0 with the introduction of multiple group
support throughout the platform and group permissions levels.

In a 4.1.x object graph Group containment was not enforced i.e. two linked objects (such as a Project and Dataset)
could in theory be members of two distinct Groups. All objects continued to carry their permissions and those per-
missions were persisted in the database.

Things to note about 4.2.x permissions

• Objects could not be moved between groups easily.

• It was not possible to reduce the permissions level of a group.

• The delete service (introduced in OMERO 4.2.1) was made aware of the permissions system.

• ‘Default Group’ switching was required to make queries in different permissions contexts.

3.10. Authentication and Security 685

OMERO, Release 5.6.5-SNAPSHOT-1

Note: Queries span only one group at a time. Inserts and updates as other users must be done by creating a session as
that user.

Changes for OMERO 4.4.x

The second major OMERO permissions system innovations were performed in 4.4.0:

• Cross group querying was reintroduced.

• Change group was enabled, allowing the movement of graphs of objects between groups.

• Permissions level reduction was made possible for read-annotate to read-only transitions.

• A thorough user interface review resulted in the following features being made available in the UI:
– single group browsing and user-switching (available since 4.4.0)

– browsing data across multiple groups (available since 4.4.6 and refined in 4.4.7)

• The concept of a ‘Default or Primary Group’ was deprecated.

Note: Queries, inserts and updates span any or all groups and any user via options flags.

Changes for OMERO 5.4.x

OMERO 5.4.0 included Restricted Administrators as a new user role. See Administrators with restricted privileges and
The server’s view of administrator restrictions for more information.

3.11 OMERO.server in depth

3.11.1 OMERO.server overview

OMERO sequence narrative

Trying to understand all of what goes on with the server can be a bit complicated. This short narrative tries to touch
on the most critical aspects.

• A request reaches the server over one of the two remoting protocols: RMI or ICE. First, the Principal is examined
for a valid session which was created via ISession.createSession(String username, String password).

• These values are checked against the experimenter, experimentergroup and password tables. A valid
login consists of a user name which is to be found in the omename column of experimenter. This row from
experimenter must also be contained in the “user” experimenter group which is done via the mapping table
groupexperimentermap (see this SQL template for how root and the intial groups are setup).

• If the server is configured for LDAP Authentication, an Experimenter may be created when ISessions attempts
to check the password via IAdmin.checkPassword().

• If authentication occurs, the request is passed to an EJB3 interceptor which checks whether or not the authen-
ticated user is authorized for that service method. Methods are labelled either @RolesAllowed("user"),
@RolesAllowed("system"), or @PermitAll. All users are a member of “user”, but only administrators will
be able to run “system” methods.

686 Chapter 3. Developer Documentation

https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/Principal.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/ISession.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/templates/psql-footer.vm
https://www.oracle.com/technetwork/java/javaee/ejb/index.html

OMERO, Release 5.6.5-SNAPSHOT-1

• If authorization occurs, the request finally reaches a container-managed stateful or stateless service The service
will prepare the OMERO runtime for the particular user – checking method parameters, creating a new event,
initializing the security system, etc. – and pass execution onto the method implementation. This is done using
references acquired (or injected) from the Spring application context.

• The actual service implementation (from ome.logic or ome.services) will be either read-only (IQuery-based) or
a read-write (IUpdate-based).

• In the case of a read-only action, the implementation asks the database layer for the needed object graph, trans-
forms them where necessary, and returns the values to the remoting subsystem. On the client-side, the returned
graph can be mapped to an internal model via the ((OMERO Model Mapping|model wrapper)).

• In the case of a read-write action, the change to the database is first passed to a validation layer for extensive
checking. Then the graph is passed to the database layer which prepares the SQL, including an audit trail of the
changes made to the database.

• After execution, the OMERO runtime is reset, the method call is logged, and either the successful results are
returned or an exception is thrown.

Technologies

It is fairly easy to work with the server without understanding all of its layers. The API is clearly outlined in the ome.api
package and the client proxies work almost as if the calls were being made from within the same virtual machine. The
only current caveat is that objects returned between two different calls will not be referentially (i.e. obj1 == obj2)
equivalent. We are working on removing this restriction.

To understand the full technology stack, however, there are several concepts which are of importance:

• A layered architecture ensures that components only “talk to” the minimum necessary number of other compo-
nents. This reduces the complexity of the entire system. Ensuring a loose-coupling of various components is
facilitated by dependency injection. Dependency injection is the process of allowing a managing component to
place a needed resource in a component’s hand. Code for lookup or creation of resources, in turn, is unneeded,
and explicit implementation details do not need to be hard-coded.

• Object-relational mapping (ORM) is the process of mapping relational tables to object-oriented classes. Cur-
rently OMERO uses Hibernate to provide this functionality. ORM allows the developer to work in a known
environment, here the type-safe world of Java, rather than writing difficult to debug sql.

• Aspect-oriented programming, a somewhat new and misunderstood technology, is perhaps the last technology
which should be mentioned. Various pieces of code (“aspects”) are inserted at various moments (“joinpoints”)
of execution. Collecting logic into aspects, whether logging, transactions, security etc., also reduces the overall
complexity of the code.

Server design

The server logic resides in the server component.

3.11. OMERO.server in depth 687

https://github.com/ome/omero-server/tree/v5.6.3/src/main/java/ome/logic
https://github.com/ome/omero-server/tree/v5.6.3/src/main/java/ome/services
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IQuery.java
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IUpdate.java
http://www.hibernate.org
https://github.com/ome/omero-server/tree/v5.6.3/

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 12: Server Architecture

688 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Fig. 13: Server Design

3.11. OMERO.server in depth 689

OMERO, Release 5.6.5-SNAPSHOT-1

Topics

• Exception handling

• OME-Remote Objects

• Server security and firewalls

See also:
OMERO.grid

3.11.2 Extending OMERO.server

Overview

Despite all the effort put into building OMERO, it will never satisfy the requirements of every group. Where we
have seen it useful to do so, we have created extension points which can be used by third-party developers to extend,
improve, and adapt OMERO. We outline most of these options below as well as some of their trade-offs. We are also
always interested to hear other possible extension points. Please contact the the forum with any such suggestions.

Existing extension points

To get a feeling for what type of extension points are available, you might want to take a look at the following pages.
Many of them will point you back to this page for packaging and deploying your new code.

• File parsers - write Java file parsers to further extend search

• LoginAttemptListener - write a Java handler for failed login attempts

• Command Line Interface as an OMERO development tool - write drop in Python extensions for the command-line

• Introduction to OMERO.scripts - write python scripts to process data server-side

• LDAP plugin design - write a Java authentication plugin

• Password Provider - write a Java password backend

• Search bridges - write Java Lucene parsers to extend search

• OMERO.mail - server email sender (added in OMERO 5.1, no developer documentation as yet)

• omero.policy.bean - policy configuration point e.g. for setting download restriction policy on users (added
in OMERO 5.1, no developer documentation as yet)

Extending the Model

The OME Data Model and its OMERO representation, the OME-Remote Objects, intentionally draw lines between
what metadata can be supported and what cannot. Though we are always examining new fields for inclusion, it is not
possible to represent everyone’s model within OME.

690 Chapter 3. Developer Documentation

https://www.openmicroscopy.org/forums

OMERO, Release 5.6.5-SNAPSHOT-1

Structured annotations

The primary extension point for including external data are the Working with annotations (SAs). SAs are designed
as email-like attachments which can be associated with various core metadata types. In general, they should link to
information outside of the OME model, i.e. information which OMERO clients and servers do not understand. URLs
can point to external data sources, or XML in a non-OME namespace can be attached.

The primary drawbacks are that the attachments are opaque and cannot be used in a fine-grain manner.

Code generation

Since it is prohibitive to model full objects with the SAs, one alternative is to add types directly to the generated code.
By adding a file named *.ome.xml to src/main/resources/mappings and running a full-build, it is possible to have new
objects generated in all OMERO.blitz languages. Supported fields include:

• boolean

• string

• long

• double

• timestamp

• links to any other ome.model.* object, including enumerations

For example:

<types>
<!-- "named" and "described" are short-cuts to generate the fields "name" and

→˓"description" -->
<type id="ome.model.myextensions.Example" named="true" described="true">
<required name="valueA" type="boolean"/> <!-- This is NONNULL -->
<optional name="valueB" type="long"/> <!-- This is nullable -->
<onemany name="images" type="ome.model.core.Image"/> <!-- A set of images -->

</type>
</types>

Collections of primitive values like <onemany name="values" type="long"/> are not supported. Please see the
existing mapping files for more examples of what can be done.

The primary drawback of code-generating your own types is isolation and maintenance. Firstly, your installation be-
comes isolated from the rest of the OME ecosystem. New types are not understood by other servers and clients, and
cannot be exported or shared. Secondly, you will need to maintain your own server and client builds of the system,
since the provided binary builds would not have your new types.

3.11. OMERO.server in depth 691

https://github.com/ome/omero-model/tree/v5.6.5/src/main/resources/mappings

OMERO, Release 5.6.5-SNAPSHOT-1

Measurement results

For storing large quantities of only partially structured data, such as tabular/CSV data with no pre-defined columns,
neither the SAs nor the code-generation extensions are ideal. SAs cannot easily be aggregated, and code-generation
would generate too many types. This is particularly clear in the storage and management of HCS analysis results.

To solve this problem, we provide the OMERO.tables API for storing tabular data indexed via Roi, Well, or Image id.

Services

Traditionally, services were added via Java interfaces in the src/main/java/ome/api package. The creation of such “core”
services is described under How To create a service. However, with the introduction of OMERO.blitz, it is also possible
to write blitz-only services which are defined by a slice definition under src/main/slice/omero.

A core service is required when server internal code should also make use of the interface. Since this is very rarely the
case for third-party developers wanting to extend OMERO, only the creation of blitz services will be discussed here.

Add a slice definition

The easiest possible service definition in slice is:

module example {
interface NewService {
void doSomething();

};
};

This should be added to any existing or a new *.ice file under the src/main/slice/omero directory. After the next
ant build, stubs will be created for all the OMERO.blitz languages, i.e. OMERO Java language bindings, OMERO
Python language bindings, and OMERO C++ language bindings.

Note: Once you have gotten your code working, it is most re-usable if you can put it all in a single directory under
tools/. These components also have their resources/*.ice files turned into code, and they can produce their own
artifacts which you can distribute without modifying the main code base.

Warning: exceptions

You will need to think carefully about what exceptions to handle. Ice (especially OMERO C++ language bindings)
does not handle exceptions well that are not strictly defined. In general, if you would like to add your own exception
type, feel free to do so, but either 1) subclass omero::ServerError or 2) add to the appropriate throws clauses. And
regardless, if you are accessing any internal OMERO API, add omero::ServerError to your throws clause.

See Exception handling for more information.

692 Chapter 3. Developer Documentation

https://github.com/ome/omero-common/tree/v5.5.9/src/main/java/ome/api
https://github.com/ome/omero-blitz/tree/v5.5.10/src/main/slice/omero

OMERO, Release 5.6.5-SNAPSHOT-1

Java implementation using _Disp

To implement your service, create a class subclassing “example._NewServiceDisp” class which was code-generated.
In this example, the class would be named “NewServiceI” by convention. If this service needs to make use of any of
the internal API, it should do so via dependency injection. For example, to use IQuery add either:

void setLocalQuery(LocalQuery query) {
this.query = query;

}

or

NewServiceI(LocalQuery query) {
this.query = query;

}

The next step “Java Configuration” will take care of how those objects get injected.

Java implementation using _Tie

Rather than subclassing the _Disp object, it is also possible to implement the _Tie interface for your new service. This
allows wrapping and testing your implementation more easily at the cost of a little indirection. You can see how such
an object is configured in blitz-servantDefinitions.

Java configuration

Configuration in the Java servers takes place via Spring. One or more files matching a pattern like ome/services/
blitz-*.xml should be added to your application.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/
→˓spring-beans.dtd">
<beans>

<bean class="NewServiceI">
<description>
This is a simple bean definition in Spring. The description is not necessary.
</description>
<constructor-arg ref="internal-ome.api.IQuery"/>

</bean>

</beans>

The three patterns which are available are:

• ome/services/blitz-*.xml - highest-level objects which have access to all the other defined objects.

• ome/services/services-*.xml - internal server objects which do not have access to blitz-*.xml objects.

• ome/services/db-*.xml - base connection and security objects. These will be included in background java
process like the index and pixeldata handlers.

3.11. OMERO.server in depth 693

https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-servantDefinitions.xml#L36
https://spring.io

OMERO, Release 5.6.5-SNAPSHOT-1

Note: Password Provider and similar should be included at this level.

See src/main/resources/ome/services and src/main/resources/ome/services for all the available objects.

Java deployment

Finally, these resources should all be added to OMERO_DIST/lib/server/extensions.jar:

• the code generated classes

• your NewServiceI.class file and any related classes

• your ome/service/blitz-*.xml file (or other XML)

Non-service beans

In addition to writing your own services, the instructions above can be used to package any Spring-bean into the
OMERO server. For example:

//
// MyLoginAttemptListener.java
//
import ome.services.messages.LoginAttemptMessage;

import org.springframework.context.ApplicationListener;

/**
* Trivial listener for login attempts.
*/

public class MyLoginAttemptListener implements
ApplicationListener<LoginAttemptMessage> {

public void onApplicationEvent(LoginAttemptMessage lam) {
if (lam.success != null && !lam.success) {

// Do something
}

}

}

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/
→˓spring-beans.dtd">
<!--
//
// ome/services/blitz-myLoginListener.xml
//
-->
<beans>
<bean class="myLoginAttemptListener" class="MyLoginAttemptListener">

(continues on next page)

694 Chapter 3. Developer Documentation

https://github.com/ome/omero-blitz/tree/v5.5.10/src/main/resources/ome/services
https://github.com/ome/omero-server/tree/v5.6.3/src/main/resources/ome/services

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

<description>
This listener will be added to the Spring runtime and listen for all␣

→˓LoginAttemptMessages.
</description>

</bean>

</beans>

Putting MyLoginAttemptListener.class and ome/services/blitz-myLoginListener.xml into lib/
server/extensions.jar is enough to activate your code:

~/example $ ls -1
MyLoginListener.class
MyLoginListener.java
lib
...
~/example $ jar cvf lib/server/extensions.jar MyLoginListener.class ome/services/blitz-
→˓myLoginListener.xml
added manifest
adding: MyLoginListener.class(in = 0) (out= 0)(stored 0%)
adding: ome/services/blitz-myLoginListener.xml(in = 0) (out= 0)(stored 0%)

Servers

With the OMERO.grid infrastructure, it is possible to have your own processes managed by the OMERO infrastructure.
For example, at some sites, NGINX is started to host OMERO.web framework. Better integration is possible however,
if your server also uses the Ice remoting framework.

One way or the other, to have your server started, monitored, and eventually shutdown by OMERO.grid, you will need
to add it to the “application descriptor” for your site. When using:

omero admin start

the application descriptor used is etc/grid/default.xml. The <application> element contains various <node>s.
Each node is a single daemon process that can start and stop other processes. Inside the nodes, you can either directly
add a <server> element, or in order to reuse your description, you can use a <server-instance> which must refer
to a <server-template>.

To clarify with an example, if you have a simple application which should watch for newly created Images and send
you an email: mail_on_import.py, you could add this in either of the following ways:

Server element

<node name="my-emailer-node"> <!-- this could also be an existing node, but it must be␣
→˓unique -->
<server id="my-emailer-server" exe="/home/josh/mail_on_import.py" activation="always">
<env>${PYTHONPATH}</env>
<!-- The adapter name must also be unique -->
<adapter name="MyAdapter" register-process="true" endpoints="tcp"/>

</server>
</node>

3.11. OMERO.server in depth 695

https://www.nginx.com/resources/wiki/
https://zeroc.com

OMERO, Release 5.6.5-SNAPSHOT-1

Server-template and server-instance elements

<server-template id="emailer-template"> <!-- must also be unique -->
<property name="user"/>
<server id="emailer-server-${user}" exe="/home/${user}/mail_on_import.py" activation=

→˓"always">
<env>${PYTHONPATH}</env>
<adapter name="MyAdapter" register-process="true" endpoints="tcp"/>

</server>
</server-template>

<node name="our-emailer-node">
<server-instance id="emailer-template" user="ann">
<server-instance id="emailer-template" user="ann">

</node>

See also:
[ome-devel] model description driven code generation

3.11.3 OMERO.blitz

The OMERO.blitz server is responsible for providing secure access to data and metadata via user sessions (OMERO
sessions), and cleaning up all resources when they are no longer being used. Various server capabilities are accessed
via a multitude of services collectively known as the OMERO Application Programming Interface.

Metadata

Metadata stored in an object-relational database is mapped into the OMERO OME-Remote Objects via Hibernate. Hi-
bernate Query Language (HQL) calls can be made against the server and have all ownership information automatically
taken into account.

Image data

The binary image data can either be accessed in its raw form via the RawPixelsStore service, or can be rendered by the
OMERO.server image rendering service.

3.11.4 OMERO.fs

OMERO.fs is a series of on-going changes designed to improve the way an OMERO.server interacts with existing
directories of acquired image data. It currently consists of two components:

OMERO.dropbox is designed for watching a directory and kicking off an automatic import. The configuration of the
DropBox system is covered on the OMERO.dropbox system administrator’s page.

OMERO.fs Managed Repository is designed to store original data in an unaltered form without requiring the data
duplication that was carried out by a pre-5.0 import. The changes to the import system mean that an OMERO.fs
server stores the original files in the ManagedRepository, preserving file names and any nested directory structure.
The repository may even contain direct in-place links to original data without an file upload step. These changes
improve the way OMERO deals with High Content Screening (HCS) and other complex heterogeneous data types,
reducing storage requirements and using Bio-Formats to recognize Filesets (groups of files which correspond to multi-
dimensional images and accompanying information) so they can be treated as single entities within the OMERO clients.

696 Chapter 3. Developer Documentation

http://lists.openmicroscopy.org.uk/pipermail/ome-devel/2009-July/001332.html
http://www.hibernate.org

OMERO, Release 5.6.5-SNAPSHOT-1

OMERO.fs has some configuration properties that allow sysadmins to customize it for their site; developers should be
aware of the how the new import process works and how this is affected by the configuration.

3.11.5 Import under OMERO.fs

The OMERO 5 release introduces OMERO.fs, a new way of storing files in the OMERO binary repository and thus a
new method of importing images to the server.

In previous versions of OMERO the import process was very much client-centered. When importing an image the client
pushed pixel data, metadata and, optionally, original image files to the OMERO server. With the advent of OMERO 5,
OMERO.fs allows the pixels to be accessed directly from the original image files. This means that much of the import
process can now take place on the server once the original image files have been uploaded.

This page looks at the implications for the developer writing import clients. A broad description of the import work-
flow is followed by some of the model changes needed to facilitate this workflow. The current API sequence is then
introduced before looking at server-side classes and sequence. Finally, the configuration required for OMERO.fs is
specified.

Import overview

The broad import workflow comprises selecting a file or set of files to be imported client-side. Using Bio-Formats on
the client this selection is resolved into a number of import candidates. Here an import candidate is a file or set of files
that represents a single image, a multi-image set or a plate. Each import candidate, which may be one file or several
files, is then treated as Fileset for import. The import of each Fileset is then undertaken by the client in two stages:
upload and server-side import.

A Fileset is uploaded to the server into a location determined by the server, multiple Filesets may be uploaded
in parallel by a client. A checksum is calculated before upload by the client and after upload by the server. If these

3.11. OMERO.server in depth 697

OMERO, Release 5.6.5-SNAPSHOT-1

checksums match then the client triggers a server-side import. The client can then move on to doing other work and
leave the import to complete on the server.

Once the Fileset is on the server and an import has been initiated by the client all processing then takes place on the
server. The server then uses Bio-Formats to extract and store the metadata, calculate the minimum and maximum pixel
values and do other import processing.

Filesets

A fileset is a concept new to OMERO.fs which captures how Bio-Formats relates files to the images that they encode.
If importing a single file leads to a single corresponding image being viewable then a one-to-one mapping exists from
file to image. However, an image’s information may be split among multiple files, or a single file may encode multiple
images. In other cases, especially in high-content screening, many images of wells may be encoded in a complex
manner by many files. In all these cases, a fileset is used to hold the set of files and the set of images to which those
files correspond.

Filesets are essentially indivisible: the files or images that a fileset represents are deleted, or moved between groups,
only as one unit together, and on the server each fileset has a directory in which only its files are stored. Each fileset
firmly binds sets of files and images because the dependencies among them mean that splitting components away
leaves a partial fileset making the remaining data unreadable. Similarly, you should not rename any components
of a fileset as this will also break the dependencies holding them together.

698 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/bio-formats/6.9.1/

OMERO, Release 5.6.5-SNAPSHOT-1

Model description

See acquisition.ome.xml.

• ome.model.fs.Fileset

– Represents a group of files which are considered to belong together.

– In the future the client may upload a single “import set” that is subsequently resolved by Bio-Formats into
multiple filesets on the server.

– Also links to multiple ome.model.jobs.Job instances.

– Links to the image objects that are created during import.

• ome.model.jobs.Job subclasses

– Each one represents some action which takes place server-side on the Fileset.

– For the standard sequence described above, the first will always be an UploadJob which contains ver-
sion info from the client. If the files were not uploaded however, this may not be the case. Then a
MetadataImportJob follows, which is the basic import.

– Other jobs may be necessary for regular usage (PixelDataJob, IndexingJob, etc.). Later jobs may also
be added like a re-parse job, a re-check of the hashes to detect corruption, or an archive job.

– For job definitions, see jobs.ome.xml.

– Some subclasses have a versionInfo property for storing a snapshot of process information along with
software versions. Most important for knowing how files were parsed, therefore when using importPaths,
a “synthetic” version info might be created to say that these were just uploaded blindly.

• ome.model.fs.FilesetEntry

– Link from a Fileset to exactly one ome.model.core.OriginalFile

– Critically, it also contains the original absolute client path of that file.

API sequence

• Choose which files to import by either:

– ImportLibrary and friends (Java only)

– listing all files (not directories) manually.

• Choose a ManagedRepositoryPrx from SharedResourcesPrx.repositories().

• Call either:

– ImportLibrary.importImage() which calls ManagedRepositoryPrx.importFilesets(Fileset,
ImportSettings), or

– directly use ManagedRepositoryPrx.importPaths(StringSet).

• Receive an ImportProcessPrx.

• For each FileEntry in the FileSet or each path in the StringSet (in order), call ImportProcessPrx.
getUploader() and receive a RawFileStorePrx.

• Upload the file via RawFileStorePrx.write() while reading the files locally to write, be sure to calculate the
checksum.

• Pass a list of checksums (in order) to ImportProcessPrx.verifyUpload(StringSet). If the hashes match,
receive a HandlePrx. Otherwise an exception is thrown.

3.11. OMERO.server in depth 699

https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/mappings/acquisition.ome.xml
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/mappings/jobs.ome.xml

OMERO, Release 5.6.5-SNAPSHOT-1

At this point, the client should be able to disconnect and the rest of the import should happen independently.

• Create an CmdCallbackI that wraps the HandlePrx and wait for successful completion.

At this point, the main metadata import is finished, but background processing may still be occurring. Handles for the
background processing will also be returned.

Server-side classes/concepts

AbstractRepositoryI and all of its subclasses are implementations of the InternalRepository API. These objects are
for internal use only and should never be accessible by the clients. Each instance is initialized with a directory which
the servant attempts to “acquire” (i.e. grab a lock file). Once it does so, it is the serving repository.

Each internal repository provides a public view which in turn provides the Repository API. All method calls assume
Unix-style strings, which are guaranteed by CheckedPath, a loose wrapper around java.io.File. CheckedPath
objects along with the active Ice.Current instance are passed to the RepositoryDao interface, which provides
database access for all repositories. Access to raw IO is provided by the RepoRawFileStoreI servant, which wraps a
RawFileBean.

The ManagedRepository implementation is responsible for import and enforces further constraints (beyond
those of CheckedPath) on where and what files are created. Most importantly, the omero.fs.repo.path tem-
plate value is expanded and pre-pended to all uploads. A further responsibility of the ManagedRepository
is to maintain a list of all currently running ManagedImportProcessI, each of which is held in the
ProcessContainer. These ManagedImportProcessI instances further wrap RepoRawFileStoreI instances with
a subclass, ManagedRawFileStoreI.

For file import through ManagedRepository.importFileset, although hasher is nullable ordinarily, it will be set through
the mandatory ImportSettings.checksumAlgorithm property. ManagedRepository.listChecksumAlgorithms lists the
hashers supported by the server. ManagedRepository.suggestChecksumAlgorithm helps the client and server to ne-
gotiate a mutually acceptable algorithm, as in ImportLibrary.createImport; the result is affected by the server’s con-
figuration setting for omero.checksum.supported. ImportLibrary calculates each file’s hash using hashers obtained
through ChecksumProviderFactory.getProvider. In fetching OriginalFile objects by HQL through the Query Service
one needs JOIN FETCH on the hasher property to read the hasher’s name.

Server-side sequence

NB: Server-side ImportLibrary is no longer being used. That logic is currently moved to ManagedImportRequestI.
This may not be the best location. Further, several other layers might also be collapsible, like OMEROMetadataStore
which is currently accessible as a “hidden” service MetadataStorePrx. Here, “hidden” means that it is not directly
retrievable from ServiceFactoryPrx.

• ManagedRepositoryI.importPaths()

– reuses ImportContainer.fillData() to create an ImportSettings and a Fileset and then calls
importFileset(Fileset, ImportSettings)

• ManagedRepositoryI.importFileset()

– determines an ImportLocation calling PublicRepositoryI.makeDir() where necessary.

– createImportProcess creates a ManagedImportProcessI, registers it, and returns it.

– After this, the repository is only responsible for periodically having the ping and eventually the shutdown
method called, via ProcessContainer.

• ManagedImportProcessI.getUploader()

– creates a new RepositoryRawFileStoreI for each file in the paths/fileset.

700 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

– Once close() is called on this instance, closeCalled(int i) will be called on the import process and
the instance will be removed.

– If getUploader() is called again, then a new file store will be created.

• ManagedImportProcessI.verifyUpload()

– If all hashes match, then a ManagedImportRequestI instance is created and submitted to omero.cmd.
SessionI.submit_async() for background processing. The client can wait for the returned omero.
cmd.HandlePrx to finish by using a CmdCallbackI.

– At this point, the ImportProcessPrx can be closed as well as the entire client and the import would still
continue. Only if HandlePrx.cancel() is called, will the import be aborted.

– QUESTION: How to handle rollback at this point?

• ManagedImportRequestI.init (within transaction)

– Registry.getInternalServiceFactory() grabs a ServiceFactoryPrx without the need for an
omero.client instance.

– OMEROWrapper and a OMEROMetadataStoreClient are created with this connection.

– Some other basic configuration takes place.

• ManagedImportRequest.step() (N times, each within same transaction as init())

– NB: it may later make more sense for this bit to happen in a separate process.

– At the moment, 5 steps are hard-coded. Each performing roughly the same amount of work. Some of these
may later be done in the background.

∗ importMetadata() calls store.saveToDB(), which calls MetadataStorePrx.saveToDb(), a re-
mote call. This could possibly be inlined.

∗ generateThumbnails() calls store.resetDefaultsAndGenerateThumbnails(), another re-
mote call, which could also be inlined.

∗ pixelData() calls store.setPixelsParams(), updatePixels(), and populateMinMax().
Min/Max especially should be backgrounded.

∗ Finally, store.launchProcessing() is called, which should remain, but could also be inlined. The
returned script processes could be returned in the ImportResponse.

∗ Return appropriate values.

– notifyObservers() currently does nothing, since this was client-side functionality in ImportLibrary.
This needs to be replaced!

• ManagedImportRequest.buildResponse() (N times, outside the transaction)

– Only step 4 does anything, storing the pixels in a ImportResponse

• ManagedImportRequest.getResponse() (1 time, regardless of exception or not)

– Performs cleanup, then returns the ImportResponse assuming that no call to helper.cancel() has been
made. At this point, ImportLibrary.importImage() returns successfully.

See also:
FS configuration options

In-place import

3.11. OMERO.server in depth 701

OMERO, Release 5.6.5-SNAPSHOT-1

3.11.6 OMERO.processor

The Processor is a python process-launcher which can be run on any Unix system to execute scripts for a user. This
makes use of the scripting service functionality. As many processor nodes can be started as physical computers are
available.

• Source code: processor.py

• Documentation: OMERO.grid

3.11.7 OMERO.server image rendering

A major requirement for any image data application is the ability to display images. In most applications, this is
achieved by reading pixel data from a filesystem and then mapping the pixel data to the 256 grey level available on
most computer display monitors. It is common in some experiments to record and display multiple channels at once.
Typically three, four, or even five separate images must be mapped, and then presented as a color image for painting
on a monitor. Because these operations can require many thousands of operations and must be displayed rapidly to
support the display of time-lapse movies, most image display software applications use a high-speed graphics CPU and
dedicated hardware for image rendering and display. This requirement limits the deployment of these applications to
high-powered workstations.

OMERO.server includes an image server, a software application that delivers rendered images to a client. This ensures
that client applications can display image data. The OMERO Rendering Engine (OMERO-RE) has been designed to
minimize the amount of data transferred to the client and thus removes the requirement for a specific graphics CPU,
allowing high-performance image viewing on standard laptop computers. The OMERO-RE achieves this by limiting
data transfer times by being close to the data, using highly efficient network transfer protocols, utilizing modern multi-
processor and multi-core machines to provide the data to clients in a format that is as efficient to display as possible.
OMERO-RE is multi-threaded and can use multi-core servers to simultaneously render individual channels before
assembly into a final color image ready for transfer to the client. The use of the RE is not mandatory. If a client needs
to have the full pixel data, it can. This OriginalPixels facility is used for client-side analysis, like that performed in the
OMERO.insight measurement tool.

Transfer of image data even after rendering can limit performance, especially when accessing data remotely on connec-
tions with limited bandwidth (e.g. domestic ADSL). Therefore the OMERO-RE contains a compression service with
an API that allows a client adjustable compression providing minimal image artefacts and a 20-fold range of data size
to the client.

The OMERO Rendering Engine is accessed by OMERO client applications written in Java, C++, or Python via a binary
protocol (ICE) provided by ZeroC.

3.11.8 Clustering

Clustering an OMERO instance consists of starting multiple OMERO.blitz servers with each allocating user sessions
based on some criteria. There are at least two reasons you may want to cluster the OMERO server: availability and
throughput.

702 Chapter 3. Developer Documentation

https://github.com/ome/omero-py/blob/v5.11.2/src/omero/processor.py
https://zeroc.com

OMERO, Release 5.6.5-SNAPSHOT-1

Availability

Having the ability to have two servers up at the same time implies that even if you have to restart one of the servers,
there should be no downtime. Currently, OMERO sessions are sticky to a cluster node so it is not possible to shut down
a node at any time. However, all new sessions can be redirected to the server that is to be left turned on. When all
active sessions have completed, the chosen server can be shut down.

Throughput

The other main reason to have other servers running is to service more user sessions simultaneously. When dealing
with memory-intensive operations like rendering, each added server can make a positive difference. This is only a part
of the story, since much of the bottleneck is not the server itself but other shared resources, like the database or the
filesystem. To further extend throughput you will need to parallelize these.

Installation

If you are using the default OMERO.grid application descriptor then quickly enabling clustering is as simple as exe-
cuting:

omero config set omero.cluster.redirector configRedirector
omero node backup start

This starts a second node, named “backup”, which contains a second OMERO.blitz server, “Blitz-1”. By default, this
newly created server will not be used until sessions are manually redirected to it.

See also:
Scaling Omero

Read-Only

A read-only server disallows many operations while still permitting users to log in and retrieve data. Prohibitions for
users of read-only servers include that they may not import data or run scripts. Two properties control read-only con-
figuration: omero.cluster.read_only.db for the database and omero.cluster.read_only.repo for the binary
repository.

Read-only access to the database assumes that INSERT and UPDATE commands cannot be used over a JDBC connection.
Read-only access to the binary repository assumes that filesystem changes cannot be made within any of the standard
OMERO directories. In all cases OMERO’s TempFileManager expects write access to the volatile storage location that
OMERO_TMPDIR can be used to configure.

For each of these configuration properties the server assumes read-write access by default or with a false setting.
Set a property to true to have the server treat the corresponding resource as being read-only. Additionally, without a
true setting the server may log a warning and regard a resource as being in read-only mode if it discovers that it does
not have write access. The currently effective values are provided by the configuration service as omero.cluster.
read_only.runtime.db and omero.cluster.read_only.runtime.repo.

Setting omero.pixeldata.memoizer.dir.local to a read-write directory allows a read-only server to create and
use the Bio-Formats memo files that cache reader state. The server still checks the default BioFormatsCache/ direc-
tory in the read-only binary repository for existing memo files that it can copy to this local directory.

$ omero config set omero.cluster.read_only.db true
$ omero config set omero.cluster.read_only.repo true
$ omero config set omero.pixeldata.memoizer.dir.local /tmp/BioFormatsCache

3.11. OMERO.server in depth 703

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/default.xml
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IConfig.html

OMERO, Release 5.6.5-SNAPSHOT-1

Note: If the deprecated configuration property omero.cluster.read_only is set to true then the server behaves
as if all omero.cluster.read_only.* properties were set to true regardless of any other value that they have.

3.11.9 Collection counts

The IContainer interface has always provided a method for returning the count of some collection types via
getDetails().getCounts(). The server has database views for all link collections. These are accessed through
HQL directly, such as:

Long self = iAdmin.getEventContext().getCurrentUserId();
Image i = iQuery.findByQuery(

"select i from Image i left outer join fetch i.annotationLinksCountPerOwner", null);
Map<Long, Long> countsPerOwner = i.getAnnotationLinksCountPerOwner();

// Map may be null if not fetched.
if (countsPerOwner != null) {

// countOfAnnotationsForImageByUser
Long count = countsPerOwner.get(self);
if (count != null) {

// do something
}

}

Values written to the map will not be persisted to the database, since they are continually re-generated.

Pojo options

The PojoOptions configuration of what elements are counted has been removed from the API. Instead, the returned
map contains all values for all users, and can be summed to acquire the total count.

Restrictions

Currently a Hibernate bug (waiting to be filed) prevents retrieving the counts on any other than the top-level object
(“select this”).

Instructions

The views.sql script is automatically executed when initializing your database.

704 Chapter 3. Developer Documentation

https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IContainer.java

OMERO, Release 5.6.5-SNAPSHOT-1

3.11.10 How To create a service

Overview

These instructions are for core developers only and may be slightly out of date. They will eventually be revised, but
if you are looking for general instructions on extending OMERO with a service, see Extending OMERO.server. If
you would indeed like to create a core service, please contact the forum.

To fulfill #306, r905 provides all the classes and modifications needed to create a new stateless service (where this
varies from stateful services is also detailed). In brief, a service provider must create an interface, an implementation
of that interface, a Spring configuration file, as well as modify the server configuration and the central service factory
(These last two points stand to change with #314).

Note: With the creation of OMERO.blitz, there are several other locations which need to be modified. These are also
listed below.

Files to create

src/main/java/ome/api/IConfig.java the interface which will be made available to client and server alike (which is
why all interfaces must be located in the /common component). Only serializable and client-available types
should enter or exit the API. Must subclass ``ome.api.ServiceInterface``.

src/main/java/ome/logic/ConfigImpl.java the implementation which will usually subclass AbstractLevel{1,
2}Service or AbstractBean (See more below on super-classes) This is class obviously requires the most
work, both to fulfill the interface’s contract and to provide all the metadata (annotations) necessary to properly
deploy the service.

src/main/resources/ome/services/service-ome.api.IConfig.xml a Spring configuration file, which can “inject” any
value available in the server (Omero)context into the implementation. Two short definitions are the minimum.
(Currently not definable with annotations.) As explained in the file, the name of the file is not required and in
fact the two definitions can be added to any of the files which fall within the lookup definition in the server’s
beanRefContext.xml file (see below).

src/main/java/ome/services/blitz/impl/ConfigI.java a Ice “servant” implementation which can use on of several
methods for delegating to the ome.api.IConfig interface, but all of which support throttling.

Files to edit (not strictly necessary, see #314)

src/main/java/ome/system/ServiceFactory.java our central API factory, needs an additional method for looking up
the new interface (get<interface name>Service())

src/main/resources/ome/services/ server Spring configurations, which makes the use of JNDI and JAAS signifi-
cantly simpler.

src/main/slice/omero/API.ice (blitz) a ZeroC slice definition file, which provides cross-language mappings. Add the
same service method to ServiceFactoryI as to ServiceFactory.java.

src/main/resources/ome/services/blitz-servantDefinitions.xml (blitz) a Spring configuration, which defines a map-
ping between Ice servants and Java services.

src/main/slice/omero/Constants.ice (blitz) a ZeroC slice definition file, which provides constants needed for looking
up services, etc.

3.11. OMERO.server in depth 705

https://www.openmicroscopy.org/forums
https://trac.openmicroscopy.org/ome/ticket/306
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IConfig.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/logic/ConfigImpl.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/service-ome.api.IConfig.xml
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/ServiceFactory.java
https://trac.openmicroscopy.org/ome/ticket/314
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/api/IConfig.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/logic/ConfigImpl.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/service-ome.api.IConfig.xml
https://spring.io
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/beanRefContext.xml
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/services/blitz/impl/ConfigI.java
https://zeroc.com
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/ServiceFactory.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/
https://spring.io
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/API.ice
https://zeroc.com
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-servantDefinitions.xml
https://spring.io
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/Constants.ice
https://zeroc.com

OMERO, Release 5.6.5-SNAPSHOT-1

src/main/java/ome/services/blitz/impl/ServiceFactoryI.java (blitz) the central session in a blitz. Should always be
edited parallel to ServiceFactory.java. Also optional in that MyServicePrxHelper.uncheckedCast(
serviceFactoryI.getByName(String)) can be used instead.

Files involved

src/main/resources/beanRefContext.xml

src/main/resources/beanRefContext.xml Singleton definitions which allow for the static location of the active con-
text. These do not need to be edited, but in the case of the server beanRefContext.xml, it does define which files
will be used to create the new context (of importance is the line classpath*:ome/services/service-*.xml). blitz’s
beanRefContext.xml defines the pattern classpath*:ome/services/blitz-*.xml to allow for blitz-specific con-
figuration.

And do not forget the tests

src/test/java/ome/server/itests/ConfigTest.java tests only the implementation without a container.

blitz: Currently, testing blitz is outside the scope of this document.

Things to be aware of

Local APIs

Several services implement a server-side subclass of the ome.api interface rather than the interface itself. These in-
terfaces are typically in ome.api.local. Such local interfaces can provide methods that should not be made available to
clients, but which are needed within the server. Though not currently used, the @Local() annotation on the implemen-
tation can list the local interface for future use. See UpdateImpl for an example.

Stateful services

Currently all stateful services are in their own component (renderer and romio) but their interface will still need to be
under common for them to be accessible to clients. To be done.

3.11.11 OMERO sessions

OMERO sessions simplifies the handling of login sessions for OMERO.blitz.

In short:

• Sessions are a replacement for the standard JavaEE security infrastructure.

• Sessions unify the Blitz and RMI session handling, making working with Java RMI more like Blitz (since the
JavaEE interaction is essentially “conversationless”).

• Sessions provide the ability (especially in Blitz) to quit a session and rejoin it later as long as it has not timed
out, possibly useful for moving from one machine to another.

• Sessions provide the ability to share the same space. Two users/clients attached to the same session would
experience the same life-cycle.

• Sessions provide a scratch space to which any data can be written for and by job/script executions.

706 Chapter 3. Developer Documentation

https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/ome/services/blitz/impl/ServiceFactoryI.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/beanRefContext.xml
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/beanRefContext.xml
https://docs.spring.io/spring/docs/2.0.x/reference/beans.html#beans-factory-scopes-singleton
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/beanRefContext.xml
https://github.com/ome/omero-server/blob/v5.6.3/src/test/java/ome/server/itests/ConfigTest.java
https://github.com/ome/omero-server/tree/v5.6.3/src/main/java/ome/api/local
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/logic/UpdateImpl.java
https://github.com/ome/omero-renderer/tree/v5.5.9/
https://github.com/ome/omero-romio/tree/v5.6.4/
https://github.com/ome/omero-common/tree/v5.5.9/

OMERO, Release 5.6.5-SNAPSHOT-1

3.11. OMERO.server in depth 707

OMERO, Release 5.6.5-SNAPSHOT-1

• Sessions act as a global cache (in memory or on disk) to speed up various server tasks, including login. With
further extensions like http://terracotta.org/, sessions could serve as a “distributed” cache.

• Sessions prevent sending passwords in plain text or any other form. After that, all session interactions take place
via a shared secret key.

Design

All services other than ISession, assume that a user is logging in with a username equal to session uuid. Whereas
previously one logged in with:

ome.system.Principal p = new ome.system.Principal("josh","user","User");

behind the scenes, now the “josh” value is replaced by the UUID of a ome.model.meta.Session instance.

The session is acquired by a call to:

ome.api.ISession.createSession(Principal princpal, String credentials);

and carries information related to the current user’s session.

Session session;
session.getUuid(); // Unique identifier; functions as a temporary password. DO NOT␣
→˓SHARE IT.
session.getTimeToIdle(); // Number of milliseconds which the user can idle without␣
→˓session timeout
session.getTimeToLive(); // Total number of milliseconds for which the session can live
session.getStarted(); // Start of session
session.getClosed(); // if != null, then session is closed

These properties cannot be modified.

Other properties are for use by clients:

session.getMessage(); // General purpose message statement
session.getAgent(); // Can be used to specify which program the user is␣
→˓using
session.getDefaultEventType(); // Default event type (the third argument "User" to␣
→˓Principal above)
session.getDefaultPermissions(); // String representation of umask (e.g. "rw----")

After changing a property on the session returned by createSession() it is possible to save them to the server via:

ome.api.ISession.updateSession(Session);

Finally, when finished, to conserve resources it is possible to destroy the session via:

ome.api.ISession.closeSession(Session);

708 Chapter 3. Developer Documentation

http://terracotta.org/

OMERO, Release 5.6.5-SNAPSHOT-1

Existing sessions

In OMERO.blitz, it is possible to reacquire the session if it is still active, by passing the previous session UUID as your
password (User principal is ignored).

client = omero.client()
servicefactory = client.createSession()
iadmin = servicefactory.getAdminService()
olduuid = iadmin.getEventContext().sessionUuid

// lose connection

client = omero.client()
servicefactory = client.createSession(omero.sys.Principal(), olduuid)
// now reattached

See also:
Server security and firewalls

3.11.12 Aspect-oriented programming

Aspect-oriented programming is, among other things, the attempt to define and centralize cross-cutting concerns. In
other words, it is not much more than the tried-and-true principle of modularization. Having possibly unseen aspects
operating on a given class however, can complicate an initial examination of the code. Therefore, it is important to be
aware of what portions of the OMERO code base are “advised” and where to find the advisors (in the case of OMERO
solely interceptors).

In Spring, advisors are declared in the bean definition files (under src/main/resources/ome/services, services.xml, hi-
bernate.xml, and others.

In these configuration files, various Spring beans (shared objects) are defined with names like “proxyHandler”, “even-
tHandler”, “serviceHandler”, and “transactionHandler”. Each of these is a method interceptor which is passed execu-
tion before the actual logic is reached. The interceptor can inspect or replace the return value, but can also stop the
method execution from ever taking place.

Unlike with AspectJ, the AOP implementation used by OMERO only allows for the advising of interfaces. Simply
creating a new service implementation via “new QueryImpl()” will not produce an advised object, which in turn will
not function properly, if at all. Instead, advised objects can only be acquired from the Spring context.

By and large, only the API service methods are advised in OMERO.

Why?

Often, when implementing or adding code, it becomes clear just how many requirements are placed by libraries, the
application server, and existing code on any new code. This can include transaction handling, session handling, security
checks, object validation, logging etc. As a code-base grows, these dependencies slow development and make code
unmanageable. AOP tries to reduce these dependencies by defining each of these concerns in a single place.

As a quick example, in OMERO transactions and exceptions are handled through method interceptors. Rather than
writing:

void method1(){
try {

(continues on next page)

3.11. OMERO.server in depth 709

https://spring.io
https://github.com/ome/omero-server/tree/v5.6.3/src/main/resources/ome/services
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/services.xml
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/hibernate.xml
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/hibernate.xml
https://eclipse.org/aspectj/

OMERO, Release 5.6.5-SNAPSHOT-1

(continued from previous page)

Transaction tx = new Transaction();
tx.begin();
// your code goes here
tx.commit();

} catch (TxException e) {
tx.rollback();

} catch (OtherException e) {

}

}

you just write:

void method1(){
// your code goes here

}

See also:
Aspect Oriented Programming Chapter of the Spring documentation

AOP Alliance Joint project defining interfaces for various AOP implementations

AspectJ The arguable leader in Java/AOP development. Not used in Omero, but a good starting point.

Aspect-oriented programming Wikipedia page on AOP

3.11.13 OmeroContext

The entire OMERO application (on a single JVM) resides in a single ome.system.OmeroContext. Each call belongs
additionally to a single org.hibernate.Session (which can span over multiple calls) and to a single ome.model.meta.Event
(which is restricted to a single task).

The container for all OMERO applications is the OmeroContext (src/main/java/ome/system/OmeroContext.java).
Based on the Spring configuration backing the context, it can be one of client, internal, or managed. The use
of a ServiceFactory simplifies this usage for the client.

Hibernate sessions

A Hibernate Session comprises a ` Unit-of-Work <https://www.martinfowler.com/eaaCatalog/unitOfWork.
html>`_ which translates for OMERO’s OME-Remote Objects model to a relational database. It keeps references
to all Database-backed objects so that within a single session, object-identity stays constant and object changes can be
persisted.

A session can span multiple calls by being disconnected from the underlying database transaction, and then reconnected
to a new transaction on the next call (see src/main/java/ome/tools/hibernate/SessionHandler.java for the implementa-
tion).

For information about Events see OMERO events and provenance.

710 Chapter 3. Developer Documentation

https://docs.spring.io/spring/docs/2.0.x/reference/aop.html
http://aopalliance.sourceforge.net/
https://eclipse.org/aspectj/
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://github.com/ome/omero-common/blob/v5.5.9/src/main/java/ome/system/OmeroContext.java
https://spring.io
https://www.martinfowler.com/eaaCatalog/unitOfWork.html
https://www.martinfowler.com/eaaCatalog/unitOfWork.html
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/tools/hibernate/SessionHandler.java

OMERO, Release 5.6.5-SNAPSHOT-1

3.11. OMERO.server in depth 711

OMERO, Release 5.6.5-SNAPSHOT-1

3.11.14 OMERO events and provenance

What is an event?

As described under OmeroContext, each method call takes place within a single application context (always
the same), session, and event. Of these, only event is guaranteed to be unique for every task*. The
src/main/java/ome/security/basic/EventHandler.java is responsible for creating new events.

Events as audit log

On each Database-update (INSERT/UPDATE/DELETE), an EventLog is created by a HibernateInterceptor
which is then saved to the database at the end of the method call (in UpdateImpl).

Relationship to ModuleExecutions

The OMERO Event plays a similar role to the ModuleExecution in the OME 2 system. They both contain time
of create/update/deletion, status, and type information. Event, however, has lost its ACL/permissions role. These
values have been moved to embedded values represented by the Details object. Event also is not linked to all the
created SemanticTypes as was ModuleExecution, and so cannot fully represent the provenance data needed by the
AnalysisEngine. At such time as the AnalysisEngine is ported to Java, the ModuleExecution object will have
to be added.

* Here we say “task” and not method call, because all method calls to a single stateful service instance belong to the
same event. This is the nature of a stateful service. Logically, however, it is a single action.

See also:
` Hibernate events <https://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/events.html>`_

3.11.15 Properties

Under the etc/ directory in both the source and the binary distributions, several files are provided which help to
configure OMERO.server:

etc/omero.properties Since 5.5, the following repositories now have a properties file with the properties used in
the repository itself. See omero-model.properties, omero-common.properties, omero-server.properties, omero-
blitz.properties.

etc/hibernate.properties Required by Hibernate since some properties are only configurable via a class-
path:hibernate.properties file

etc/logback.xml Logging configuration

etc/build.properties The properties that you will most likely want to change

etc/local.properties Local file overriding etc/build.properties (used by build only)

The most useful of the properties are listed in a glossary.

On creation of an OmeroContext, the lookup for properties is (first wins):

• Properties passed into the constructor (if none, then the default properties in config.xml)

• System.properties set via “java -Dproperty=value”

• Configuration files in order listed.

712 Chapter 3. Developer Documentation

https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/security/basic/EventHandler.java
https://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/events.html
https://github.com/ome/openmicroscopy/blob/develop/etc/omero.properties
https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/omero-model.properties
https://github.com/ome/omero-common/blob/v5.5.9/src/main/resources/omero-common.properties
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/omero-server.properties
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/omero-blitz.properties
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/omero-blitz.properties
https://github.com/ome/openmicroscopy/blob/develop/etc/hibernate.properties
https://github.com/ome/openmicroscopy/blob/develop/etc/logback.xml
https://github.com/ome/openmicroscopy/blob/develop/etc/build.properties
https://github.com/ome/omero-common/blob/v5.5.9/src/main/resources/ome/config.xml

OMERO, Release 5.6.5-SNAPSHOT-1

This ordering is defined for the various components via “placeholder configurers” in the following file in omero-server:

• src/main/resources/ome/services/services.xml

Once configured at start, all values declared in one of the mentioned ways can be used in Spring configurations via the
syntax:

<bean id=...>
<property name="mySetter" value="${property.name}"/>

</bean>

3.11.16 Using server queries internally

Overview

This page is aimed at internal server developers and does not contain information for how to perform API queries. If
that is the kind of information you are looking for, you may find OMERO Application Programming Interface more
useful as a starting point. OME’s Hibernate 3.5 Training additionally provides information on both API queries and
server internals.

Fig. 14: omero.services.query

3.11. OMERO.server in depth 713

https://github.com/ome/omero-server
https://github.com/ome/omero-server/blob/v5.6.3/src/main/resources/ome/services/services.xml
https://downloads.openmicroscopy.org/presentations/2017/Team-Training/Hibernate/

OMERO, Release 5.6.5-SNAPSHOT-1

Introduction

The ome.services.queries package is intended to allow for the easy definition of queries by both developers and clients.
Due to the fragility of HQL defined queries, a framework allowing for easy definition, multiple formats (Velocity
templates, Database values, class files), and transparent lookup is critical.

Lookup happens among all QuerySources that are registered with the QueryFactory instance present in OMERO
services. The first non-null Query instance returned by a QuerySource for a given String id is used.

Queries implement the HibernateCallback interface and are passed directly into an HibernateTemplate instance.
Therefore, care should be taken as to which QuerySources are registered with the QueryFactory.

Parameters

Critical for using queries is the specification of named parameters, number of results to return, offset of the first result
to return etc. These features are offered by the ome.parameters package. The ome.parameters.Parameters class is the
starting point for building new parameters (although the ome.parameters.Filter object is used by some methods).

To specify parameters, instantiate a Parameters object either with or without a Filter object argument. The version with
Filter object is useful for specifying the number of results to be returned and whether or not a java.util.Collection or a
ome.model.IObject instance will be returned. For example,

Parameters p = new Parameters(new Filter().unique());

will specify that the given query should return a single instance. An exception will be thrown if more than one result
is found.

Parameters p = new Parameters(new Filter().unique().page(0,1));

However, this will guarantee that only one result will be returned, since more than 1 result (“maxResults”) will be
ignored. Here, an ordering of the results might make sense.

Once a Parameters instance is available, named parameters can be added using any of the add...() methods. These
parameters will be dynamically bound during query preparation. For example, a query of the form:

select e from Experimenter e where omeName = :name

has one named parameter “name”, which can be specified by the call:

parameters.addString("name","<myNameHere>");

Positional parameters of the form

select e from Experimenter where omeName = ?

are not supported.

714 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Adding queries

Subclassing query

Other than by defining String queries via new QueryDef() TBD, the easiest way to create queries is to subclass
ome.services.query.Query. The only non-optional requirements on the Query implementor are then to define the (pos-
sibly optional) named parameters to the Query, and to override the “buildQuery” (which must call one and only one of
“setQuery()” or “setCriteria()”)

Other than that, the Query implementor can enable filters on the Hibernate session (an attempt is made to clean up after
the Query runs), and in general use any of the Hibernate session methods.

Defining a QuerySource

A more involved but perhaps more rewarding method would be to implement QuerySource and configure
QueryFactory to lookup query ids also in your QuerySource. This would allow you to write Velocity (or
Freemarker/Ruby/Python/Groovy. . .) QuerySourceswhich use some form of templating or scripting to generate HQL
queries.

3.11.17 OMERO throttling

Throttling consists of reducing the total number of resources that one user or group can consume at a given time. The
throttling service is a new component of OMERO.blitz which should ensure a more fair usage.

For example, each blitz server has a pre-defined maximum number of server threads. Any calls beyond this number
must wait on a currently executing call to finish. Before throttling, a single user could consume all the available threads
and all other users would have to wait.

With throttling, all invocations are placed on configurable on a queue which is worked on my any number of con-
figurable slots. Each site can configure the number and type of slots based on which throttling strategy has been
chosen.

Planning

Planned for milestone:3.0-Beta4, the infrastructure for throttling was committed to milestone 3.0-Beta3.1 with the in-
thread strategy, which uses the calling thread for execution. This provides the same semantics as the current blitz
server.

Other strategies include:

• a per-session strategy

• a per-user strategy

• a per-group strategy

each of which allows the session, user, or group a fair slice of execution, but no more. Within each strategy, the order
of operation is guaranteed not to change once the execution reaches the server. However, there is nothing the server
can do to prevent re-ordering if two calls are made by the client simultaneously.

More advanced strategies are possible based on total consumed resources over some window, or even a service-level
agreement (SLA) or Quality of Service (QoS)-style planning. All strategies must guarantee a proper method ordering.

It is also intended that the throttling service provide limits to memory usage, database hits within a single transaction,
and total execution time.

3.11. OMERO.server in depth 715

https://trac.openmicroscopy.org/ome/milestone/3.0-Beta3.1

OMERO, Release 5.6.5-SNAPSHOT-1

Terminology

• Slots - are the number of available executions that a single session, user, or group can perform simultaneously
on a single machine. (If the server is clustered, there will be the given number of slots per hosts)

• Hard and soft limits - hard limits throw an OverUsageException and require some form of compensation on
the clients. Soft limits, on the other hand, simply slow down, or throttle, execution to give other operations a
chance to succeed.

• Strictness - when a strategy is configured as strict, then once a session, user, or group has reached its limits,
the hard or soft limit will be enforced even if no one else is using the server. A non-strict policy will “borrow”
someone else’s slot for the duration of one execution.

See also:
Scaling Omero

3.11.18 OMERO rendering engine

Description

The rendering component provides for the efficient rendering of raw pixels based on per-user display settings. A user
can change settings and see them take effect in real time. Changes can also be persisted to the database and then viewed
from another machine or even client.

Server-port

The rendering engine has been ported to also now sit on the server-side, though equally usable from any Java setting.

Optimizations

Here we have a listing of the various rendering engine optimizations that have taken place over time:

• Packed Integers (#449)

• Region Based Rendering (#450)

• Removal of RGB Rendering Model (#452)

Compression

With r1744 and r1748, the rendering engine now supports compression. (#6)

Design

The following diagrams describe the original design of the Rendering Engine. Designed initially for the client-side,
much of this information needs to be updated. Textual explanations are included as notes in each diagram.

716 Chapter 3. Developer Documentation

https://trac.openmicroscopy.org/ome/ticket/449
https://trac.openmicroscopy.org/ome/ticket/450
https://trac.openmicroscopy.org/ome/ticket/452
https://trac.openmicroscopy.org/ome/ticket/6

OMERO, Release 5.6.5-SNAPSHOT-1

3.11. OMERO.server in depth 717

OMERO, Release 5.6.5-SNAPSHOT-1

718 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

3.11. OMERO.server in depth 719

OMERO, Release 5.6.5-SNAPSHOT-1

720 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

3.11. OMERO.server in depth 721

OMERO, Release 5.6.5-SNAPSHOT-1

722 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

3.11.19 Scaling Omero

There are several ways that OMERO, or any server system, can scale. Optimizing your system for more than one of
these factors is non-trivial, but we try to lay out some guidelines below for what has worked, what almost certainly will
not work, and what – under the right circumstances – might be optimal.

Concurrent invocations

The bottlenecks for concurrent invocations are:

• database connections

• server threads

• the router

Database connections

Database servers, in general, have a maximum number of allowed connections. In postgres, the default
max_connections is 100, though in many cases this will be significantly lower due to the available shared mem-
ory (SHMMAX). If OMERO were to use direct connections to the database, after max_connections invocations, all
further attempts to connect to the server would fail with “too many connection” exceptions. Instead, OMERO uses a
connection pool in front of Postgres, which manages many more simultaneous attempts to connect to the database.
OMERO’s connection pool size as determined by omero.db.poolsize should be lower than max_connections.

With the default max_connections set to 64, it is possible to execute 500 queries simultaneously without database
exceptions. Instead, one receives server exceptions.

3.11. OMERO.server in depth 723

OMERO, Release 5.6.5-SNAPSHOT-1

724 Chapter 3. Developer Documentation

OMERO, Release 5.6.5-SNAPSHOT-1

Server threads

In OMERO.blitz, too many (500+ on the default configuration) simultaneous invocations will result in
ConnectionLost exceptions. We are currently working on ways to extend the number of single invocations on one
server, but a simpler solution is to start another OMERO.blitz server.

Total throughput

The bottlenecks for throughput are:

• maximum message size

• server memory

• IO

• network

See also:
OMERO.server and PostgreSQL Instructions about OMERO.server and PostgreSQL under UNIX and UNIX-like

platforms.

OMERO.grid

Clustering

3.11.20 SqlAction

Internal server interface used to wrap all calls which speak JDBC directly. This allows special logic to be introduced
where necessary for each RDBM.

Calls which use Hibernate for the cross-database conversion can use the org.hibernate.Session interface.

3.11.21 The server’s view of administrator restrictions

OMERO 5.4 introduced the concept of a restricted administrator. These are generally more powerful than normal
OMERO users and group owners but they do not have all the powers of full administrators such as root. A restricted
administrator is the same as a full administrator except that in specific ways it is as if they are not an administrator at
all. Those specific ways are exactly the restrictions listed in their user’s Experimenter.config property. For that
property, a name of AdminPrivilege:Dance (just an example!) with a value of false indicates that the restricted
administrator’s ability to dance is not that of a full administrator. Their ability to dance is instead that of a normal user
who is not a member of the system group. A member of the system group with an empty config property is a full
administrator without restrictions.

3.11. OMERO.server in depth 725

OMERO, Release 5.6.5-SNAPSHOT-1

Restrictions

The meta.ome.xml mapping lists all the values of the AdminPrivilege enumeration. Each of those values corresponds
to a kind of operation for which full administrators have greater privilege. If an administrator has any of the below
restrictions then they do not have greater privilege for the corresponding operation. It instead becomes as if they were
but a normal user in that respect.

Chgrp move data to other groups

Chown give data to other users

WriteOwned create or edit OMERO model objects that have an owner and are not OriginalFile instances

WriteFile create or edit OriginalFile objects that are in neither the managed repository nor the script repository

WriteManagedRepo create or edit OriginalFile objects that are in the managed repository, which is to where im-
ported image files are uploaded

WriteScriptRepo create or edit OriginalFile objects that are in the script repository, which is where official
scripts reside

DeleteOwned delete OMERO model objects that have an owner and are not OriginalFile instances

DeleteFile delete OriginalFile objects that are in neither the managed repository nor the script repository

DeleteManagedRepo delete OriginalFile objects that are in the managed repository, which is to where imported
image files are uploaded

DeleteScriptRepo delete OriginalFile objects that are in the script repository, which is where official scripts
reside

ModifyGroup make changes to groups, such as their name or permissions level

ModifyGroupMembership make changes to who is a member or owner of which group

ModifyUser make changes to users, such as their name or institution

Sudo become another user

ReadSession read other users’ session UUIDs

Bundling restrictions

It often makes sense to apply all but a certain bundle of restrictions to a user. For example, users working with
other users’ data may benefit from being able to go beyond their normal group restrictions only for the operations
of WriteOwned, WriteManagedRepo, WriteScriptRepo, Chgrp. A facility manager importing on behalf of other
users may appropriately be given all but the Sudo restriction. A human resources representative may be given all but
the ModifyGroup, ModifyGroupMembership, ModifyUser restrictions. Much depends on how personnel roles are
handled in each specific institution.

Warning: The ReadSession restriction should be applied to all restricted administrators. Without that restriction
members of the system group can read other users’ session UUIDs and join those sessions as the user. In contrast,
while an administrator without the Sudo restriction can become other users, the security system prevents their
using sudo to elevate their own administrative powers. An administrator cannot sudo to become root to escape
their restrictions. A security filter assists in enforcing ReadSession.

726 Chapter 3. Developer Documentation

https://github.com/ome/omero-model/blob/v5.6.5/src/main/resources/mappings/meta.ome.xml
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/model/AdminPrivilege.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/security/basic/LightAdminPrivilegesSecurityFilter.html

OMERO, Release 5.6.5-SNAPSHOT-1

Working with restrictions

Restricted administrators

Since OMERO 5.4 the admin service offers operations for managing restrictions on administrators.
createLightSystemUser creates a new restricted administrator. getAdminPrivileges and setAdminPrivileges
manage the restrictions on an existing administrator.

Using setAdminPrivileges to set an empty list of privileges fills that user’s Experimenter.config property with
a false value for every AdminPrivilege name. That user does not thus become like a normal user: they retain all
administrative powers not explicitly restricted, such as being able to read all users’ images.

Even for a normal user who is not a member of the system group and has no administrative powers, restrictions can still
be set in their Experimenter.config property. Such restrictions have no effect while that user is not an administrator
as they have no administrative powers to restrict.

getCurrentAdminPrivileges is useful for OMERO clients to find how the currently logged-in administrator is
restricted. getAdminsWithPrivileges identifies the administrators who are sufficiently unrestricted in a given way.

Permissions on model objects

OMERO model objects have a details property that bears information on object permissions. In addition to the existing
methods like canEdit and canDelete, the canChgrp and canChownmethods were introduced in OMERO 5.4. Client
software may find these permissions methods a useful guide as to what the current administrator may do to which
objects.

Event context

Since OMERO 5.4 the event context for the current session, available from the admin service, has additional data
members:

• adminPrivileges that lists the restrictions not applying to the current session. For non-administrators this list
is empty as if they are wholly restricted. For restricted administrators it lists only the privileges that they enjoy.
For full administrators all privileges are listed.

• sudoerId, sudoerName that for sudo sessions notes which administrator it was who became the current user.

Integration tests in Java

• AdminServiceTest tests the admin service operations for working with restrictions.

• LightAdminPrivilegesTest tests the restrictions from a security point of view: checking that applying even just
one restriction to a user prevents all means of performing the corresponding operation.

• LightAdminRolesTest tests various user workflows: checking that with all but a given set of restrictions an
administrator may perform useful sequences of operations.

3.11. OMERO.server in depth 727

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IAdmin.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/sys/EventContext.html
https://github.com/ome/openmicroscopy/blob/develop/components/tools/OmeroJava/test/integration/AdminServiceTest.java
https://github.com/ome/openmicroscopy/blob/develop/components/tools/OmeroJava/test/integration/LightAdminPrivilegesTest.java
https://github.com/ome/openmicroscopy/blob/develop/components/tools/OmeroJava/test/integration/LightAdminRolesTest.java

OMERO, Release 5.6.5-SNAPSHOT-1

Mapping of OriginalFile.repo

Since OMERO 5.4 the repo property of OriginalFile is mapped into the OMERO object model. Because the interpre-
tation of an OriginalFile instance depends upon with which repository the file is associated, for security reasons the
server greatly restricts the mutation of this property: users cannot simply switch a file from one repository to another.

The server must allow some setting of repo. It currently uses an indirect means of authenticating legitimately set
values. Each running server has a secret key recorded in the uuid property of Node. This key is not available to
OMERO clients, it is internal to the server. To set a new file’s repo the repository DAO prefixes the file’s name with
the server’s secret key. A database trigger recognizes this key from the node table, removes the prefix from the name,
then allows the value of repo to be set.

Database triggers

While BasicACLVoter and OmeroInterceptor carry the bulk of the burden of enforcing restrictions on administrators,
together with AdminImpl for the user and group management restrictions, the database system itself is also a key
enforcement mechanism.

The update service is one means by which administrators may attempt to perform restricted operations. Hibernate’s
interceptors are not wholly suited to blocking exactly the prohibited actions so further barriers are built into the database
that trigger upon specific data changes. The database must therefore have enough information to judge if an operation
is permitted. OMERO 5.4 introduced two tables:

_roles notes the server’s configured IDs for special users and groups, such as root and system which are both
usually 0; set by DBUserCheck on server startup

_current_admin_privileges notes the restrictions not applying to the current user on a per-transaction basis; main-
tained by OmeroInterceptor and frequently cleared by LightAdminPrivilegesCleanup

An example database trigger would be user_config_delete_trigger on the experimenter_config table. This
trigger raises an exception if, for example, an AdminPrivilege:Dance name with a false value is to be removed
from the config of a member of the system group by a user who themself is restricted from dancing. This prevents
the administrator whose dancing is restricted from lifting that restriction from another administrator so that they may
be the one to newly dance.

3.11.22 Model graph operations

Overview

When the OMERO server acts on its model objects it must determine the impact on related objects. For instance,
deleting an image may entail deleting users’ rendering settings for that image, also the links to any datasets that the
image is in. Understanding the details of the implementation substantially assists in debugging or creating server
operations that act on the directed graph of model objects.

728 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/ome/services/blitz/repo/RepositoryDaoImpl.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/security/basic/BasicACLVoter.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/security/basic/OmeroInterceptor.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/logic/AdminImpl.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/api/IUpdate.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/util/DBUserCheck.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/security/basic/OmeroInterceptor.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/security/basic/LightAdminPrivilegesCleanup.html

OMERO, Release 5.6.5-SNAPSHOT-1

Motivation

The OMERO model objects are interlinked. Plates may have wells whose samples come from multiple runs. Both
datasets and well samples may have images, but in different ways. Datasets, wells, images, among others, may all be
annotated. Images themselves are not simple: for example, they may be in a fileset, they may have ROIs drawn on
them, they may share an instrument with the projection of that image. All these entities are separate objects that can
be thought of as forming the nodes (vertices) of a directed graph of relationships.

Various operations supported by the OMERO server, most commonly moving objects to a different group, or deleting
them, may implicitly include many related objects. For example, if one deletes a fileset, one also deletes the images
from that fileset, and even the comments on those images. This section describes how the graph of model objects is
traversed and how the target set of related objects is determined.

This technical detail is important to understand if one wishes to,

• adjust the set of related model objects that are included in operations

• change the types of OME-Remote Objects model objects or the permissible links among them

• fix bugs in the related request objects defined in Graphs.ice that may be submitted to OMERO sessions for
execution.

Approach

Graph node states and transitions

In determining which model objects to process, and how, each corresponding graph node is in one of these states:

adjective rule format Action enum Orphan enum
irrelevant [E]{i} EXCLUDE IRRELEVANT
relevant [E]{r} EXCLUDE RELEVANT
orphaned [E]{o} EXCLUDE IS_LAST
attached [E]{a} EXCLUDE IS_NOT_LAST
to delete [D] DELETE n/a
to include [I] INCLUDE n/a
outside [O] OUTSIDE n/a

“enum” refers to the enumerations defined in GraphPolicy.java. Note also that, as for the introduction to Deleting in
OMERO, “links” are simply edges in the graph, distinct from the classes implementing ILink.java which themselves
have several links, not least to their parent and child objects.

When traversal begins, the target objects are to be included (e.g., for Chgrp2) or deleted (e.g., for Delete2) and other
objects are irrelevant.

A list of transition rules is associated with the requested operation. Each of the target objects is examined in turn and
the rules matched against the state of that object and of those directly linked to it in either direction. If a rule matches, it
may either abort the operation with an error condition or, more usually, change the state of any of the objects it matches.
Changed objects are themselves queued for examination and rule matching. The traversal is complete when all queued
objects have been examined with no further transition rule matches. Rules that can abort the operation are checked
only after the other rules have completed processing. GraphTraversal.java’s planOperation method is at the heart of
this matching process.

3.11. OMERO.server in depth 729

https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/slice/omero/cmd/Graphs.ice
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/graphs/GraphPolicy.java
https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/ILink.java
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chgrp2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Delete2.html
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/graphs/GraphTraversal.java

OMERO, Release 5.6.5-SNAPSHOT-1

Further graph node states

Usual behavior is for orphaned objects related to the target objects to be included in the operation, but not the otherwise-
attached objects, the non-orphans who have excluded parents that are to be neither deleted nor included. The related
children that may be orphans are exactly those identified as being relevant. Transition rules match these against excluded
parents to discover if the relevant objects do have any qualifying parents, changing them to be attached objects. If no
further rules match and some objects remain as relevant, then they are automatically changed to orphans and examined
for further rule matches. After that processing completes, attached objects are changed back to being relevant to confirm
that excluded qualifying parents still exist to change them to being attached: this is necessary in case, after an object
was considered attached, other rules changed all those qualifying parents from being excluded so that the object is now
an orphan.

Objects that are changed to be outside are effectively rendered invisible, outside consideration in the execution phase.
In the execution of an operation the graph traversal code removes links between included and excluded objects, but it
allows links to remain between outside objects and other objects. Outside objects typically implement IGlobal.java and
have no owner or group.

An additional aspect of objects’ state is if permissions are to be checked for them. For instance, typically I may move
only my own objects to a different group, but if another user tags my image with my tag, then I may still move my
image and tag to a different group, also moving that link even though it is not my own object: in that case, permissions
checking is disabled for that ImageAnnotationLink. All objects initially have permissions checking enabled, but the
consequence of a rule may be to disable permissions checking, and if an object with permissions checking disabled
matches a further rule, the objects changed by that rule also have permissions checking disabled.

Configuration

Defining the model graph transition rules

To reduce its complexity, GraphTraversal.java does not include specific detail of how to traverse the graph of OME-
Remote Objects model objects. Instead, subclasses of GraphPolicy.java guide the traversal of the model object
graph, configured by blitz-graph-rules.xml which names and defines the lists of transition rules. The named lists
of rules are associated with request object classes by the definition of the graphRequestFactory bean in blitz-
servantDefinitions.xml, which also specifies which model object properties may never be set to null in executing
any requested operation.

blitz-graph-rules.xml begins with a comment that provides a key to the notation used for transition rules. The rules
name and match model objects based on the state of the graph nodes, the types of the corresponding objects, the
permissions the user has on those objects, and the names of the properties linking the objects. To illustrate this, the
following sections briefly describe some different kinds of rule from the deleteRules list.

Propagating deletion

p:matches="L:ILink.parent = [D], L.child = C:[E]{o}/d"
p:changes="C:[D]"

If an ILink’s parent (e.g., a dataset) is to be deleted, and its child (e.g., an image) is orphaned and deletable by the
user, then delete the child also.

p:matches="PlateAcquisition[D].wellSample = WS:WellSample[E]"
p:changes="WS:[D]"

If a plate acquisition (run) is to be deleted, also delete its well samples (fields).

730 Chapter 3. Developer Documentation

https://github.com/ome/omero-model/blob/v5.6.5/src/main/java/ome/model/IGlobal.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/graphs/GraphTraversal.java
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/graphs/GraphPolicy.java
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-graph-rules.xml
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-servantDefinitions.xml
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-servantDefinitions.xml
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-graph-rules.xml

OMERO, Release 5.6.5-SNAPSHOT-1

p:matches="Fileset[D] = I:Image[E].fileset"
p:changes="I:[D]"

If a fileset is to be deleted, then also delete its images.

p:matches="T:Thumbnail[E].pixels =/!o [D]"
p:changes="T:[D]/n"

If the pixels of a thumbnail are to be deleted, and are owned by a different user, then delete the thumbnail regardless of
permissions on it.

Curtailing deletion

p:matches="Well[D].plate = C:[E]{!a}"
p:changes="C:{a}"

If a well is to be deleted but its plate is excluded and not attached, regard the plate as attached.

p:matches="C:Channel[E]{r}.pixels = Pixels[E]{i}"
p:changes="C:{a}"

If an irrelevant pixels object has a relevant channel, then regard the channel as attached.

p:matches="Pixels[D].relatedTo = P:[E]{!a}"
p:changes="P:{a}"

If a pixels object is to be deleted, regard any related, excluded pixels objects as attached. Because the pixels of an
image are related to the pixels of a projection of that image, this rule prevents the deletion of an image from causing
inadvertent deletion of the image’s projections.

p:matches="L:ILink[!D].parent = [E]/d, L.child = C:[E]{r}"
p:changes="C:{a}"

If an ILink that is not to be deleted itself has a deletable, excluded parent and a relevant child, regard that child as
attached.

Other kinds of transition rule

p:matches="E:IEnum[E]"
p:changes="E:[O]"

Regard excluded IEnum objects as being outside the operation. (Rules do not need to match on links among multiple
objects.)

p:matches="F:Fileset[!D].images = [D], F.images = [!D]"
p:error="may not split {F}"

Throw an error if a fileset that is not to be deleted includes an image that is to be deleted and an image that is not to be
deleted.

In reviewing the chgrpRules list, one sees conditions that require matching $to_private or !$to_private. A
request, in this case Chgrp2I.java, may set arbitrary conditions upon which rules may be predicated. The to_private
condition, or its absence, is used to cause different behavior when the objects are being moved into a private group.

3.11. OMERO.server in depth 731

https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/java/omero/cmd/graphs/Chgrp2I.java

OMERO, Release 5.6.5-SNAPSHOT-1

Logging

Changing the log level

It is informative to observe the sequence of rule applications as the graph is traversed and decisions about model objects
are made. To do so requires configuring Omero logging for the server, specifically etc/logback.xml. To activate graph
traversal debug logging, adjust the ends of the lines,

<logger name="omero.cmd.graphs" level="INFO"/>
<logger name="ome.services.graphs" level="INFO"/>

such that they instead read,

<logger name="omero.cmd.graphs" level="DEBUG"/>
<logger name="ome.services.graphs" level="DEBUG"/>

The resulting extra information in var/log/Blitz-0.log is of particular assistance in debugging: it pinpoints the
rule applications that caused incorrect determinations of what action to take with model objects. Note that a * suffix
on a model object referenced in the logs indicates that permissions are not to be checked for it.

Expanding the reports of transition rule matches

In the previous section, it can be seen that model objects that match rule conditions may be named. For example, in,

p:matches="Fileset[D] = I:Image[E].fileset"
p:changes="I:[D]"

the image is named I. When a rule matches, the debug logging reports which model object matched each name. If it
remains unclear why a rule matched, further objects may be named. For example, changing the first line to name the
fileset,

p:matches="F:Fileset[D] = I:Image[E].fileset"

would also report in the log which fileset matched the rule.

Encouragement

On first reading, the above may feel daunting. If model object graph traversal is not working as desired, thus requires
adjustment, review of debug logs from var/log/Blitz-0.log typically pinpoints the cause and a minor adjustment
to blitz-graph-rules.xml often suffices as the fix, with integration tests providing reassurance that the adjustment was
acceptable. Sometimes it can take time and thought to devise that fix, but one can expect small changes to suffice to
fix most bugs. In getting this new graph traversal implementation to initially pass integration testing, no test failures
required a substantial rethink of the basic approach and GraphTraversal.java itself did not require a significant rewrite.

The actual lists of transition rules arose in part as a way to achieve the desired behavior and are not yet as simple and
comprehensive as they could be. While they necessarily reflect the inherent complexity of the object model of OME-
Remote Objects, there is potential for reviewing the rule lists and, perhaps with some additional marker interfaces,
making them more succinct and regular. Incremental movements toward this goal are worth pursuing.

732 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/etc/logback.xml
https://github.com/ome/omero-blitz/blob/v5.5.10/src/main/resources/ome/services/blitz-graph-rules.xml
https://github.com/ome/omero-server/blob/v5.6.3/src/main/java/ome/services/graphs/GraphTraversal.java

OMERO, Release 5.6.5-SNAPSHOT-1

Options

Every one of the request object classes introduced in the new implementation of graph traversal is a derived class
of GraphModify2 and inherits data members that configure its operation. Each request may define additional data
members for options specific to it, for instance Chgrp2 requires the ID of the target group to be specified. The data
members offered by all of the new requests are,

targetObjects specifies which model objects the operation is to target

childOptions specifies types of model objects (and, for annotations, namespaces) that should always or never be
included in the operation (i.e. always considered to be orphans, or attached, regardless of excluded parents)

dryRun specifies if the request is to determine which model objects would be included in and deleted by the operation,
without actually executing the operation.

SkipHead

The SkipHead request allows specification of the target objects with reference to a common parent. It wraps an inner
request data member that starts acting only after graph traversal reaches types listed in startFrom. For example, to
target the images of a specific plate, give the plate in targetObjects and name Image in startFrom.

This feature is achieved by running the initial request with dryRun set to true and the graph traversal policy modified
so as to not examine included nodes of types listed in startFrom. A subsequent request then runs, targeting the
startFrom model objects that were included in the first request.

3.11.23 Java classes for model graph operations

This description of the roles played by server-side Java classes assumes familiarity with the Model graph operations
machinery of OMERO.server.

Navigating the graph

When OMERO.server starts up the GraphPathBean reflects upon the object model and collates information about
classes, subclasses, properties and their value types. This is what GraphPathReport uses to generate the Glossary of
all OMERO Model Objects.

Traversing and acting

OMERO.server’s GraphTraversal is at the core of all graph operations,

• querying the database to establish the model graph, with the help of GraphPathBean

• applying the graph operation’s policy rules and changing the graph node states

• acting on the model objects according to the final state of the graph.

GraphTraversal’s Processor interface is implemented by specific graph requests to act on the selected model ob-
jects. GraphTraversal implements its PlanExecutor interface with code that calls those Processor methods: it
provides that PlanExecutor implementation back to requests so that they can control exactly if or when to act via
their Processor implementation.

ModelObjectSequencer ensures that objects are acted upon in the proper order. For example, in deleting OriginalFile
instances, a directory’s contents are deleted before their containing directory is deleted.

In OMERO.blitz, BaseGraphTraversalProcessor offers a useful base class for implementing Processor and Null-
GraphTraversalProcessor has no effects at all. Several graph requests define their own InternalProcessor class.

3.11. OMERO.server in depth 733

https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/GraphModify2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/Chgrp2.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/slice2html/omero/cmd/SkipHead.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphPathBean.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphPathReport.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphTraversal.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphTraversal.Processor.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphTraversal.PlanExecutor.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/ModelObjectSequencer.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/BaseGraphTraversalProcessor.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/NullGraphTraversalProcessor.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/NullGraphTraversalProcessor.html

OMERO, Release 5.6.5-SNAPSHOT-1

Policy rules for node transitions

GraphTraversal manages the traversal of the model graph but it is instances of OMERO.server’s GraphPolicy that
decide how the graph’s nodes are to change state during traversal. The class is instantiated by the static parseRules
method of GraphPolicyRule which provides a GraphPolicy based on parsing a sequence of GraphPolicyRule in-
stances. Each of those rules describes in textual form how it matches graph fragments and what to do in the event of a
match.

OMERO.blitz’s BaseGraphPolicyAdjuster provides convenient hooks for adjusting how an existing GraphPolicy tran-
sitions nodes. Classes that do such adjustment include,

ChildOptionsPolicy marks certain nodes as IS_LAST or IS_NOT_LAST once they are RELEVANT

SkipHeadPolicy
1. in skipping the head, prevents traversal beyond certain node types

2. in processing the remaining graph, preserves permissions overrides established in the first phase

SkipTailPolicy prevents traversal beyond certain node types

OMERO.server provides the GraphPolicyRulePredicate interface which is used for the ; suffix notation in rule matches.
For example, GroupPredicate can match group=system and PermissionsPredicate can match perms=r?ra??.

OMERO.blitz graph requests

The Graph requests of OMERO.blitz benefit from helper classes. GraphRequestFactory instantiates the graph request
implementations and provides them means to create a context-aware GraphHelper. This helper includes the code that is
common to many of the graph requests. Helper methods not requiring any context are instead collected in the stateless
GraphUtil.

734 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphPolicy.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphPolicyRule.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/BaseGraphPolicyAdjuster.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/ChildOptionsPolicy.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/SkipHeadPolicy.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/SkipTailPolicy.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GraphPolicyRulePredicate.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/GroupPredicate.html
https://docs.openmicroscopy.org/omero-server/5.6.3/javadoc/ome/services/graphs/PermissionsPredicate.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/GraphRequestFactory.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/GraphHelper.html
https://docs.openmicroscopy.org/omero-blitz/5.5.10/javadoc/omero/cmd/graphs/GraphUtil.html

INDEX

Symbols
$OMERODIR, 182
-DCMAKE_CXX_FLAGS

cmake command line option, 421
-DCMAKE_EXE_LINKER_FLAGS

cmake command line option, 421
-DCMAKE_INCLUDE_PATH

cmake command line option, 421
-DCMAKE_LIBRARY_PATH

cmake command line option, 421
-DCMAKE_MODULE_LINKER_FLAGS

cmake command line option, 421
-DCMAKE_PREFIX_PATH

cmake command line option, 421
-DCMAKE_PROGRAM_PATH

cmake command line option, 421
-DCMAKE_SHARED_LINKER_FLAGS

cmake command line option, 421
-DCMAKE_VERBOSE_MAKEFILE

cmake command line option, 421
-DIce_DEBUG

cmake command line option, 422
-DIce_HOME

cmake command line option, 421
-DIce_INCLUDE_DIR

cmake command line option, 421
-DIce_SLICE2XXX_EXECUTABLE

cmake command line option, 421
-DIce_SLICE_DIR

cmake command line option, 422
-DIce_<C>_LIBRARIES

cmake command line option, 422
-T

omero-import command line option, 11
-U

omero-import command line option, 11
--advanced-help

omero-import command line option, 14
--all

omero-help command line option, 9
--archived

omero-fs-images command line option, 201

--bulk
omero-import command line option, 12

--cache
omero-fs-importtime command line option,

13
--check

omero-fs-sets command line option, 200
--debug

omero-import command line option, 13
--depth

omero-import command line option, 11
--dry-run

omero-chgrp command line option, 34
omero-chown command line option, 37
omero-delete command line option, 31

--email
omero-import command line option, 13

--errs
omero-import command line option, 11

--exclude
omero-chgrp command line option, 33
omero-chown command line option, 36
omero-delete command line option, 30

--extended
omero-fs-images command line option, 201
omero-fs-sets command line option, 200

--file
omero-import command line option, 11

--force
omero-delete command line option, 31

--force-rewrite
omero-admin-start command line option,

192
omero-admin-stop command line option, 192

--foreground
omero-admin-start command line option,

192
--group

omero-login command line option, 23
--groups

omero-fs-usage command line option, 203
--help

735

OMERO, Release 5.6.5-SNAPSHOT-1

omero-admin-start command line option,
192

omero-admin-stop command line option, 192
omero-fs-images command line option, 200
omero-fs-mkdir command line option, 203
omero-fs-rename command line option, 201
omero-fs-repos command line option, 198
omero-fs-sets command line option, 199
omero-fs-usage command line option, 202
omero-import command line option, 11
pytest command line option, 350

--include
omero-chgrp command line option, 33
omero-chown command line option, 36
omero-delete command line option, 30

--iterate
omero-export command line option, 22

--java-help
omero-import command line option, 14

--key
omero-login command line option, 23

--limit
omero-fs-images command line option, 200
omero-fs-sets command line option, 199

--list
omero-help command line option, 9

--logprefix
omero-import command line option, 11

--logs
omero-import command line option, 14

--managed
omero-fs-repos command line option, 199

--markers
pytest command line option, 350

--no-move
omero-fs-rename command line option, 201

--offset
omero-fs-images command line option, 200
omero-fs-sets command line option, 199

--order
omero-fs-images command line option, 200
omero-fs-sets command line option, 199

--ordered
omero-chgrp command line option, 34
omero-chown command line option, 37
omero-delete command line option, 30

--output
omero-import command line option, 11

--parallel-fileset
omero-import command line option, 12

--parallel-upload
omero-import command line option, 13

--parents
omero-fs-mkdir command line option, 203

--password
omero-login command line option, 24

--port
omero-login command line option, 23

--recursive
omero-help command line option, 9

--report
omero-chgrp command line option, 34
omero-chown command line option, 37
omero-delete command line option, 30
omero-fs-usage command line option, 203
omero-import command line option, 13

--server
omero-login command line option, 23

--size_only
omero-fs-usage command line option, 203

--skip
omero-import command line option, 12

--style
omero-fs-images command line option, 200
omero-fs-repos command line option, 198
omero-fs-sets command line option, 199
omero-fs-usage command line option, 202

--sudo
omero-login command line option, 24

--summary
omero-fs-importtime command line option,

13
--target

omero-import command line option, 11
--units

omero-fs-usage command line option, 203
--upload

omero-import command line option, 13
--user

omero-login command line option, 23
--wait

omero-fs-usage command line option, 203
--with-transfer

omero-fs-sets command line option, 199
--without-images

omero-fs-sets command line option, 199
-d

omero-import command line option, 11
-f

omero-import command line option, 11
-g

omero-import command line option, 11
omero-login command line option, 23

-h
omero-admin-start command line option,

192
omero-admin-stop command line option, 192
omero-fs-images command line option, 200

736 Index

OMERO, Release 5.6.5-SNAPSHOT-1

omero-fs-mkdir command line option, 203
omero-fs-rename command line option, 201
omero-fs-repos command line option, 198
omero-fs-sets command line option, 199
omero-fs-usage command line option, 202
omero-import command line option, 11
pytest command line option, 350

-k
omero-login command line option, 23
pytest command line option, 349

-m
pytest command line option, 350

-p
omero-import command line option, 11
omero-login command line option, 23

-r
omero-import command line option, 11

-s
omero-import command line option, 11
omero-login command line option, 23
pytest command line option, 350

-u
omero-login command line option, 23

-w
omero-login command line option, 24

A
Action, 292
Add Users to Groups, 299
addData() (omero.grid.Table method), 455
admin (omero.query.timeout property), 262
Administrator, 288
admins (omero.web property), 270
Analyst, 299
analyzer (omero.search property), 265
Annotate, 292
append (omero.jvmcfg property), 245
application_server (omero.web property), 270
apps (omero.web property), 271
auth (omero.mail.smtp property), 251
authority (omero.db property), 240

B
background_threads (omero.threads property), 255
background_timeout (omero.threads property), 255
backoff (omero.pixeldata property), 257
base (omero.ldap property), 247
base_include_template (omero.web property), 271
batch (omero.pixeldata property), 257
batch (omero.search property), 265
bean (omero.mail property), 250
bean (omero.metrics property), 253
bean (omero.policy property), 260
binary_access (omero.policy property), 261

bitand (omero.security.filter property), 268
bridges (omero.search property), 265
broken, 352

C
caches (omero.web property), 271
cancel_timeout (omero.threads property), 255
center_plugins (omero.web.ui property), 283
ch.qos.logback.core.Appender.error, 224
Change ownership, 292
Chgrp, 299
chmod_strategy (omero.security property), 268
Chown, 299
chunk_size (omero.web property), 271
Ciphers (omero.glacier2.IceSSL property), 243
class (omero.mail.smtp.socketFactory property), 252
client_downloads_base (omero.web.login property),

274
cmake command line option

-DCMAKE_CXX_FLAGS, 421
-DCMAKE_EXE_LINKER_FLAGS, 421
-DCMAKE_INCLUDE_PATH, 421
-DCMAKE_LIBRARY_PATH, 421
-DCMAKE_MODULE_LINKER_FLAGS, 421
-DCMAKE_PREFIX_PATH, 421
-DCMAKE_PROGRAM_PATH, 421
-DCMAKE_SHARED_LINKER_FLAGS, 421
-DCMAKE_VERBOSE_MAKEFILE, 421
-DIce_DEBUG, 422
-DIce_HOME, 421
-DIce_INCLUDE_DIR, 421
-DIce_SLICE2XXX_EXECUTABLE, 421
-DIce_SLICE_DIR, 422
-DIce_<C>_LIBRARIES, 422

CMAKE_INCLUDE_PATH, 420, 421
CMAKE_LIBRARY_PATH, 420
columns (omero.grid.Data attribute), 454
config (omero.ldap property), 247
config (omero.mail property), 251
connect_timeout (omero.ldap property), 247
connection

omero-login command line option, 23
connectiontimeout (omero.mail.smtp property), 252
cors_origin_allow_all (omero.web property), 271
cors_origin_whitelist (omero.web property), 271
Create and Edit Groups, 299
Create and Edit Users, 299
cron (omero.pixeldata property), 258
cron (omero.scripts.cache property), 264
cron (omero.search property), 265
csrf_cookie_httponly (omero.web property), 272
csrf_cookie_secure (omero.web property), 272
CXX, 421
CXXFLAGS, 420, 421

Index 737

OMERO, Release 5.6.5-SNAPSHOT-1

D
Data Viewer, 299
databases (omero.web property), 272
db (omero.cluster.read_only property), 244
debug (omero.mail.smtp property), 252
debug (omero.web property), 272
default (omero.pixeldata.backoff property), 257
default_group (omero.web.search property), 279
default_user (omero.web.search property), 279
Delete, 292
Delete Data, 299
description (omero.client.ui.tree.orphans property),

238
dialect (omero.db property), 240
dir (omero.data property), 235
dir (omero.managed property), 236
dir (omero.pixeldata.memoizer property), 259
dispose (omero.pixeldata property), 258
django_additional_settings (omero.web property),

272
driver (omero.db property), 240
DYLD_LIBRARY_PATH, 118, 425

E
Edit, 292
enable (omero.mail.smtp.starttls property), 252
enabled (omero.client.ui.menu.dropdown.colleagues

property), 237
enabled (omero.client.ui.menu.dropdown.everyone

property), 238
enabled (omero.client.ui.menu.dropdown.leaders prop-

erty), 238
enabled (omero.client.ui.tree.orphans property), 239
enabled (omero.web.feedback.comment property), 273
enabled (omero.web.feedback.error property), 273
enabled (omero.web.public property), 277
enabled (omero.web.public.cache property), 277
environment variable

$OMERODIR, 182
CMAKE_INCLUDE_PATH, 420, 421
CMAKE_LIBRARY_PATH, 420
CXX, 421
CXXFLAGS, 420, 421
DYLD_LIBRARY_PATH, 118, 425
GTEST_ROOT, 420
ICE_CONFIG, 346, 348, 349, 352, 401
ICE_HOME, 419, 421
JAVA_OPTS, 187, 227
LD_LIBRARY_PATH, 118, 425
OMERO_CONFIG, 190
OMERO_HOME, 89, 93, 97, 102, 112, 125, 132, 140,

148
OMERO_PASSWORD, 24
OMERO_PREFIX, 117, 118

OMERO_SESSION_DIR, 25
OMERO_SESSIONDIR, 25, 83
OMERO_TMPDIR, 83, 118, 189, 561, 703
OMERO_USERDIR, 25, 83
OMERODIR, 8, 89, 93, 97, 102, 105, 110, 112, 118,

125, 132, 140, 148, 175, 180, 349, 484
PATH, 118, 180, 421
PYTHONPATH, 118, 301, 381
SLICEPATH, 335, 422
VERBOSE, 421

error (omero.throttling.method_time property), 256
event_log_loader (omero.pixeldata property), 258
event_log_loader (omero.search property), 265
excludes (omero.search property), 265

F
fallback (omero.mail.smtp.socketFactory property),

252
favicon_url (omero.web property), 272
from (omero.mail property), 251

G
get_only (omero.web.public property), 278
getAllMetadata() (omero.grid.Table method), 456
getHeaders() (omero.grid.Table method), 454
getMetadata() (omero.grid.Table method), 456
getNumberOfRows() (omero.grid.Table method), 454
getWhereList() (omero.grid.Table method), 455
graphite (omero.metrics property), 253
Group and Data Organizer, 299
Group member, 288
Group owner, 288
group_filter (omero.ldap property), 247
group_mapping (omero.ldap property), 248
GTEST_ROOT, 420

H
heap_dump (omero.jvmcfg property), 245
heap_size (omero.jvmcfg property), 246
host (omero.client.web property), 240
host (omero.db property), 240
host (omero.mail property), 251
host (omero.web.application_server property), 270
html_meta_referrer (omero.web property), 273

I
ICE_CONFIG, 346, 348, 349, 352, 401
ICE_HOME, 419, 421
IceSSL (omero.glacier2 property), 243
icetransports (omero.client property), 237
idle_timeout (omero.threads property), 255
Importer, 299
include_actions (omero.search property), 266

738 Index

OMERO, Release 5.6.5-SNAPSHOT-1

include_types (omero.search property), 266
index_template (omero.web property), 273
indexer (omero.throttling.method_time.error property),

256
indexer (omero.throttling.method_time.warn property),

256
initial_zoom_level (omero.client.viewer property),

239
initialize() (omero.grid.Table method), 455
interpolate_pixels (omero.client.viewer property),

239
IPv6 (Ice property), 245

J
JAVA_OPTS, 187, 227
jvm.fileDescriptorCountRatio, 224
jython (omero.launcher property), 263
jython (omero.process property), 263

K
key (omero.web.public.cache property), 277
keyStore (omero.security property), 268
keyStorePassword (omero.security property), 268

L
label (omero.client.ui.menu.dropdown.colleagues prop-

erty), 238
label (omero.client.ui.menu.dropdown.everyone prop-

erty), 238
label (omero.client.ui.menu.dropdown.leaders prop-

erty), 238
lastModification (omero.grid.Data attribute), 454
LD_LIBRARY_PATH, 118, 425
local (omero.pixeldata.memoizer.dir property), 259
locking_strategy (omero.search property), 266
logdir (omero.web property), 273
login_failure_throttle_count (omero.security

property), 268
login_failure_throttle_time (omero.security prop-

erty), 268
login_incorrect_credentials_text (omero.web

property), 274
login_logo (omero.web property), 274
login_redirect (omero.web property), 274
login_view (omero.web property), 274

M
ManualStrategy, 221
matlab (omero.launcher property), 263
matlab (omero.process property), 263
max_file_size (omero.search property), 266
max_partition_size (omero.search property), 267
max_plane_height (omero.pixeldata property), 258

max_plane_width (omero.pixeldata property), 258
max_projection_bytes (omero.pixeldata property),

259
max_requests (omero.web.application_server prop-

erty), 270
max_size (omero.client.download_as property), 237
max_system_memory (omero.jvmcfg property), 246
max_table_download_rows (omero.web property), 275
max_threads (omero.threads property), 255
max_user_time_to_idle (omero.sessions property),

254
max_user_time_to_live (omero.sessions property),

254
maximum (omero.sessions property), 254
maximum_multifile_download_size (omero.web

property), 275
maxpixels (omero.pixeldata.backoff property), 257
memoizer_wait (omero.pixeldata property), 259
merge_factor (omero.search property), 267
metadata_panes (omero.web.ui property), 283
middleware (omero.web property), 275
min_system_memory (omero.jvmcfg property), 246
min_threads (omero.threads property), 256
Mix data, 292
Move between groups, 292

N
name (omero property), 254
name (omero.client.ui.tree.orphans property), 239
name (omero.db property), 241
new_user_group (omero.ldap property), 248
new_user_group_owner (omero.ldap property), 248
nginx_server_extra_config (omero.web property),

275
nodedescriptors (omero.server property), 269

O
objects_read_interval (omero.throttling property),

256
objects_written_interval (omero.throttling prop-

erty), 257
ome.io.nio.PixelsService.minmaxTimes, 224
ome.io.nio.PixelsService.tileTimes, 224
ome.services.eventlogs.EventLogQueue.priorityCount,

224
omero.grid.BoolColumn (built-in class), 453
omero.grid.Column (built-in class), 452
omero.grid.Data (built-in class), 454
omero.grid.DoubleArrayColumn (built-in class), 453
omero.grid.DoubleColumn (built-in class), 453
omero.grid.FileColumn (built-in class), 452
omero.grid.FloatArrayColumn (built-in class), 453
omero.grid.ImageColumn (built-in class), 452
omero.grid.LongArrayColumn (built-in class), 453

Index 739

OMERO, Release 5.6.5-SNAPSHOT-1

omero.grid.LongColumn (built-in class), 453
omero.grid.PlateColumn (built-in class), 452
omero.grid.RoiColumn (built-in class), 452
omero.grid.StringColumn (built-in class), 453
omero.grid.Table (built-in class), 454
omero.grid.Tables (built-in class), 452
omero.grid.WellColumn (built-in class), 452
OMERO_CONFIG, 190
OMERO_HOME, 89, 93, 97, 102, 112, 125, 132, 140, 148
OMERO_PASSWORD, 24
OMERO_PREFIX, 117, 118
OMERO_SESSION_DIR, 25
OMERO_SESSIONDIR, 25, 83
OMERO_TMPDIR, 83, 118, 189, 561, 703
OMERO_USERDIR, 25, 83
omero-admin-start command line option

--force-rewrite, 192
--foreground, 192
--help, 192
-h, 192

omero-admin-stop command line option
--force-rewrite, 192
--help, 192
-h, 192

omero-chgrp command line option
--dry-run, 34
--exclude, 33
--include, 33
--ordered, 34
--report, 34

omero-chown command line option
--dry-run, 37
--exclude, 36
--include, 36
--ordered, 37
--report, 37

omero-delete command line option
--dry-run, 31
--exclude, 30
--force, 31
--include, 30
--ordered, 30
--report, 30

omero-export command line option
--iterate, 22

omero-fs-images command line option
--archived, 201
--extended, 201
--help, 200
--limit, 200
--offset, 200
--order, 200
--style, 200
-h, 200

omero-fs-importtime command line option
--cache, 13
--summary, 13

omero-fs-mkdir command line option
--help, 203
--parents, 203
-h, 203

omero-fs-rename command line option
--help, 201
--no-move, 201
-h, 201

omero-fs-repos command line option
--help, 198
--managed, 199
--style, 198
-h, 198

omero-fs-sets command line option
--check, 200
--extended, 200
--help, 199
--limit, 199
--offset, 199
--order, 199
--style, 199
--with-transfer, 199
--without-images, 199
-h, 199

omero-fs-usage command line option
--groups, 203
--help, 202
--report, 203
--size_only, 203
--style, 202
--units, 203
--wait, 203
-h, 202

omero-help command line option
--all, 9
--list, 9
--recursive, 9

omero-import command line option
-T, 11
-U, 11
--advanced-help, 14
--bulk, 12
--debug, 13
--depth, 11
--email, 13
--errs, 11
--file, 11
--help, 11
--java-help, 14
--logprefix, 11
--logs, 14

740 Index

OMERO, Release 5.6.5-SNAPSHOT-1

--output, 11
--parallel-fileset, 12
--parallel-upload, 13
--report, 13
--skip, 12
--target, 11
--upload, 13
-d, 11
-f, 11
-g, 11
-h, 11
-p, 11
-r, 11
-s, 11

omero-login command line option
--group, 23
--key, 23
--password, 24
--port, 23
--server, 23
--sudo, 24
--user, 23
-g, 23
-k, 23
-p, 23
-s, 23
-u, 23
-w, 24
connection, 23

OMERODIR, 8, 89, 93, 97, 102, 105, 110, 112, 118, 125,
132, 140, 148, 175, 180, 349, 484

open_with (omero.web property), 275
opengraph (omero.web.sharing property), 281

P
page_size (omero.web property), 276
pass (omero.db property), 241
password (omero.ldap property), 249
password (omero.mail property), 251
password (omero.web.public property), 278
password_provider (omero.security property), 269
password_required (omero.security property), 269
patch (omero.db property), 241
PATH, 118, 180, 421
path (omero.fs.repo property), 235
path_rules (omero.fs.repo property), 236
percent (omero.jvmcfg property), 246
PercentStrategy, 221
perm_gen (omero.jvmcfg property), 246
ping_interval (omero.web property), 276
pipeline_css_compressor (omero.web property), 276
pipeline_js_compressor (omero.web property), 276
pipeline_staticfile_storage (omero.web prop-

erty), 276

plate_layout (omero.web property), 277
poolsize (omero.db property), 241
port (omero.db property), 241
port (omero.mail property), 251
port (omero.mail.smtp.socketFactory property), 252
port (omero.web.application_server property), 270
prefix (omero.ports property), 261
prefix (omero.web property), 277
prepared_statement_cache_size (omero.db prop-

erty), 242
Private, 288
profile (omero.db property), 242
properties (omero.db property), 242
protocol (omero.mail.transport property), 253
Protocols (omero.glacier2.IceSSL property), 244
ProtocolVersionMax (omero.glacier2.IceSSL prop-

erty), 244
pytest command line option

--help, 350
--markers, 350
-h, 350
-k, 349
-m, 350
-s, 350

python (omero.launcher property), 263
python (omero.process property), 264
PYTHONPATH, 118, 301, 381

R
ram_buffer_size (omero.search property), 267
read() (omero.grid.Table method), 454
read_only (omero.cluster property), 244
read_timeout (omero.ldap property), 249
Read-annotate, 289
Read-only, 289
Read-write, 289
readCoordinates() (omero.grid.Table method), 454
redirect_allowed_hosts (omero.web property), 278
redirector (omero.cluster property), 245
referral (omero.ldap property), 249
registry (omero.ports property), 261
registry_timeout (omero.grid property), 245
Remove annotations, 293
Render, 293
repetitions (omero.pixeldata property), 259
repetitions (omero.search property), 267
repo (omero.cluster.read_only property), 244
reporting_loops (omero.search property), 267
Restricted Administrators, 288
right_plugins (omero.web.ui property), 283
roi_limit (omero.client.viewer property), 239
root_application (omero.web property), 279
rowNumbers (omero.grid.Data attribute), 454

Index 741

OMERO, Release 5.6.5-SNAPSHOT-1

S
scripts_to_ignore (omero.client property), 237
secret_key (omero.web property), 279
secure (omero.web property), 279
secure_proxy_ssl_header (omero.web property), 279
servants_per_session (omero.throttling property),

257
server_id (omero.web.public property), 278
server_list (omero.web property), 280
session_cookie_age (omero.web property), 280
session_cookie_domain (omero.web property), 280
session_cookie_name (omero.web property), 280
session_cookie_path (omero.web property), 280
session_cookie_secure (omero.web property), 280
session_engine (omero.web property), 281
session_expire_at_browser_close (omero.web

property), 281
setAllMetadata() (omero.grid.Table method), 455
setMetadata() (omero.grid.Table method), 455
show_client_downloads (omero.web.login property),

274
show_forgot_password (omero.web property), 281
slf4j_minutes (omero.metrics property), 253
slice() (omero.grid.Table method), 454
SLICEPATH, 335, 422
spec (omero.scripts.cache property), 264
sql_action_class (omero.db property), 242
ssl (omero.ports property), 262
static_root (omero.web property), 281
static_url (omero.web property), 282
staticfile_dirs (omero.web property), 282
statistics (omero.db property), 242
strategy (omero.jvmcfg property), 246
Sudo, 299
supported (omero.checksum property), 235
sync_force (omero.sessions property), 254
sync_interval (omero.sessions property), 254
sync_on_login (omero.ldap property), 249
system_memory (omero.jvmcfg property), 247

T
tcp (omero.ports property), 262
template_dirs (omero.web property), 282
threads (omero.pixeldata property), 260
thumb_default_size (omero.client.browser property),

237
thumbnails_batch (omero.web property), 282
tile_height (omero.pixeldata property), 260
tile_sizes_bean (omero.pixeldata property), 260
tile_width (omero.pixeldata property), 260
time_zone (omero.web property), 282
timeout (omero.mail.smtp property), 252
timeout (omero.query property), 262
timeout (omero.scripts property), 264

timeout (omero.sessions property), 255
timeout (omero.web.public.cache property), 277
top_links (omero.web.ui property), 284
top_logo (omero.web property), 283
top_logo_link (omero.web property), 283
trustStore (omero.security property), 269
trustStorePassword (omero.security property), 269
twitter (omero.web.sharing property), 281
type_order (omero.client.ui.tree property), 239

U
update() (omero.grid.Table method), 455
Upload Scripts, 299
url (omero.db property), 243
url_filter (omero.web.public property), 278
urls (omero.ldap property), 250
use_x_forwarded_host (omero.web property), 284
user (omero.db property), 243
user (omero.web.public property), 278
user_dropdown (omero.web property), 284
user_filter (omero.ldap property), 250
user_mapping (omero.ldap property), 250
username (omero.ldap property), 250
username (omero.mail property), 253

V
values (omero.grid.DoubleColumn attribute), 453
VERBOSE, 421
VerifyPeer (omero.glacier2.IceSSL property), 244
version (omero.db property), 243
View, 293
view (omero.web.viewer property), 284

W
warn (omero.throttling.method_time property), 256
webgateway_cache (omero.web property), 284
Write Data, 299
ws (omero.ports property), 262
wsgi_args (omero.web property), 285
wsgi_timeout (omero.web property), 285
wsgi_workers (omero.web property), 285
wss (omero.ports property), 262

X
x_frame_options (omero.web property), 285

742 Index

	OMERO Overview and CLI User Documentation
	Introduction
	OMERO clients
	OMERO clients overview
	Features
	OMERO.web
	OMERO.insight
	OMERO.importer
	OMERO.cli

	Command Line Interface as an OMERO client
	Installation
	omero-py < 5.8.0

	Overview
	Command line help
	Command line workflow

	Import images
	Overview
	Installation
	Import command
	Scanning folders prior to Import
	Bulk import configuration
	Managing performance of imports
	Checking performance

	Troubleshoot and report issues
	Advanced import commands
	Command Line Importer

	Import targets
	Importing to a Dataset or Screen
	Importing to a Dataset inside a specific Project
	Importing using regular expressions
	Importing to targets across groups

	Bulk imports
	Bulk-only options
	Path
	Columns
	Include
	Dry_run

	Other options

	Export images
	Overview
	Installation
	Export command

	Manage sessions
	Login
	Multiple sessions
	Sessions directory
	Switching current group

	Creating containers and annotations
	Creating containers
	Creating and attaching annotations

	Manage tags
	Create tags
	List tags
	Link tags
	Delete tags

	Deleting objects
	Examples
	Basic delete
	Deleting multiple objects
	Deleting lower level objects

	Including and excluding objects
	Further options

	Moving objects between groups
	Who may move data
	How to move data
	Examples
	Basic move
	Moving multiple objects
	Moving lower level objects

	Including and excluding objects
	Further options

	Changing ownership of objects
	Who may change ownership of data
	How to change ownership of data
	Examples
	Basic transfer of ownership
	Transferring multiple objects
	Transferring lower level objects
	Transferring all objects belonging to specified users

	Including and excluding objects
	Further options

	Additional resources
	Community support
	Web
	Forums

	What’s new for OMERO 5.6 for users
	CHANGELOGS
	Links to decoupled repositories
	omero-build:
	omero clients:

	OMERO version history
	5.6.4 (April 2022)
	5.6.3 (October 2020)
	5.6.2 (July 2020)
	5.6.1 (March 2020)
	5.6.0 (January 2020)
	5.5.1 (July 2019)
	5.5.0 (June 2019)
	5.4.10 (January 2019)
	5.4.9 (October 2018)
	5.4.8 (September 2018)
	5.4.7 (July 2018)
	5.4.6 (May 2018)
	5.4.5 (March 2018)
	5.4.4 (March 2018)
	5.4.3 (January 2018)
	5.4.2 (January 2018)
	5.4.1 (November 2017)
	5.4.0 (October 2017)
	5.3.5 (October 2017)
	5.3.4 (September 2017)
	5.3.3 (June 2017)
	5.3.2 (May 2017)
	5.3.1 (April 2017)
	5.3.0 (March 2017)
	5.2.8 (March 2017)
	5.2.7 (December 2016)
	5.2.6 (October 2016)
	5.2.5 (August 2016)
	5.2.4 (May 2016)
	5.2.3 (May 2016)
	5.2.2 (February 2016)
	5.2.1 (December 2015)
	5.2.0 (November 2015)
	5.1.4 (September 2015)
	5.1.3 (July 2015)
	5.1.2 (May 2015)
	5.1.1 (April 2015)
	5.1.0 (April 2015)
	5.1.0-m5 (March 2015)
	5.1.0-m4 (February 2015)
	5.0.8 (February 2015)
	5.0.7 (February 2015)
	5.1.0-m3 (December 2014)
	5.1.0-m2 (November 2014)
	5.0.6 (November 2014)
	5.1.0-m1 (October 2014)
	5.0.5 / 4.4.12 (September 2014)
	5.0.4 (September 2014)
	5.0.3 (August 2014)
	5.0.2 (May 2014)
	4.4.11 (April 2014)
	5.0.1 (April 2014)
	5.0.0 (February 2014)
	4.4.10 (January 2014)
	4.4.9 (October 2013)
	4.4.8p1 (July 2013)
	4.4.8 (May 2013)
	4.4.7 (April 2013)
	4.4.6 (February 2013)
	4.4.5 (November 2012)
	4.4.4 (September 2012)
	4.4.3 (August 2012)
	4.4.2 (August 2012)
	4.4.1 (July 2012)
	4.4.0 (July 2012)
	Beta 4.3.4 (January 2012)
	Beta 4.3.3 (October 2011)
	Beta 4.3.2 (September 2011)
	Beta 4.3.1 (July 2011)
	Beta 4.3.0 (June 2011)
	Beta 4.2.2 (December 2010)
	Beta 4.2.1 (November 2010)
	Beta 4.2.0 (July 2010)
	Beta 4.1.1 (December 2009)
	Beta 4.1 (October 2009)
	Beta 4.0.1 (April 2009)
	Beta 4.0 (March 2009)
	Beta 3.2 (November 2008)
	Beta 3.0 (June 2008)
	Beta 2.3.3 insight (April 2008)
	Beta 2.3.1 importer (February 2008)
	Beta 2.3 (December 2007)
	Beta 2.2 (November 2007)
	Beta 2.1 (August 2007)
	Beta 2.0 (June 2007)
	Beta 1.1 (March 2007)
	Beta 1 (January 2007)
	Milestone M3 (November 2006)
	Milestone M2 (July 2006)
	Milestone M1 (April 2006)

	System Administrator Documentation
	Getting started
	Usage
	Components
	Background reading
	What’s new for OMERO 5.6 for sysadmins
	Version requirements
	Summary of changes for OMERO 5.6 and provisional changes for 6.0
	Bitness
	NGINX

	Operating system support
	UNIX (FreeBSD)
	Linux (CentOS and RHEL)
	Linux (Ubuntu)
	Microsoft Windows
	MacOS X

	Dependencies
	Package lists
	PostgreSQL
	OMERO support policies
	Version provided by distribution
	Python
	OMERO support policies
	Version provided by distribution
	Ice
	OMERO support policies
	Version provided by distribution
	Java
	OMERO support policies
	Version provided by distribution
	NGINX
	OMERO support policies
	Version provided by distribution

	Support levels

	System requirements
	Hardware
	OMERO.server
	Storage
	RAM
	CPU
	Further examples
	OMERO.insight and OMERO.importer
	Client configuration

	Software

	Example production server set-ups
	CellNanOs (Center of Cellular Nanoanalytics), University of Osnabrück
	Hardware
	Network infrastructure
	Backup/archive

	Micron, Oxford
	Stats

	IMCF, Biozentrum, University of Basel
	Hardware
	Network infrastructure

	GReD Research Center, Clermont-Ferrand, France
	Hardware
	Network infrastructure

	Image Data Resource

	Known limitations
	Time zone
	Too many open file descriptors
	Changing group permissions
	File format support
	Large images
	Large images with floating-point pixel data
	Calculation of minima and maxima pixel values
	Flex data in OMERO.tables

	LDAP

	Installation
	OMERO.server installation
	OMERO.server installation on CentOS 7
	Installing prerequisites
	Installing OMERO.server
	Configuring OMERO.server
	Running OMERO.server
	Securing OMERO

	OMERO.server installation on Ubuntu 18.04
	Installing prerequisites
	Installing OMERO.server
	Configuring OMERO.server
	Running OMERO.server
	Securing OMERO

	OMERO.server installation on Ubuntu 20.04
	Installing prerequisites
	Installing OMERO.server
	Configuring OMERO.server
	Running OMERO.server
	Securing OMERO

	OMERO.server installation on Debian 10
	Installing prerequisites
	Installing OMERO.server
	Configuring OMERO.server
	Running OMERO.server
	Securing OMERO

	OMERO.server installation on OS X with Homebrew
	Prerequisites
	Xcode
	Homebrew
	Java

	OS X Basics
	Requirements
	Python
	Using conda (preferred)
	OR using venv

	OMERO installation
	Pre-built server
	Locally built server

	OMERO configuration
	Database
	Binary Repository
	OMERO.web

	Startup and shutdown
	Web configuration and maintenance

	Common issues
	General considerations
	Database
	PostgreSQL
	szip
	numexpr (and other Python packages)

	Prerequisites
	Java SE Runtime Environment (JRE)
	Python 3
	Ice
	OMERO.scripts

	Installation
	Server directory
	OMERO.server

	Environment variables
	Creating a database
	Location for the your OMERO binary repository
	Configuration
	JVM memory settings
	Enabling movie creation from OMERO
	Post-installation items
	Backup
	Security
	Advanced configuration
	Troubleshooting
	OMERO diagnostics
	Update notification

	OMERO.web installation and maintenance
	Configuration
	Walkthroughs
	OMERO.web installation on CentOS 7 and IcePy 3.6
	Installing prerequisites
	Creating a virtual environment
	Installing OMERO.web apps
	Configuring OMERO.web
	Configuring Gunicorn
	Setting up CORS
	Configuring NGINX
	Running OMERO.web
	Automatically running OMERO.web
	Maintaining OMERO.web
	Troubleshooting
	Configuring Gunicorn advanced options
	Experimental: Sync workers
	Experimental: Async workers
	SELinux

	OMERO.web installation on Ubuntu 18.04 and IcePy 3.6
	Installing prerequisites
	Creating a virtual environment
	Installing OMERO.web apps
	Configuring OMERO.web
	Configuring Gunicorn
	Setting up CORS
	Configuring NGINX
	Running OMERO.web
	Automatically running OMERO.web
	Maintaining OMERO.web
	Troubleshooting
	Configuring Gunicorn advanced options
	Experimental: Sync workers
	Experimental: Async workers

	OMERO.web installation on Ubuntu 20.04 and IcePy 3.6
	Installing prerequisites
	Creating a virtual environment
	Installing OMERO.web apps
	Configuring OMERO.web
	Configuring Gunicorn
	Setting up CORS
	Configuring NGINX
	Running OMERO.web
	Automatically running OMERO.web
	Maintaining OMERO.web
	Troubleshooting
	Configuring Gunicorn advanced options
	Experimental: Sync workers
	Experimental: Async workers

	OMERO.web installation on Debian 10 and IcePy 3.6
	Installing prerequisites
	Creating a virtual environment
	Installing OMERO.web apps
	Configuring OMERO.web
	Configuring Gunicorn
	Setting up CORS
	Configuring NGINX
	Running OMERO.web
	Automatically running OMERO.web
	Maintaining OMERO.web
	Troubleshooting
	Configuring Gunicorn advanced options
	Experimental: Sync workers
	Experimental: Async workers

	OMERO.server binary repository
	Layout
	PixelService resolution order for locating binary data for images

	Locking and remote shares
	Changing your repository location
	Access permissions
	Repository size

	OMERO.server and PostgreSQL
	Ensuring you have a valid PostgreSQL version
	Checking PostgreSQL port listening status
	PostgreSQL HBA (host based authentication)
	Completing configuration

	Installing additional features
	OMERO.grid
	Terminology
	Getting started
	Requirements
	IceGrid Tools

	How it works
	Deployment descriptors
	Deployment commands

	Deployment examples
	Nodes on a single host
	Nodes on multiple hosts

	Securing grid resources
	Firewall
	SSL (Secure Socket Layer)
	Permissions Verifier
	Unique node names
	Absolute paths

	Technical information and other tips
	Processes
	Targets
	Ice.MessageSizeMax
	Logging
	Shortcuts
	Symbolic linking
	Running as root

	OMERO.mail
	Example secure SMTP configurations
	Example minimum configuration
	Setting email addresses
	Enabling mail notifications
	OMERO.web error reporting
	Further configuration

	OMERO.movie
	Creating a movie from OMERO
	Viewing the movie
	Installing the make movie script
	Make movie command arguments

	OMERO.scripts
	Prerequisites
	Uploading and managing scripts

	Client Server SSL verification
	Server certificate
	Internal certificate authority

	Client host verification
	Further information

	OMERO.server Websockets
	Configuration
	Client connection

	Upgrading
	Migration to Python 3
	Basic steps
	Choosing a platform
	Other prerequisites
	Other options
	OMERO.server
	OMERO.web
	Plugins

	OMERO.server upgrade
	Upgrade checklist
	Check prerequisites
	File limits
	Password usage
	Memoization files invalidation
	Troubleshooting
	Upgrade check

	Upgrade steps
	Check ahead for upgrade issues
	Perform a database backup
	Copy new binaries
	Upgrade your database
	Ensure Unicode character encoding
	Run the upgrade script
	Optimize an upgraded database (optional)

	Merge script changes
	Update your environment variables and memory settings
	Environment variables
	JVM memory settings

	Dependencies
	Restart your server
	Restore a database backup

	OMERO.web upgrade
	Upgrade checklist
	Check prerequisites
	Upgrade
	Configuration
	Plugin updates
	Restart OMERO.web
	Troubleshooting
	Maintenance & Scaling

	Maintenance
	Troubleshooting OMERO
	Which user account and password do I use where?
	System accounts
	Database accounts
	OMERO accounts

	Server fails to start
	Remote clients cannot connect to OMERO installation
	OMERO.web connects but not OMERO.insight
	SSL connection issues

	Server crashes with…
	OutOfMemoryError / PermGen space errors in OMERO.server logs
	Too many open files
	Increasing the number of available filehandles via ‘ulimit -n’
	Directory exists but is not registered
	Not enough heap space

	DropBox fails to start: failed to get session
	Search does not return expected results
	OMERO.web issues
	OMERO.web running but status says not started
	OMERO.web not available HTTP 404
	OMERO.web not responding/timeout issues
	Issues with downloading data from OMERO.web
	OMERO.web piecharts

	Troubleshooting performance issues with the clients
	Other issues
	Connection problems and TCP window scaling on Linux systems
	Server or clients print “WARNING: Prefs file removed in background…”
	Data corruption
	PyTables version

	OMERO.cli as an OMERO admin tool
	Database tools
	Server configuration
	Server administration
	Server start
	Server stop
	Server restart
	Server diagnostics

	User/group management
	User creation
	Converting non-LDAP users to LDAP authentication
	User deactivation
	User editing
	Group creation
	Group membership
	Group copy
	Group modification

	Adjusting administrator restrictions
	View an administrator’s restrictions
	Set a restriction on an administrator
	Clear a restriction from an administrator

	Repository management
	Listing repositories
	Listing filesets
	Listing images
	Renaming filesets
	Detailing disk usage
	Creating directories

	OMERO.server backup and restore
	Cleaning up your binary repository
	Managing OMERO.server log files
	OMERO.server log file location
	Backing up OMERO
	Understanding backup sources
	Other backup sources

	Backing up your PostgreSQL database
	Backing up your binary data store

	Restoring OMERO
	Restoring your configuration
	Restoring your PostgreSQL database
	Restoring your OMERO.server binary data store

	OMERO upgrade checks
	Actions
	Privacy
	Disabling
	Developers

	Moving the data repository
	Moving the OMERO data directory
	Moving the Managed Repository
	Extending the Managed Repository

	Optimizing Server Configuration
	Server security and firewalls
	General
	Firewall configuration
	Example OpenBSD firewall rules
	Example Linux firewall rules

	Passwords
	Stored data
	Java key- and truststores
	SSL

	LDAP authentication
	How it works
	LDAP properties
	Minimum configuration
	User lookup
	Group lookup
	Compound Filters

	Case sensitivity
	LDAP over SSL
	Synchronizing LDAP on user login
	Legacy password providers
	Active Directory
	Global Catalogue

	Performance and monitoring
	Database configuration
	Memory configuration
	Configuration properties
	Strategies
	Examples
	Tips

	Monitoring
	Metrics

	Search and indexing configuration
	How Indexing works
	Missing search results
	Re-indexing
	Background re-indexing
	Off-line re-indexing
	Monitoring re-indexing

	FS configuration options
	Background
	Repository location
	Template path
	Path naming constraints
	Expansion terms
	For any directory in the template path
	For user-owned directories only

	Legal file names
	Checksum algorithm

	Grid configuration
	Modifying the application descriptors
	Targets
	Debugging
	JMX configuration

	Changing ports / multiple servers on a single host
	Extending OMERO

	Configuration properties glossary
	Introduction
	Mandatory properties
	Binary repository
	omero.checksum.supported
	omero.data.dir
	omero.fs.repo.path
	omero.fs.repo.path_rules
	omero.managed.dir

	Client
	omero.client.browser.thumb_default_size
	omero.client.download_as.max_size
	omero.client.icetransports
	omero.client.scripts_to_ignore
	omero.client.ui.menu.dropdown.colleagues.enabled
	omero.client.ui.menu.dropdown.colleagues.label
	omero.client.ui.menu.dropdown.everyone.enabled
	omero.client.ui.menu.dropdown.everyone.label
	omero.client.ui.menu.dropdown.leaders.enabled
	omero.client.ui.menu.dropdown.leaders.label
	omero.client.ui.tree.orphans.description
	omero.client.ui.tree.orphans.enabled
	omero.client.ui.tree.orphans.name
	omero.client.ui.tree.type_order
	omero.client.viewer.initial_zoom_level
	omero.client.viewer.interpolate_pixels
	omero.client.viewer.roi_limit
	omero.client.web.host

	Database
	omero.db.authority
	omero.db.dialect
	omero.db.driver
	omero.db.host
	omero.db.name
	omero.db.pass
	omero.db.patch
	omero.db.poolsize
	omero.db.port
	omero.db.prepared_statement_cache_size
	omero.db.profile
	omero.db.properties
	omero.db.sql_action_class
	omero.db.statistics
	omero.db.url
	omero.db.user
	omero.db.version

	Glacier2
	omero.glacier2.IceSSL
	omero.glacier2.IceSSL.Ciphers
	omero.glacier2.IceSSL.ProtocolVersionMax
	omero.glacier2.IceSSL.Protocols
	omero.glacier2.IceSSL.VerifyPeer

	Grid
	omero.cluster.read_only
	omero.cluster.read_only.db
	omero.cluster.read_only.repo
	omero.cluster.redirector
	omero.grid.registry_timeout

	Ice
	Ice.IPv6

	JVM
	omero.jvmcfg.append
	omero.jvmcfg.heap_dump
	omero.jvmcfg.heap_size
	omero.jvmcfg.max_system_memory
	omero.jvmcfg.min_system_memory
	omero.jvmcfg.percent
	omero.jvmcfg.perm_gen
	omero.jvmcfg.strategy
	omero.jvmcfg.system_memory

	LDAP
	omero.ldap.base
	omero.ldap.config
	omero.ldap.connect_timeout
	omero.ldap.group_filter
	omero.ldap.group_mapping
	omero.ldap.new_user_group
	omero.ldap.new_user_group_owner
	omero.ldap.password
	omero.ldap.read_timeout
	omero.ldap.referral
	omero.ldap.sync_on_login
	omero.ldap.urls
	omero.ldap.user_filter
	omero.ldap.user_mapping
	omero.ldap.username

	Mail
	omero.mail.bean
	omero.mail.config
	omero.mail.from
	omero.mail.host
	omero.mail.password
	omero.mail.port
	omero.mail.smtp.auth
	omero.mail.smtp.connectiontimeout
	omero.mail.smtp.debug
	omero.mail.smtp.socketFactory.class
	omero.mail.smtp.socketFactory.fallback
	omero.mail.smtp.socketFactory.port
	omero.mail.smtp.starttls.enable
	omero.mail.smtp.timeout
	omero.mail.transport.protocol
	omero.mail.username

	Metrics
	omero.metrics.bean
	omero.metrics.graphite
	omero.metrics.slf4j_minutes

	Name
	omero.name

	Performance
	omero.sessions.max_user_time_to_idle
	omero.sessions.max_user_time_to_live
	omero.sessions.maximum
	omero.sessions.sync_force
	omero.sessions.sync_interval
	omero.sessions.timeout
	omero.threads.background_threads
	omero.threads.background_timeout
	omero.threads.cancel_timeout
	omero.threads.idle_timeout
	omero.threads.max_threads
	omero.threads.min_threads
	omero.throttling.method_time.error
	omero.throttling.method_time.error.indexer
	omero.throttling.method_time.warn
	omero.throttling.method_time.warn.indexer
	omero.throttling.objects_read_interval
	omero.throttling.objects_written_interval
	omero.throttling.servants_per_session

	Pixeldata
	omero.pixeldata.backoff
	omero.pixeldata.backoff.default
	omero.pixeldata.backoff.maxpixels
	omero.pixeldata.batch
	omero.pixeldata.cron
	omero.pixeldata.dispose
	omero.pixeldata.event_log_loader
	omero.pixeldata.max_plane_height
	omero.pixeldata.max_plane_width
	omero.pixeldata.max_projection_bytes
	omero.pixeldata.memoizer.dir
	omero.pixeldata.memoizer.dir.local
	omero.pixeldata.memoizer_wait
	omero.pixeldata.repetitions
	omero.pixeldata.threads
	omero.pixeldata.tile_height
	omero.pixeldata.tile_sizes_bean
	omero.pixeldata.tile_width

	Policy
	omero.policy.bean
	omero.policy.binary_access

	Ports
	omero.ports.prefix
	omero.ports.registry
	omero.ports.ssl
	omero.ports.tcp
	omero.ports.ws
	omero.ports.wss

	Query
	omero.query.timeout
	omero.query.timeout.admin

	Scripts
	omero.launcher.jython
	omero.launcher.matlab
	omero.launcher.python
	omero.process.jython
	omero.process.matlab
	omero.process.python
	omero.scripts.cache.cron
	omero.scripts.cache.spec
	omero.scripts.timeout

	Search
	omero.search.analyzer
	omero.search.batch
	omero.search.bridges
	omero.search.cron
	omero.search.event_log_loader
	omero.search.excludes
	omero.search.include_actions
	omero.search.include_types
	omero.search.locking_strategy
	omero.search.max_file_size
	omero.search.max_partition_size
	omero.search.merge_factor
	omero.search.ram_buffer_size
	omero.search.repetitions
	omero.search.reporting_loops

	Security
	omero.security.chmod_strategy
	omero.security.filter.bitand
	omero.security.keyStore
	omero.security.keyStorePassword
	omero.security.login_failure_throttle_count
	omero.security.login_failure_throttle_time
	omero.security.password_provider
	omero.security.password_required
	omero.security.trustStore
	omero.security.trustStorePassword

	Server
	omero.server.nodedescriptors

	Web
	omero.web.admins
	omero.web.application_server
	omero.web.application_server.host
	omero.web.application_server.max_requests
	omero.web.application_server.port
	omero.web.apps
	omero.web.base_include_template
	omero.web.caches
	omero.web.chunk_size
	omero.web.cors_origin_allow_all
	omero.web.cors_origin_whitelist
	omero.web.csrf_cookie_httponly
	omero.web.csrf_cookie_secure
	omero.web.databases
	omero.web.debug
	omero.web.django_additional_settings
	omero.web.favicon_url
	omero.web.feedback.comment.enabled
	omero.web.feedback.error.enabled
	omero.web.html_meta_referrer
	omero.web.index_template
	omero.web.logdir
	omero.web.login.client_downloads_base
	omero.web.login.show_client_downloads
	omero.web.login_incorrect_credentials_text
	omero.web.login_logo
	omero.web.login_redirect
	omero.web.login_view
	omero.web.max_table_download_rows
	omero.web.maximum_multifile_download_size
	omero.web.middleware
	omero.web.nginx_server_extra_config
	omero.web.open_with
	omero.web.page_size
	omero.web.ping_interval
	omero.web.pipeline_css_compressor
	omero.web.pipeline_js_compressor
	omero.web.pipeline_staticfile_storage
	omero.web.plate_layout
	omero.web.prefix
	omero.web.public.cache.enabled
	omero.web.public.cache.key
	omero.web.public.cache.timeout
	omero.web.public.enabled
	omero.web.public.get_only
	omero.web.public.password
	omero.web.public.server_id
	omero.web.public.url_filter
	omero.web.public.user
	omero.web.redirect_allowed_hosts
	omero.web.root_application
	omero.web.search.default_group
	omero.web.search.default_user
	omero.web.secret_key
	omero.web.secure
	omero.web.secure_proxy_ssl_header
	omero.web.server_list
	omero.web.session_cookie_age
	omero.web.session_cookie_domain
	omero.web.session_cookie_name
	omero.web.session_cookie_path
	omero.web.session_cookie_secure
	omero.web.session_engine
	omero.web.session_expire_at_browser_close
	omero.web.sharing.opengraph
	omero.web.sharing.twitter
	omero.web.show_forgot_password
	omero.web.static_root
	omero.web.static_url
	omero.web.staticfile_dirs
	omero.web.template_dirs
	omero.web.thumbnails_batch
	omero.web.time_zone
	omero.web.top_logo
	omero.web.top_logo_link
	omero.web.ui.center_plugins
	omero.web.ui.metadata_panes
	omero.web.ui.right_plugins
	omero.web.ui.top_links
	omero.web.use_x_forwarded_host
	omero.web.user_dropdown
	omero.web.viewer.view
	omero.web.webgateway_cache
	omero.web.wsgi_args
	omero.web.wsgi_timeout
	omero.web.wsgi_workers
	omero.web.x_frame_options

	Syslog configuration
	How it works
	Configuration

	Managing OMERO
	Groups and permissions system
	Summary
	Users
	Group permission levels
	Changing group permissions
	Permissions on your and other users’ data
	Permissions tables
	Administrator
	Group owner
	Group member
	Key

	Issues to be aware of
	ROIs
	Tags and attachments
	Scripts

	Administrators with restricted privileges
	Summary
	Four suggested workflows
	Workflow 1: Data Viewer
	Workflow 2: Importer
	Workflow 3: Analyst
	Workflow 4: Group and Data Organizer
	Key
	Administrator restrictions: relating OMERO.webadmin to OMERO.server
	Summary
	Map of the OMERO.web UI options to the server-side privileges

	Data Import and Storage
	OMERO.dropbox
	Prerequisites
	Installing DropBox
	Using DropBox
	Permissions
	Log files
	Unicode path and file names
	Advanced use
	Properties
	Example

	In-place import
	Responsibilities
	Limitations
	Safety tips
	Additional setup requirements
	Getting started
	Transfer options
	“ln_s” - soft-linking
	“ln” - hard-linking
	“ln_rm” - moving
	“upload_rm” - uploading and deleting
	“cp” and “cp_rm” variants
	Your own file transfer

	Related advanced options
	Checksums
	DropBox

	Advanced import scenarios
	Import overview
	Traditional import
	Manual import (GUI)
	Advantages
	Disadvantages

	Manual import (CLI)
	Advantages
	Disadvantages

	Cronjob import (manual delete)
	Disadvantages

	DropBox import (manual delete)
	Advantages
	Disadvantages

	DropBox import (automatic delete)
	Advantages

	In-place import
	Common advantages
	Common disadvantages
	In-place manual import (CLI)
	Advantages
	Disadvantages

	In-place Cronjob import
	In-place DropBox import (manual delete)
	In-place DropBox import (automatic delete)
	Advantages
	Disadvantages

	Parallel import

	Optimizing OMERO as a Data Repository
	Publishing data using OMERO.web
	Configuring public user
	Full example of hosting data for a publication
	Group setup
	Configuring OMERO.web
	Data migration
	Data layout
	Configuring URLs

	OMERO.web UI customization
	Index page
	Login page logo
	Login redirection
	Top links menu
	Open With option
	Include template in every page
	Group and Users in dropdown menu
	Orphaned container
	Disabling scripts
	Download restrictions

	Developer Documentation
	Introduction to OMERO
	What’s new for OMERO 5.6 for developers
	Migration from OMERO 5.5 (Python 2) to OMERO 5.6 (Python 3)
	Futurize
	print()
	dict.keys()

	Strings
	Which str is it??
	isinstance(x, str)
	str(some_variable)
	StringIO and open(“file”, “r”)
	Regexes

	Numerics

	Installing OMERO from source
	Using the source code
	Using the Git source repository
	Building OMERO

	Build System
	Structure of the build
	Build tools
	Ant
	Ivy
	OmeroTools
	Jenkins

	Server build
	Coupled development
	Building Bio-Formats
	Building OMERO

	Working with OMERO
	OMERO.clients
	OMERO server
	Environment variables
	Network hopping for laptops
	Database access
	OMERO model
	Projects, datasets and images
	Images

	Working with the OMERO model objects
	Examples
	HQL examples
	psql queries
	omero hql

	Running and writing tests
	Running tests
	Running unit tests
	Running integration tests
	Running all tests
	Component tests
	Individual tests

	Running Java tests
	Individual tests
	Individual test class methods
	Individual test groups
	Using Eclipse to run tests

	Running Python tests
	Using markers in OmeroPy tests
	Running tests directly

	Failing tests

	Writing tests
	Writing Java tests
	Writing Python tests
	Marking OmeroPy tests
	Using the Python test library
	Writing OMERO.web tests

	Using the OMERO API
	OMERO Python language bindings
	Code samples
	Connect to OMERO
	Read data
	Groups and permissions
	Raw data access
	Write data
	OMERO tables
	ROIs
	Delete data
	Render Images
	Create Image
	Filesets - added in OMERO 5.0
	Python OMERO.scripts

	Blitz Gateway documentation
	Connection wrapper
	Model object wrappers
	Wrapper coverage
	Access to the OMERO API services
	Stateful services, reconnection, error handling etc.
	Overwriting and extending omero.gateway classes

	Command Line Interface as an OMERO development tool
	Working with objects
	Object creation
	Object update
	Piping output

	Extensions
	Thread-safety

	General notes

	OMERO Java language bindings
	Writing client apps
	Extended classpath
	Java Gateway
	Connect to OMERO
	Read data
	Raw data access
	Write data
	How to use OMERO tables
	ROIs
	Delete data
	Render Images
	Create Image
	Sudo (working within another user’s context)
	Further information

	OMERO MATLAB language bindings
	Installing the OMERO.matlab toolbox
	Configuring the OMERO.matlab connection
	Creating a connection
	Keeping your session alive
	Working in a different group
	Creating an unencrypted session
	Closing your connection
	Unloading OMERO

	Reading data
	Raw data access
	Annotations
	Writing data
	How to use OMERO tables
	ROIs
	Deleting data
	Rendering images
	Creating Image

	OMERO C++ language bindings
	Prerequisites
	Restrictions
	Preparing to build
	Building the library
	cmake build configuration
	Visual Studio configuration
	Installing the library
	Using the library
	A trivial example: yourcode.cpp
	Compiling and running your code
	Further information

	JSON API
	Overview
	Omero-marshal and Projection-based APIs
	Versioning
	JSON format
	URLs in JSON
	Pagination
	Loading of linked objects
	Normalizing Experimenters and Groups
	Child counts
	Filtering by Owner and Group
	Error handling

	Getting started
	List supported versions
	List starting URLs
	List available OMERO servers
	Get CSRF token
	Login

	Projects, Datasets and Images
	List Projects
	Get a single Project
	List Datasets
	Get a single Dataset
	List Images
	Get a single Image

	Screens, Plates and Wells
	List Screens
	Get a single Screen
	List Plates
	Get a single Plate
	List Plate Acquisitions
	List Wells in a Plate
	List Wells by WellSample Index
	Get a single Well

	ROIs and Shapes
	List ROIs

	Experimenters and Groups
	Listing Experimenters
	Get a single Experimenter
	Experimenters in a Group
	Listing Groups
	Get a single Group
	Groups for an Experimenter

	Creating and saving objects
	Object types
	Creating objects
	Updating objects
	Deleting objects

	Analysis
	Local analysis
	Storing external data in OMERO
	Third-party analysis and OMERO.tables
	Other high-content screening (HCS) data

	OMERO.tables
	The interface
	Single value columns
	Array value columns
	Main methods

	Examples
	The implementation
	Query language
	Going forward

	Scripts - plugins for OMERO
	Introduction to OMERO.scripts
	Finding scripts
	Downloading and installing scripts
	Developing your own scripts
	Contributing back to the community

	OMERO.scripts user guide
	Sample scripts
	Ping script
	Accessing an Image and Channels on the server
	Dynamic arguments

	Script writing as ‘Admin’
	Download / Edit script
	More example scripts
	Upload script
	Run script
	Edit and replace
	Other script commands

	Debugging scripts

	Guidelines for writing OMERO.scripts
	Script naming and file path
	Parameters
	Parameter grouping / ordering
	Pick selected Images, Datasets or Projects from OMERO clients
	Script outputs
	More tips

	MATLAB and Python
	Installing MATLAB Engine API
	Example MATLAB scripts
	Calling a simple MATLAB function
	Using the OMERO interface inside MATLAB
	The MATLAB frap function

	OMERO.scripts advanced topics
	Regular user (non-admin) workflow
	The iScript service
	Scripting service API

	Web
	OMERO.web framework
	OMERO.web infrastructure
	OMERO Python API
	BlitzGateway
	OMERO.web

	Getting started
	Quick example - OMERO.webtest

	OMERO.web installation for developers
	Getting set up
	Installing OMERO.web
	Using the lightweight development server
	Using WSGI

	Creating an app
	Getting set up
	Clone the examples repository
	Run your app with locally-installed OMERO.web
	Run your app with OMERO.web in a Docker container
	Exploring the app
	Create an app from the template example
	App settings
	Linking from Webclient
	Releasing your app

	Release an app
	Make your app installable from PyPI
	Configuring your app name and label

	Linking from Webclient
	OMERO.web top links
	Custom image viewer
	Open with
	Label, name and supported objects
	Open in new tab
	UI Label
	JavaScript handlers

	OMERO.web plugins

	Webclient Plugins
	Overview
	App URLs
	Configuring the plugin
	Choose an element ID
	Create a JavaScript file

	Plugin installation
	Restart Web
	Refreshing content

	Plugin options

	Editing OMERO.web
	WebGateway
	Web services
	URLs from within OMERO.web
	Image viewer
	Images
	Rendering settings
	JSON methods
	Saving etc.
	ImgData

	Embedding an OMERO.web viewport in a web page
	OMERO.web viewer in iframe
	Launching OMERO.web viewer
	Customizing the content of the embedded OMERO.web viewport

	Writing OMERO.web views
	@Decorators
	@login_required()
	login_required logic
	Extending login_required
	render_response
	Extending render_response

	Style guides
	OMERO.web error handling
	With Debug: True (during development)
	With Debug: False (in production)
	Custom error handling

	Writing page templates in OMERO.web
	Django templates
	Getting Started
	Using Webclient templates
	Extending templates
	Webtest examples

	Content blocks
	container2.html, container3.html

	Cross Site Request Forgery protection
	The OMERO.web client application
	Top level pages
	JsTree
	Switching Groups and Users
	Show queries
	Javascript code
	Reusing OMERO sessions

	Insight
	More on API Usage
	Developing OMERO clients
	Introduction
	Distributed computing
	Objects
	“Slice” mapping language
	Primitives
	Sequences, dictionaries, enums, and constants
	RTypes
	OMERO model objects
	Details
	ObjectFactory and casting
	Visibility and loadedness
	Collections
	Interfaces

	Language-specific behavior
	Smart pointers (C++ only)
	__getattr__ and __setattr__ (Python only)
	Method inspection and code completion (MATLAB & Python)

	Services overview
	OMERO client configuration
	What is a ServiceFactory?
	It produces services!

	Stateless vs. stateful
	What are timeouts?
	Exceptions

	IQuery
	IUpdate
	Examples
	TreeList

	Advanced topics
	Sudo
	Proposed

	Planned improvements and known issues
	Topics to be added
	Code generation
	Lazy loading and caching
	Helper classes
	Other

	OMERO Application Programming Interface
	Services list
	Service Level 1 (direct database and Hibernate connections)
	Service Level 2
	Stateful/Binary Services

	Discussion
	Reads and writes
	Administration
	Model Object Java

	Examples
	Stateless versus stateful services
	How to write a service
	OMERO annotations for validation

	OMERO admin interface
	Actions available through IAdmin and IUpdate
	Actions only available through IAdmin
	Similarities between IAdmin and IQuery

	Deleting in OMERO
	Finality of deletion
	Delete behavior (technical)
	Delete Image
	Delete Dataset or Project
	Delete Screen, Plate or Plate Acquisition
	Delete Tag/Attachment
	Delete multi-file Images and Image sets
	Delete in collaborative group
	Group owner rights
	Edge cases
	Binary data

	OMERO Import Library
	Components
	Earlier Import Workflow
	FS Managed Repository Import Workflow
	Example

	TempFileManager
	Creating temporary files
	Removing files
	Creating directories

	Exception handling
	Client exceptions
	Server exceptions
	Interceptor
	Hierarchy

	Moving forward
	Questions

	Omero logging
	Java clients
	Java servers
	Python servers
	stdout and stderr
	Windows stdout and stderr

	Graph requests
	Querying the model object graph
	Changing the model object graph
	Command-line interface
	Request builders for Java

	Rewriting old graph requests
	Migration is required
	Target objects
	Translating options
	Examples in Python
	Move images
	Delete plate, but not annotations
	Delete an image’s rendering settings

	Java request factory

	The OME Data Model
	OME-Remote Objects
	OMERO type language
	Keywords

	Improving generated data objects
	Constructors
	Details
	Interfaces
	Inheritance
	Model report objects
	Dynamic methods
	fieldSet / putAt / retrieve
	acceptFilter
	Limitations

	Entity lifecycle
	States
	Identity, references, and versions

	Working with the object model
	Writing
	Reading
	Reading and writing
	Lazy loading
	Collections
	Links
	Synchronization

	Limitations

	Working with annotations
	Annotated and annotating types
	Annotation hierarchy

	Names and namespaces
	Descriptions
	Examples
	Basics
	Attaching a tag
	Attaching a file

	Glossary of all OMERO Model Objects
	Overview
	Reference
	AcquisitionMode
	AdminPrivilege
	AffineTransform
	Annotation
	AnnotationAnnotationLink
	Arc
	ArcType
	BasicAnnotation
	Binning
	BooleanAnnotation
	Channel
	ChannelAnnotationLink
	ChannelBinding
	ChecksumAlgorithm
	CodomainMapContext
	CommentAnnotation
	ContrastMethod
	ContrastStretchingContext
	Correction
	DBPatch
	Dataset
	DatasetAnnotationLink
	DatasetImageLink
	Detector
	DetectorAnnotationLink
	DetectorSettings
	DetectorType
	Dichroic
	DichroicAnnotationLink
	DimensionOrder
	DoubleAnnotation
	Ellipse
	Event
	EventLog
	EventType
	Experiment
	ExperimentType
	Experimenter
	ExperimenterAnnotationLink
	ExperimenterGroup
	ExperimenterGroupAnnotationLink
	ExternalInfo
	Family
	Filament
	FilamentType
	FileAnnotation
	Fileset
	FilesetAnnotationLink
	FilesetEntry
	FilesetJobLink
	Filter
	FilterAnnotationLink
	FilterSet
	FilterSetEmissionFilterLink
	FilterSetExcitationFilterLink
	FilterType
	Folder
	FolderAnnotationLink
	FolderImageLink
	FolderRoiLink
	Format
	GenericExcitationSource
	GroupExperimenterMap
	Illumination
	Image
	ImageAnnotationLink
	ImagingEnvironment
	Immersion
	ImportJob
	IndexingJob
	Instrument
	InstrumentAnnotationLink
	IntegrityCheckJob
	Job
	JobOriginalFileLink
	JobStatus
	Label
	Laser
	LaserMedium
	LaserType
	LightEmittingDiode
	LightPath
	LightPathAnnotationLink
	LightPathEmissionFilterLink
	LightPathExcitationFilterLink
	LightSettings
	LightSource
	LightSourceAnnotationLink
	Line
	Link
	ListAnnotation
	LogicalChannel
	LongAnnotation
	MapAnnotation
	Mask
	Medium
	MetadataImportJob
	MicrobeamManipulation
	MicrobeamManipulationType
	Microscope
	MicroscopeType
	Namespace
	NamespaceAnnotationLink
	Node
	NodeAnnotationLink
	NumericAnnotation
	OTF
	Objective
	ObjectiveAnnotationLink
	ObjectiveSettings
	OriginalFile
	OriginalFileAnnotationLink
	ParseJob
	Path
	PhotometricInterpretation
	PixelDataJob
	Pixels
	PixelsOriginalFileMap
	PixelsType
	PlaneInfo
	PlaneInfoAnnotationLink
	PlaneSlicingContext
	Plate
	PlateAcquisition
	PlateAcquisitionAnnotationLink
	PlateAnnotationLink
	Point
	Polygon
	Polyline
	Project
	ProjectAnnotationLink
	ProjectDatasetLink
	ProjectionAxis
	ProjectionDef
	ProjectionType
	Pulse
	QuantumDef
	Reagent
	ReagentAnnotationLink
	Rectangle
	RenderingDef
	RenderingModel
	ReverseIntensityContext
	Roi
	RoiAnnotationLink
	Screen
	ScreenAnnotationLink
	ScreenPlateLink
	ScriptJob
	Session
	SessionAnnotationLink
	Shape
	ShapeAnnotationLink
	Share
	ShareMember
	StageLabel
	StatsInfo
	TagAnnotation
	TermAnnotation
	TextAnnotation
	Thumbnail
	ThumbnailGenerationJob
	TimestampAnnotation
	TransmittanceRange
	TypeAnnotation
	UploadJob
	Well
	WellAnnotationLink
	WellReagentLink
	WellSample
	XmlAnnotation

	Units
	Supported units
	Unit fields
	Unit objects
	Defining a unit
	Converting a unit
	Getting a symbol

	Querying units

	Map annotations
	OME-XML
	OMERO languages
	Fields

	MapAnnotations
	Storage and queries
	Find the value for a key
	Finding objects with a key
	Finding objects without a key
	Finding objects with multiple values

	Available transformations
	Quality of transformations
	Key to quality
	Matrix of transformation paths

	Folders in the OMERO model

	Searching
	OMERO search
	Field names
	Queries
	Indexing
	Information for developers
	ome.api.IQuery
	ome.api.Search
	Leading wildcard searches
	Extension points

	File parsers
	Configuration
	Available parsers

	Search bridges
	Example
	Configuration
	Available bridges
	Re-indexing

	Authentication and Security
	Password Provider
	Things to keep in mind

	LoginAttemptListener
	LDAP plugin design
	Simple walkthrough
	NewUserGroupBean.java

	OMERO roles
	Setting roles
	Service-level
	Object-level
	Special privileges for PIs

	OMERO security system
	Concepts
	Participants
	Top-level and build
	Client and common
	JBoss-only

	Server side

	End-to-end
	Build system
	Client-side
	Application server
	Server code
	Interceptors
	Services
	Hibernate
	Security system

	Logging in (client-side)
	Logging in (server-side)

	OMERO permissions querying, usage and history
	Working with the OMERO 5.6.4 permissions system
	Example environment
	Group membership
	Simple inserts and queries
	Retrieving a user’s event context and group membership
	Inserting and querying data from specific groups
	Advanced queries
	Querying data across groups
	Querying data across users in the same group

	Utilizing the Permissions object

	Troubleshooting permissions issues
	Data disappears after a change of the primary group of a user
	Listing other users’ data in read-only groups
	Is the default group the primary group when not specifying the context?
	What about when importing data without specifying the context object?

	Specifying the group context as -1 when deleting data

	History
	Things to note about 4.2.x permissions
	Changes for OMERO 4.4.x
	Changes for OMERO 5.4.x

	OMERO.server in depth
	OMERO.server overview
	OMERO sequence narrative
	Technologies
	Server design
	Topics

	Extending OMERO.server
	Existing extension points
	Extending the Model
	Structured annotations
	Code generation
	Measurement results

	Services
	Add a slice definition
	Warning: exceptions
	Java implementation using _Disp
	Java implementation using _Tie
	Java configuration
	Java deployment
	Non-service beans

	Servers
	Server element
	Server-template and server-instance elements

	OMERO.blitz
	Metadata
	Image data

	OMERO.fs
	Import under OMERO.fs
	Import overview
	Filesets
	Model description
	API sequence
	Server-side classes/concepts
	Server-side sequence

	OMERO.processor
	OMERO.server image rendering
	Clustering
	Availability
	Throughput
	Installation
	Read-Only

	Collection counts
	Pojo options
	Restrictions
	Instructions

	How To create a service
	Files to create
	Files to edit (not strictly necessary, see #314)
	Files involved
	And do not forget the tests
	Things to be aware of
	Local APIs
	Stateful services

	OMERO sessions
	Design
	Existing sessions

	Aspect-oriented programming
	Why?

	OmeroContext
	Hibernate sessions

	OMERO events and provenance
	What is an event?
	Events as audit log
	Relationship to ModuleExecutions

	Properties
	Using server queries internally
	Introduction
	Parameters
	Adding queries
	Subclassing query

	Defining a QuerySource

	OMERO throttling
	Planning
	Terminology

	OMERO rendering engine
	Description
	Server-port
	Optimizations
	Compression
	Design

	Scaling Omero
	Concurrent invocations
	Database connections
	Server threads

	Total throughput

	SqlAction
	The server’s view of administrator restrictions
	Restrictions
	Bundling restrictions
	Working with restrictions
	Restricted administrators
	Permissions on model objects
	Event context

	Integration tests in Java
	Mapping of OriginalFile.repo
	Database triggers

	Model graph operations
	Motivation
	Approach
	Graph node states and transitions
	Further graph node states

	Configuration
	Defining the model graph transition rules
	Propagating deletion
	Curtailing deletion
	Other kinds of transition rule

	Logging
	Changing the log level
	Expanding the reports of transition rule matches

	Encouragement
	Options
	SkipHead

	Java classes for model graph operations
	Navigating the graph
	Traversing and acting
	Policy rules for node transitions
	OMERO.blitz graph requests

	Index

