OMERO

The Open Microscopy Environment

Oct 02, 2023

1 OMERO Overview and CLI User Documentation
2 System Administrator Documentation
3 Developer Documentation

Index

CONTENTS

77
341

751

OMERO

The documentation for OMERO 5.6.9 is divided into three parts:

OMERQO Overview and CLI User Documentation introduces the user-facing client applications and how to get started,
details the CLI client, and indicates where users can access further help and support.

System Administrator Documentation includes instructions for installing and configuring an OMERO server and also
information on managing users and data, a task which full system administrators can now delegate to facility managers
or other trusted users using the new ‘restricted administrator’ role.

Developers can find more specific and technical information about OMERO in the Developer Documentation.
Additional online resources can be found at:

* Downloads

* Security Advisories

» User help website

¢ OME YouTube channel for tutorials and presentations

* Demo server - managed by the main OME team, providing the latest released versions of OMERO and plugins
for you to try out

OMERO API documentation - OmeroJava API, OmeroPy API, OmeroBlitz / Slice API

OMERO 5.6.9 uses the June 2016 schema of the OME Data Model. The CHANGELOGS page details the development
of OMERO functionality over time.

A summary of breaking changes and new features for 5.6.9 can be found on the pages below:
* What'’s new for OMERQO users
* What’s new for OMERO sysadmins
* What’s new for OMERO developers

The source code is hosted on Github. To propose changes and fix errors, go to the documentation repository, fork it,
edit the file contents and propose your file changes to the OME team using Pull Requests. Alternatively, click on “Edit
on GitHub” in the menu.

CONTENTS 1

https://downloads.openmicroscopy.org/latest/omero5.5/
https://www.openmicroscopy.org/security/advisories/
https://help.openmicroscopy.org/
https://www.youtube.com/channel/UCyySB9ZzNi8aBGYqcxSrauQ
http://qa.openmicroscopy.org.uk/registry/demo_account/
https://docs.openmicroscopy.org/omero-blitz/5.7.1/javadoc/
https://downloads.openmicroscopy.org/latest/omero5.5/api/python/
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/
https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome.html
https://docs.openmicroscopy.org/latest/ome-model/
https://github.com/ome/ome-documentation/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

OMERO

2 CONTENTS

CHAPTER
ONE

OMERO OVERVIEW AND CLI USER DOCUMENTATION

1.1 Introduction

OME Remote Objects (OMERO) is a modern client-server software platform for visualizing, managing, and annotating
scientific image data. OMERO lets you import and archive your images, annotate and tag them, record your experi-
mental protocols, and export images in a number of formats. It also allows you to collaborate with colleagues anywhere
in the world by creating user groups with different permission levels. OMERO consists of a Java server, several Java
client applications, as well as Python and C++ bindings and a Django-based web application.

The OMERO clients are cross-platform. To run on your computer they require Java 8 or higher to be installed. This
can easily be installed from https://java.com/ if it is not already included in your OS. The OMERO.insight client gets
all of its information from a remote OMERO.server — the location of which is specified at login. Since this connection
utilises a standard network connection, the client can be run anytime the user is connected to the internet.

Acquisition Clients Processing
N
L

INTERNET

SERVER

¥ N

0

OMERO

Image Data Analytics

Search Metadata

This documentation is for the OMERO 5 Platform. This version is designed to improve our handling of complex mul-
tidimensional datasets. It allows you to upload your files in their original format, preserving file names and any nested
directory structure in the server repository. For more technical information, please refer to the Developer Documen-
tation. You can read about the development of OMERO in the CHANGELOGS and the latest user-facing changes in
What’s new for OMERQO 5.6 for users.

https://java.com/

OMERO

1.2 OMERO clients

1.2.1 OMERDO clients overview

Most laboratories use a number of different imaging platforms and thus require tools to manage, visualize and analyze
heterogeneous sets of image data recorded in a range of file formats. Ideally a single set of applications, running on a
user’s laptop or workstation, could access all sets of data, and provide easy-to-use access to this data.

OMERO ships as a server application called OMERO. server and a series of client applications (known simply as
clients): OMERO.web, OMERO. insight and OMERO. importer. All run on the major operating systems and provide im-
age visualization, management, and annotation to users from remote locations. With a large number of OMERO.server
installations worldwide, OMERO has been shown to be relatively easy to install and get running.

OMERO.insight and OMERO.importer are desktop applications written in Java and require Java 8 (or higher) to be
installed on the user’s computer (this can easily be installed from https://java.com/ if it is not already included in your
0OS).

Our user assistance help website provides a series of workflow-based guides to performing common actions in the client
applications, such as importing and viewing data, exporting images and using the measuring tool.

Our partners within the OME consortium are also producing new clients and modules for OMERO, integrating addi-
tional functionality, particularly for more complex image analysis. See the features pages for more details.

Features

Among many features, the noteworthy elements of the two main clients (OMERO.insight and OMERO.web) are:

» DataManager, a traditional tree-based view of the data hierarchies in an OMERO.server. DataManager supports
access to all image metadata, annotations, tags etc.

e ImageViewer, for visualization of 5D images (space, channel, time). The ImageViewer makes use of the
OMERO:.server’s Rendering Engine, and provides high-performance viewing of multi-dimensional images on
standard workstations (e.g. scrolling through space and time), without requiring installation of high-powered
graphics cards. Most importantly, image viewing at remote locations is enabled. Image rendering settings are
saved and chosen by user ID

* Working Area, for viewing, annotating, and manipulating large sets of image data

e user and group administration

OMERO.web

OMERO.web is a web-based client for users who wish to access their data in the browser. This offers a similar view
to the OMERO.insight desktop client. Figures OMERO.web user interface and OMERO.web image viewer present the
user interface. Developers can use the OMERQO.web framework to build customized views.

OMERO.web features almost all of the functionality of OMERO.insight barring import. A number of apps are available
to add functionality to OMERO.web, such as OMERO .figure and OMERO.iviewer. See the main website for a list of
released apps.

For more information and guides to using OMERO.web, see our help website.

4 Chapter 1. OMERO Overview and CLI User Documentation

https://java.com/
https://help.openmicroscopy.org/
https://www.openmicroscopy.org/omero/analyze
https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://www.openmicroscopy.org/omero/apps/
https://help.openmicroscopy.org/

OMERO

OMERO Data History
Laws Lab Polly Stack

Explore Tags | Shares

LR R L
Polly Stack
8 Nature Paper
BaFigure 1
P-TRE 17_R3D_D3D.dv

TRE 19_R3D_DAD.v
P-TRE 22 R3D_DAD_VOLdv
P-TRE 24_R3D_DAD.dv
P-TRE 25 R3D_DAD.dv
P-TRE 29 R3D_DAD.dv
P-TRE 30_R3D_DAD.dv
P-TRE 31.03_d3d
P-TRE 32.3_d3d
P-TRE 3313 d3d

8 Timelapse From JCB

8 Tutorial - FLIM Data 2

5 Resuts

5 Orphaned Images

*OMERO Data Hstoy Hep

Explore | Tags | Shares

EmE oy T @

. Polly Stack
8 Nature Paper
@ Figure 1

P-TRE 17_R3D_D3D.dv
P-TRE 19 R3D_D3D.dv
P-TRE 22 RID_D3D_VOLGY
P-TRE 24 R3D_D3D.dv
P-TRE 25 R3D D3D.dv
P-TRE 29 R3D D3D.dv
P-TRE 30_RID_D3D.dv
P-TRE 31.r3d dad
P-TRE 3234 dad
P-TRE 3330 dad

i Timelapse From JCB

8 Tutorial - FLIM Data

B Results

(B3 Orphaned Images

Filter Image

General | Acquisition | Proview

P-TRE_19_R3D_D3D.dv 7

imageiD: 2

Owner: Poly Stack showal [
Image Details -

collected with criical ilumination 7

Import Date:
Dimensions (XY): s12x512

Pixels Size (XY2) (um):
Z-sections/Timepoints:

o720, 820.0,8170 7
70! Count:

Tags »
Key-Value Pairs >
Attachments »
Ratings »
Comments >

Fig. 1: OMERO.web user interface

Filler Images

Poly Stack
General | Acquisition | Preview

Full viewer

o § 1§ B .

XX

Viewing Options

Max tensity

Soit Chammel

Quality Norma!
Zoom (%)
672
Line Plot

Rendering Details
Channels - Edit
5280

Grayscale
Rendering Settings
Copy | Paste

Z-sections

Interpolate €
Current Image
ZAAITAA

Scale bar
Image Information
Image Link
ROI Count: 0

<Prev Next>

@ <

ient/img_detail/3/ Showal ¢

{tion .

{672007:2016 Glancoa Sofvwiars nc. All s eserved.

Timepoints

Fig. 2: OMERO.web image viewer

& (i [¢]ea

1.2. OMERO clients

OMERO

OMERO.insight

Note: With the release of OMERO 5.3.0, the OMERO.insight desktop client has entered maintenance mode, meaning
it will only be updated if a major bug is discovered. Instead, the OME team will be focusing on developing and extending
the web clients.

OMERO.insight provides a number of tools for accessing and using data in an OMERO server. Figures OMERO.insight
and OMERQ.insight ImageViewer and Measurement Tool present the user interface. To find out more, see the
OMERQO.insight user guides.

B & mn | & [owecom~
@ e O e T Acquisition | review
CHs,ERXS KO B Full Viewer mE L s
v & demo_group (1]
v & Polly Stack P-TRE_15_R3D_D3D.dv 4
v & Nature Paper [2] Image ID: 165854
+ B Fgure 1 Daa (10] Owner: Polly Stack showal
£ P-TRE_L1_R30_D30.dv T ®)
(] P-TRE_12_R3D_D3D.dv =
BleTec 15 w30.030.4] ad beseription ’
2] P-TRE_17_R3D_D3D.dv
& P TRE 18 A3 D300 Acquisition Date: 2014-04-07 135828
%] P-TRE_20_R3D_D3D.dv Pixel Type: int16
=] p-TRE 21 R3D_D3D.dv Pixls Size (XY2) (o 56.3166.31x200.00
Z{ p-TRE_22_R3D_D3D.dv Z-sections Timepoints: 70x 1
2] p-TRe 23_R30_D3D_VOLdY Channels: as7,528,617 ’
» B Figure 2 Data [7) RO! Counc: 2
» @ Timelapse from JCB [3] Tags. ¥)
» @ Tutorial - FLIMfit Data [2] Key-Value Pairs.
» (@ Orphaned images
Atachments
Ratings
Comments
Locaedin

® Screens
|@ Auachments
) Tags

© Images

(o search

>

AR 4 <

Fig. 3: OMERO.insight

E & mm § & DisplayGroups v

& projects B mr Acquisition _ Preview

-3 3 % Compression: None ¢ Interpolate: 8 de
4B ® 2 S 7 @& Compr P 1 Full Viewer [R

v 8 demo_growp = 5
fimage Split Project >

v S raysaq [BImGED Hspi § @ pojection O ‘ P-TRE_15_R3D_D3DAv ,

v -;;wve i I Image ID: 165854
. B Fi [mage I0: 165354 ’
5 oo (ID: 165854) P-TRE_15_R3D_D3D.dv. 3

EWAK x» 0O O \ & & Show Comment

« 12 Graph Pane 7] Intensity View Z] Intensity Results View
E y

Line Profile

0) s o o s o

> Bifig Hogy
» w Tmely
> Tuor y
» B orpha

[Eas7 25 —ei7] Export
Histogram

equency

'

L‘!"":-ﬁ"mm

Screens
B Screens o &

(@ Auachments
) Tags L4
) Images @ 2=36(7.0pm)/70 T=1/1 M10s_1 1min38sM3min53s 100%

Search @2 & 4 ———»

Fig. 4: OMERO.insight ImageViewer and Measurement Tool

The two main additional features of OMERO.insight which are not available as yet for OMERO.web are:

* Measurement Tool, a sub-application of ImageViewer that enables size and intensity measurements of defined
regions-of-interest (ROIs)

* image import

Our user assistance help website features a number of workflow-based guides to importing, viewing, managing and
exporting your data using OMERO.insight.

6 Chapter 1. OMERO Overview and CLI User Documentation

https://help.openmicroscopy.org/
https://help.openmicroscopy.org/

OMERO

OMERO.importer

The OMERO.importer is part of the OMERO.insight client, but can also run as a stand-alone application. The
OMERO.importer allows the import of proprietary image data files from a filesystem accessed from the user’s com-
puter to a running OMERO server. This tool uses a standard file browser to select the image files for import into an
OMERO server.

The tool uses Bio-Formats for translation of proprietary file formats in preparation for upload to an OMERO.server.
Visit Supported Formats for a detailed list of supported formats.

®ee Import Data
Import Data .O.
.t data to import and monitor imports. &
Select Data to Import
[5 PTRE \al Sloidinoogs| Options
Free Space [Import size: 645 MB
Name e File or Project/Datase Folder as
& P-TRE_10_R3D_D3D.dv Monday, 23 August 2004 19:26 Folder Group T Do Size
P-TRE_10_R3D_D3D.dv_vol Monday, 23 August 2004 19:26 2] P-TRE_L... demo_group B PTRE 8 105 ME
& P-TRE_11_R3D_D3D.dv Monday, 23 August 2004 19:26 5| P-TRE_L... demo_group 53 PTRE 1] 142 MB
Monday, 23 August 2004 19:26 || P-TRE_L... demo_group) PTRE Qg 97 MB
August 2004 19:26 (2] P-TRE_L... demo_group @ PTRE] 67 MB
_14_R3D_I Monday, 23 August 2004 19:26 2] p-Ti ... demo_group G PTRE [/] 82 MB
& P-TRE_15_R3D_D3D.dv Monday, 23 August 2004 19:26 S 2] p-Ti ... demo_group &) PTRE /] 150 MB
& P-TRE_16_R3D_D3D.dv Monday, 23 August 2004 19:26
& P-TRE_17_R3D_D3D.dv Monday, 23 August 2004 19:26 {
& P-TRE_18_R3D_D3D.dv Monday, 23 August 2004 19:26
& P-TRE_19_R3D_D3D.dv Monday, 23 August 2004 19:26 «
& P-TRE_1_R3D_D3D.dv Monday, 23 August 2004 19:26
& P-TRE_20_R3D_D3D.dv Monday, 23 August 2004 19:26
& P-TRE_21_R3D_D3D.dv Monday, 23 August 2004 19:26
& P-TRE_22_R3D_D3D.dv Monday, 23 August 2004 19:26
= P-TRE_22_R3D_D3D_VOL.dv Monday, 23 August 2004 19:26
B P-TRE_22_R3D_D3D_VOL BLN... Monday, 23 August 2004 19:26
T8 P-TRE_22_R3D_D3D_VOL BLN... Monday, 23 August 2004 19:26
File Format: | All supported file types [
Close Refresh Cancel A Import

Fig. 5: OMERO.importer

OMERO.cli
The CLI (Command Line Interface) is a set of Python-based system administration, deployment and advanced user

tools. Most of commands work remotely so that the CLI can be used as a client against an OMERO server. See
Command Line Interface as an OMERQO client for further information.

1.2.2 Command Line Interface as an OMERO client

The CLI is a set of Python based system-administration, deployment and advanced user tools. Most of commands work
remotely so that the CLI can be used as a client against an OMERO server.

Note: The end of Windows support for OMERO.server means that the CLI is unsupported on this platform too.

Installation

Note: The CLI is currently untested on Windows but may be supported in the future.

Since OMERO 5.6, only Python 3 is supported. We assume that you have already installed Python 3.6 or higher. You
can ensure that your python executable is correct with the python --version command.

1.2. OMERO clients 7

https://docs.openmicroscopy.org/bio-formats/7.0.0/supported-formats.html
https://www.python.org

OMERO

We recommend installing client library omero-py and the CLI plugins in a Python virtual environment. You can create
one using either venv or conda (preferred). If you opt for Conda, you will need to install it first, see miniconda for
more details.

Note: On Ubuntu 20.04, you may need to install 1ibss1-dev before installing the CLI.

To install omero-py using conda (preferred):

conda create -n myenv -c conda-forge python=3.8 omero-py
conda activate myenv

Alternatively install omero-py using venv with Python 3.7 or higher:

python -m venv myenv
. myenv/bin/activate
pip install omero-py

The omero command is now available in the terminal where the environment has been activated:

[omero login

If you install omero-py>=5.8.0 the CLI provides all functionalities except the import functionality.

The import functionality requires a supported version of Java, and some JARs which are automatically downloaded
the first time you do an import.

To install Java, go to OMERQO.server installation and select the walkthrough corresponding to your OS.

omero-py < 5.8.0

If you are using an older version of omero-py you must download the JARs manually and place them under the
OMERODIR directory:

1. download the OMERO.server zip from the Downloads page
2. unzip the zip file
3. set $OMERODIR to the unzipped directory:

[export OMERODIR=/path/to/OMERO.server-x.x.x-ice36-bxx

The import functionality is now available:

{omero import /path/to/image.tiff

8 Chapter 1. OMERO Overview and CLI User Documentation

https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/miniconda.html
https://www.openmicroscopy.org/omero/downloads/

OMERO

Overview

Command line help

The CLI is divided into several commands which may themselves contain subcommands. You can investigate the
various commands available using the -h or --help option:

[$ omero -h]

Again, you can use -h repeatedly to get more details on each of these sub-commands:

$ omero admin -h
$ omero admin start -h

The omero help command can be used to get info on other commands or options:

[$ omero help admin # same as omero admin -h]

In addition to the CLI commands which can be listed using omero help --1ist,omero help can be used to retrieve
information about the debug and env options:

$ omero help debug # display help about debugging options
$ omero help env # display help about environment variables
--all

Display the help for all available commands and options

--recursive

Recursively display the help of commands and/or options. This option can be used with either the omero help
command or the omero help --all option:

$ omero help --all --recursive
$ omero help user --recursive

--list

Display a list of all available commands and subcommands

Command line workflow

There are three ways to use the command line tools:

1. By explicitly logging in to the server first i.e. by creating a session using the omero login command, e.g.:

$ omero login username@servername:4064
Password:

During login, a session is created locally on disk and will remain active until you logout or it times out. You can
then call the desired command, e.g. the omero import command:

{$ omero import image.tiff]

2. By passing the session arguments directly to the desired command. Most commands support the same arguments
as omero login:

1.2. OMERO clients 9

OMERO

$ omero -s servername -u username -p 4064 import image.tiff
Password:

The --sudo option is available to all commands accepting connection arguments. For instance to import data
for user username:

p
$ omero import --sudo root -s servername -u username image.tiff
Password for owner:

3. By calling the desired command without login arguments. You will be asked to login:

$ omero import image.tiff
Server: [servername]
Username: [username]
Password:

Once you are done with your work, you can terminate the current session if you wish using the omero logout com-
mand:

[$ omero logout J

Visit Manage sessions to get a basic overview of how user sessions are managed.
See also:

Advanced import scenarios

In-place import

OMERQO.dropbox

Command Line Interface as an OMERQO client

Import images

The CLI import command allows you to import images to an OMERO.server from the command line, and is ideally
suited for anyone wanting to use a shell-scripted or web-based front-end interface for importing. Based upon the same
set of libraries as the standard importer, the command line version supports the same file formats and functions in much
the same way. Visit Supported Formats for a detailed list of supported formats.

Overview

Visit Overview to get a basic overview of the CLI.

Installation

Visit Installation to install the CLI.

10 Chapter 1. OMERO Overview and CLI User Documentation

https://docs.openmicroscopy.org/bio-formats/7.0.0/supported-formats.html

OMERO

Import command

To import a file image. tif, use:

[$ omero import image.tif

Some of the options available to the import command are:

-h, --help

-s SERVER, -p PORT, -U USERNAME, -g GROUPNAME

To avoid prompts for servername, port, username and group, use:

[$ omero import -s SERVER -p PORT -u USER -g GROUP image.tif

-d DATASET_ID, -r SCREEN_ID, -T TARGET, --target TARGET
To import images into a Dataset:

$ omero import image.tif -d 2
$ omero import image.tif -T Dataset:id:2
$ omero import image.tif -T Dataset:name:Sample01

See Import targets for more information on import targets.

-n NAME, --name NAME

-x DESCRIPTION, --description DESCRIPTION

To change the name of an image and add a description:

$ omero import image.tif -n "control imagel" -x "PBS control"
$ omero import image.tif --name image2 --description second_batch

--file FILE

File for storing the standard output from the Java process
--errs FILE

File for storing the standard error from the Java process
--logprefix DIR

Directory or file prefix for —file and —errs

--output TYPE

Set an alternative output style, for example:

[$ omero import --output=yaml ...

1.2. OMERO clients

11

OMERO

Scanning folders prior to Import

-f

Display all the files that would be imported, then exit:

{

$ omero import -f image.tif
$ omero import -f images_folder

This will output a list of all the files which would be imported in groups separated by “#” comments. Note that
this usage does not require a running server to be available.

--depth DEPTH

Set the number of directories to scan down for files (default: 4):

[

$ omero import --depth 7 images_folder

Bulk

The above example changes the depth to 7 folders.

import configuration

--bulk YAML_FILE

To import a number of images with a similar configuration:

[

$ omero import --bulk bulk.yml

See Bulk imports for more information on bulk imports.

Managing performance of imports

--skip SKIP

Specify optional step to skip during import.

The import of very large datasets like High-Content Screening data or SPIM data can be time and resource
consuming both at the client and at the server level. This option allows the disabling of some non-critical steps
and thus faster import of such datasets. The caveat associated with its usage is that some elements are no longer
generated at import time. Some of these elements, like thumbnails, will be generated at runtime during client
access. Available options that can be skipped are currently:

all
Skip all optional steps described below
checksum
Skip checksum calculation on image files before and after transfer
This option effectively sets the --checksum_algorithm to use a fast algorithm, File-Size-64, that
considers only file size, not the actual file contents.
minmax

Skip calculation of the minima and maxima pixel values

This option will also skip the calculation of the pixels checksum. Recalculating minima and maxima pixel
values post-import is currently not supported. See Calculation of minima and maxima pixel values for more
information.

12

Chapter 1. OMERO Overview and CLI User Documentation

OMERO

thumbnails
Skip generation of thumbnails

Thumbnails will usually be generated when accessing the images post-import via the OMERO clients.

upgrade
Skip upgrade check for Bio-Formats

Example of usage:

$ omero import large_image --skip all
$ omero import large_image --skip minmax

Multiple import steps can be skipped by supplying multiple arguments:

[$ omero import large_image --skip checksum --skip minmax

--parallel-fileset COUNT
Number of fileset candidates to import at the same time.

OMERO groups image files into Filesets. By default each fileset is imported one after another. This option
attempts import of COUNT filesets at once. Even for single-file filesets it typically makes sense to use this option
in conjunction with --parallel-upload so that upload of different filesets’ files may proceed in parallel. For
importing a single fileset containing many files this option will not help.

This is an experimental option. Too high a setting for COUNT may crash the import client or make the OMERO
server unresponsive. Carefully read Parallel import before use.

--parallel-upload COUNT
Number of file upload threads to run at the same time.
By default files are uploaded one after another. Once a fileset’s files are all on the server then it may com-
mence subsequent import steps. It typically makes sense to set this to a value of at least the value for

--parallel-fileset. Even if filesets are not imported in parallel this option can greatly speed the import
of a fileset that consists of many small files.

This is an experimental option. Too high a setting for COUNT may crash the import client or make the OMERO
server unresponsive. Carefully read Parallel import before use.

Checking performance

omero fs importtime finds out how long it took to import an existing fileset. Once the import is complete this
command can estimate the wall-clock time taken for separate phases of the import process. Output is limited to what
could be queried from the server easily. Specify the ID of a fileset to have its import time reported in a human-readable
format.

--cache

Once import time has been determined for the specified fileset, also cache that information by annotating the
fileset using a map annotation in the openmicroscopy.org/omero/import/metrics namespace. The cache
will be used for future reports of that fileset’s import time.

—-—-summary

This report covers multiple filesets so do not provide a fileset ID. All data previously cached by the --cache
option is queried then summarized in machine-readable CSV format.

1.2. OMERO clients 13

OMERO

Troubleshoot and report issues

--debug DEBUG

Set the debug level for the command line import output:

[$ omero import images_folder --debug WARN]

--report
Report emails to the OME team. This flag is mandatory for the --upload and --I1ogs arguments.
--email EMATL

Set the contact email to use when reporting errors. This argument should be used in conjunction with the omero
import --report and omero import --upload or omero import --logs arguments.

--upload
Upload broken files and log file (if any) with report

The following command would import a broken image and upload it together with the import log if available in
case of failure:

{$ omero import broken_image --report --upload --email my.email@domain.com]

--logs
Upload log file (if any) with report

The following command would import a broken image and upload only the import log if available in case of
failure:

$ omero import broken_image --report --logs --email my.email@domain.com]

Advanced import commands

--java-help
Display the help for the Java options of the import command

Java options can be passed after --

[$ omero import image.tif -- --name=test --description=TestDescription]

The above command will import the image “image.tif”” with the name “test” into OMERO and with the OMERO

description property set to “TestDescription”. Visit Creating containers and annotations to get a basic overview

of how annotations can be created and linked to OMERO objects (object being an image, in this case).
--advanced-help

Display the advanced help for the import command, e.g.

[$ omero import -- --advanced-help]

Examples of usage,

To upload and remove the raw file from the local file-system after a successful import into OMERO, use:

[$ omero import -- --transfer=upload_rm my_file.dv]

As an OMERO administrator, to import images for other users, use:

14 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

g
$ omero login --sudo root -s servername -u username -g groupname
$ omero import image.tif

As an OMERO group owner, to import images for others, use:

$ omero login --sudo owner -s servername -u username -g groupname
$ omero import image.tif

Some advanced import options are described in the /n-place import section. Visit Manage sessions to get a basic
overview of how user sessions are managed.

Command Line Importer

The CLI import plugin calls the ome. formats.importer.cli.CommandLineImporter Java class. The Linux
OMERO.importer also includes an importer-cli shell script allowing calls to the importer directly from Java. Using
importer-cli might look like this:

[./importer—cli -s localhost -u user -w pass image.tif J

To use the ome. formats.importer.cli.CommandLineImporter class from java on the command line you will also
need to include a classpath to the required support jars. Please inspect the importer-cli script for an example of how
to do this.

The Command Line Importer tool takes a number of mandatory and optional arguments to run. These options will also
be displayed on the command line by passing no arguments to the importer:

Import any number of files into an OMERO instance.

If "-" is the only path, a list of files or directories

is read from standard in. Directories will be searched for
all valid imports.

Session arguments:
Mandatory arguments for creating a session are 1- either the OMERO server hostname,
username and password or 2- the OMERO server hostname and a valid session key.

-s SERVER OMERO server hostname

-u USER OMERO username

-w PASSWORD OMERO password

-k KEY OMERO session key (UUID of an active session)
-p PORT OMERO server port (default: 4064)

Naming arguments:
All naming arguments are optional

-n NAME Image or plate name to use

-x DESCRIPTION Image or plate description to use
--name NAME Image or plate name to use
--description DESCRIPTION Image or plate description to use

Optional arguments:

-h Display this help and exit

-f Display the used files and exit

-C Continue importing after errors

-1 READER_FILE Use the list of readers rather than the default

(continues on next page)

1.2. OMERO clients 15

OMERO

-d DATASET_ID
-r SCREEN_ID
-T TARGET
--report
--upload
—report. Required --report
--logs
—report
--email EMAIL
—report
--debug LEVEL
--annotation-ns ANNOTATION_NS
--annotation-text ANNOTATION_TEXT
--annotation-link ANNOTATION_LINK

Examples:
importer-cli

importer-cli
importer-cli

-f foo.tiff

@ A A A

For additional information, see:

(continued from previous page)

OMERO dataset ID to import image into
OMERO screen ID to import plate into
target for imports
Report errors to the OME team
Upload broken files and log file (if any) with.

Upload log file (if any) with report. Required --
Email for reported errors. Required --
Turn debug logging on (optional level)
Namespace to use for subsequent annotation

Content for a text annotation
Comment annotation ID to link all images to

importer-cli -s localhost -u user -w password -d 50 foo.tiff
-s localhost -u user -w password -d Dataset:50 foo.tiff

-s localhost -u username -w password -d 50 --debug ALL foo.tiff

https://docs.openmicroscopy.org/latest/omero/users/cli/import.html
Report bugs at https://www.openmicroscopy.org/forums

See also:

Advanced import scenarios

In-place import

OMERO.dropbox

Command Line Interface as an OMERQO client

Import targets

The CLI import options -d or -r can be used to specify, respectively, the import target Dataset or Screen by ID. The

-T, --target option adds more ways of specifying the import target.

The general form of the target argument is:

[<action or Class>[:<discriminator>]:<pattern>

)

where the discriminator is optional. Thus a target must contain one or two colons. Any further colons will be read as

part of the pattern. If the discriminator is omitted a default will be used depending on the action or Class. Currently

the following actions and classes are supported: Dataset, Screen and regex.

16

Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Importing to a Dataset or Screen

For Dataset and Screen the currently supported discriminators are name and id. If the discriminator is omitted the
default used is id. So:

$ omero import ~/images/dv/SMN1Qul®3_R3D_D3D.dv -T Dataset:id:2
$ omero import ~/images/dv/SMN10ul®3_R3D_D3D.dv -T Dataset:2
$ omero import ~/images/dv/SMN10ul®3_R3D_D3D.dv -d 2

will all have the same effect of importing the image to the Dataset with ID 2.

The name discriminator can be used to select the target by name, and so:

[$ omero import ~/images/dv/SMN10ul®3_R3D_D3D.dv -T Dataset:name:Sample®1

[$ omero import ~/images/dv/SMN1Oul®3_R3D_D3D.dv -T Dataset:name:"New Dataset"

[$ omero import ~/images/bd-pathway/2015-12-01_000/ -T Screen:+name:Pathway

]

will import the image to the Dataset with name Sample01. If more than one Dataset exists with the specified name the
most recently created will be used. If no Dataset exists with the specified name a new Dataset will be created for the

import.

The choice of Dataset can be specified by adding a qualifying character to the discriminator: + to use the most recent,
- to use the oldest, % to only import if there is a unique target or @ to create a new container even if one with the correct
name already exists.

For example:

omero import
omero import
omero import
omero import

© A A

~/images/dv/SMN10ul®3_R3D_D3D.dv
~/images/dv/SMN10ul®3_R3D_D3D.dv
~/images/dv/SMN10ul®3_R3D_D3D.dv
~/images/dv/SMN10ul®3_R3D_D3D.dv

-T Dataset:
-T Dataset:
-T Dataset:
-T Dataset:

+name
-name
%name
@name

:Samples
:Samples
:Samples
:Samples

The first case is equivalent to the previous example, the most recent Dataset will be used. In the second case the oldest
Dataset will be used. In the third case the import should fail if multiple datasets with that name exist. In the first three
cases a new Dataset will be created if none exists. In the last case a new Dataset should be created even if one or more

already exist.

If the name contains spaces or other characters that cannot be used on the command line the pattern should be enclosed

in quotes:

To import a plate to a Screen target the same syntax can be used as in all the examples above, for example:

Importing to a Dataset inside a specific Project

To import an image into a Dataset contained in a specific Project, use:

$ omero import ~/images/dv/SMN1Oul®3_R3D_D3D.dv -T Project:name:"Projl"/Dataset:name:

—"New Dataset"

The above command will create a new Project Proj1 and link the Dataset New Dataset to it, except in case a Project

named Projl already exists. Then, the Dataset named New Dataset will be linked to this existing Project.

1.2. OMERO clients

17

OMERO

Analogically, a new Dataset named New Dataset will be created for the import of the image and linked to the Project
Projl, except in case a Dataset New Dataset already exists. Then, the existing Dataset will be used for the import of
the image and linked to Project Proj1.

Warning: If a Dataset named New Dataset already exists and has been linked prior to your import to some other
Project (for example ProjP), this existing Dataset will be used as the target Dataset container and will be linked
both to ProjP and Proj1 after the import.

Importing using regular expressions

The local path of the file to be imported can be used to specify the target Dataset or Screen using a regular expression
using the action regex. For this action the only discriminator is name and if the discriminator is omitted the qualified
form of this +name will be used. The sequence (?<Containerl>.*?) is a named-capturing group used to specify the
Dataset or Screen name in the regular expression, the specific name Containerl must be used here. For example:

[$ omero import ~/images/dv/SMN1Oul®3_R3D_D3D.dv -T "regex:A*.*images/(?<Containerl>.*?)"]

would use a Dataset with name being the path following images/, in this case dv.

The name discriminator can be explicitly used and, as in the previous section, also qualified:

$ omero import ~/images/dv/SMN10ul®3_R3D_D3D.dv -T "regex:+name:*.*images/(?<Containerl>.
LE
$ om)ero import ~/images/dv/SMN10ul®3_R3D_D3D.dv -T "regex:-name:A.*images/(?<Containerl>.
SE
$ om)ero import ~/images/dv/SMN1Oul®3_R3D_D3D.dv -T "regex:%name:*.*images/(?<Containerl>.
LE
$ omzzro import ~/images/dv/SMN10ul®3_R3D_D3D.dv -T "regex:@name:*.*images/(?<Containerl>.
LEPY

These each work in the same way as the previous Dataset examples.

In some cases the importable files may be in nested directories, this is often the case with plates and some multi-image
formats. A regular expression can be used to pick a higher level directory as the Screen or Dataset name. For example,
if several BD Pathway HCS files are under the following paths:

~/images/bd-pathway/week-1/2015-12-01_000/
~/images/bd-pathway/week-2/2015-12-09_000/
~/images/bd-pathway/week-2/2015-12-11_000/

and the intended Screens for the import are week-1 and week-2 then the following could be used:

$ omero import ~/images/bd-pathway/ -T "regex:+name:*.*bd-pathway/(?<Container1>[A/]*)/.*

n
—

which would import one Plate into the Screen week-1 and two Plates into the Screen week-2, creating those Screens
if necessary.

A useful way of determining the nested structure to help in constructing regular expressions is the option -£f which
displays the used files but does not import them:

‘$ omero import -f ~/images/bd-pathway/week-1

(continues on next page)

18 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

(continued from previous page)

2016-03-30 15:58:56,574 701 [main] INFO ome. formats.importer.

- ImportCandidates - 59 file(s) parsed into 1 group(s) with 1 call(s) to setId in 92ms..
—(99ms total) [0 unknowns]

bid
Group: /Users/colin/images/bd-pathway/week-1/2009-05-01_000/Experiment.exp SPW: true.
—-Reader: loci.formats.in.BDReader
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/Experiment.exp
/Users/colin/images/bd-pathway/week-1/2009-05-01_000/20X NA 075 Olympus Confocal.geo

}[.J.;.ers/colin/images/bd—pathway/week—1/2009—05—01_®®®/We11 D11/DsRed - Confocal - n0OO0000.
/TJ;fs/colin/images/bd—pathway/week—1/20@9—05—@1_®®®/We11 D11/DsRed - Confocal - n®000O1.
/TJ;:st/colin/images/bd—pathway/week—1/20@9—05—01_®®®/We11 D11/DsRed - Confocal - n®00002.
/?Jifs/colin/images/bd—pathway/week—1/2009—05—01_®®®/We11 D11/Transmitted Light -_
—n@OOOO0. tif

which shows that all the files for one particular Plate from the example above are under:

[/Users/colin/images/bd—pathway/week— 1/2009-05-01_000/

For more information on the regular expression syntax that can be used in templates see: java.util.regex.Pattern docu-
mentation.

Importing to targets across groups

Currently, in all the above cases the import target must be in the user’s current group for the import to succeed. It is
hoped that this limitation can be removed in a later version of OMERO. This is also pertinent if the target is likely to
be created as it will be created in the current group, which may not be the group intended.

If no group is specified by using the omero Iogin -goption as part of the import, the current group will be dependent
on the user’s login status:

* If the user is currently logged in then their current group will be the one they are logged in to.

* If the user is logged out but has active sessions then the most recent session will be used to connect and that will
determine the current group.

« If the user is logged out and has no active sessions then the current group will be their default group.

If the user knows which group the import target is in, or needs to be created in, then one of the following methods can
be used to ensure the target group is the current group for the import:

» Explicitly log in using the omero login -g option before running the import command:

$ omero login -g group_name
$ omero import ~/images/dv/SMN10ul®3_R3D_D3D.dv -T Dataset:2

* Provide the omero login -g option as part of the import command:

{$ omero import -g group_name ~/images/dv/SMN10ul®3_R3D_D3D.dv -T Dataset:2

* Use omero sessions group to switch group before running the import command:

1.2. OMERO clients 19

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

OMERO

$ omero sessions group 51
$ omero import ~/images/dv/SMN10Qul®3_R3D_D3D.dv -T Dataset:2

Use the omero login -k option to reconnect to an active session for the target group:

($ omero login -k c41a6f78-babe-4caf-aba3-a94378d5484c

$ omero import ~/images/dv/SMN1Qul®3_R3D_D3D.dv -T Dataset:2

or alternatively

$ omero import -k c41la6f78-babe-4caf-aba3-a94378d5484c ~/images/dv/SMN1O0ul®3_R3D_
—.D3D.dv -T Dataset:2

The session ID can be found using the omero sessions list command.

For further information on the commands omero login and omero sessions see Manage sessions.

Note: The omero login -g option requires the group name as its argument, while the omero sessions group
subcommand uses either the group ID or the group name.

See also:

Advanced import scenarios
In-place import
OMERQO.dropbox

Command Line Interface as an OMERQO client

Bulk imports

The CLI import option --bulk specifies a configuration file that can be used to perform a batch of imports with the
same or similar options. The file is written in a simple YAML syntax and can be named whatever you would like. It
does not need to be placed in the folder from which the OMERO commands are run.

A minimal YAML file might look like:

path: "my-files.txt"

Assuming that my-files. txt is a list of files such as

fileA
fileB
directoryC

this is equivalent to:

[$ omero import -k --transfer=In_s fileA fileB directoryC

where the files fileA and fileB and all the files of directoryC will be imported.

20 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Bulk-only options
Path

The path key specifies a file from which each individual line will be processed as a separate import. In the simplest
case, a single file is placed per line as above. For more complex usages, path can point to a tab-separated value (TSV)
or a comma-separate value (CSV) file where each field will be interpreted based on columns.

Columns

A fairly regular requirement in importing many files is that for each file a similar but slightly different configuration is
needed. This can be accomplished with the columns key. It specifies how each of the separated fields of the path file
should be interpreted.

For example, a bulk.yml file specifying:

path: "files.tsv"
columns:

- name

- path

along with a files. tsv of the form:

import-1 fileA
import-2 fileB

would match the two calls:

$ omero import --name import-1 fileA
$ omero import --name import-2 fileB

but in a single call. The same could be achieved with this CSV file:

import-1,fileA
import-2,fileB

Other options like target can also be added as a separate field:

Dataset:name:training-set import-1 fileA
Dataset:name:training-set import-2 fileB
Dataset:name:test-set-001 import-3 fileC

by defining columns in your bulk.yml as:

columns:
- target
- name
- path

which will create the named datasets if they do not exist. See /mport targets for more information on import targets
and see below for more examples of options you can use.

1.2. OMERO clients 21

OMERO

Include

The include key specifies another bulk YAML file that should be included in the current processing. For example, if
there is a global configuration file omero-imports.yml that all users should use, such as:

checksum_algorithm: "File-Size-64"
exclude: "clientpath"
transfer: "ln_s"

then users can make use of this configuration by adding the following line to their bulk.yml file:

[include: /etc/omero-imports.yml]

Dry_run

The dry_run key can either be set to true in which case no import will occur, and only the potential actions will
be shown, or additionally it can be set to a file path of the form my_import_%s.sh where %s will be replaced by an
number and a file with the given name will be written out. Each of these scripts can then be used independently.

Other options

Otherwise, all the regular options from the CLI are available for configuration via --bulk:
e checksum_algorithm for faster processing of large files
e continue for processing all files even if one errors
* exclude for skipping files that have already been imported
e parallel_fileset for concurrent imports
e parallel_upload for concurrent uploads
* target for placing imported images into specific containers
» transfer for alternative methods of shipping files to the server

See Import images for more information.

Export images

The CLI export command allows you to export data in XML and OME-TIFF formats from an OMERO.server using
the command line.

22 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Overview

Visit Overview to get a basic overview of the CLI.

Installation

Visit Installation to install the CLI.

Export command

Currently the export command only supports OME-TIFF, respectively XML.

To export an image as OME-TIFF as file image. tif, use:

[$ omero export --file image.tif Image:<id>

To export its metadata as file image.xml, use:

[$ omero export --file image.xml --type XML Image:<id>

Some of the options available to the export command are:

--iterate Dataset:<id>

Iterate over an object and write individual objects to the directory named by —file (EXPERIMENTAL, the only
supported object is Dataset:<id>)

$ omero export —file output-dir —iterate Dataset:<id>
Manage sessions

The omero sessions plugin manage user sessions stored locally on disk. Several sessions can be active simultane-
ously, but only one will be used for a single invocation of omero:

[$ omero sessions -h

Login

The omero login command is a shortcut for the omero sessions login subcommand which creates a connection
to the server. If no argument is specified, the interface will ask for the connection credentials:

$ omero login

Previously logged in to localhost:4064 as root
Server: [localhost:4064]

Username: [root]

Password:

Some of the options available to the omero login command are:

connection
Pass a connection string under the form [USER@] SERVER[: PORT] to instantiate a connection:

1.2. OMERO clients 23

OMERO

$ omero login username@servername
Password:

$ omero login username@servername: 14064
Password:

-s SERVER, --server SERVER

Set the name of the server to connect to:

$ omero login -s servername
Username: [username]

-u USER, --user USER
Set the name of the user to connect as:

$ omero login -u username -s servername
Password:

-p PORT, --port PORT

Set the port to use for connection. Default: 4064:

$ omero login -u username -s servername -p 14064
Password:

-g GROUP, --group GROUP

Set the group to use for initalizing a connection:

$ omero login -u username -s servername -g my_group
Password:

-k KEY, --key KEY

Use a valid session key to join an existing connection.

This option only requires a server argument:

[$ omero login servername -k 22fccb8b-d04c-49ec-9d52-116a163728ca

-w PASSWORD, --password PASSWORD

Set the password to use for the connection. Since 5.4.1, the password can be set using the OMERO_PASSWORD
environment variable. The variable will be ignored if -w or --password is used.

--sudo ADMINUSER |GROUPOWNER

Create a connection as another user.

The sudo functionality is available to administrators as well as group owners

$ omero login --sudo root -s servername -u username -g groupname
Password for root:
$ omero login --sudo owner -s servername -u username -g groupname
Password for owner:

24 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Multiple sessions

Stored sessions can be listed using the omero sessions list command:

$ omero sessions list
Server | User | Group | Session | Active | o
- Started

localhost | test | read-annotate-2 | 22fccb8b-d0®4c-49ec-9d52-116a163728ca | Logged in |.
—Fri Nov 23 14:55:25 2012

localhost | root | system | 1£800al16-1dc2-407a-8a85-fb44005306be | True | o
—Fri Nov 23 14:55:18 2012
(2 rows)

Session keys can then be reused to switch between stored sessions using the omero login -k option:

$ omero sessions login -k 22fccb8b-d®4c-49ec-9d52-116a163728ca

Server: [localhost]

Joined session 1f800al6-1dc2-407a-8a85-fb44005306be (root@localhost:4064).
$ omero sessions list

Server | User | Group | Session | Active | o
—Started

——————————— B s e T i T
localhost | test | read-annotate-2 | 22fccb8b-d04c-49ec-9d52-116a163728ca | True | o
—Fri Nov 23 14:55:25 2012

localhost | root | system | 1£800al16-1dc2-407a-8a85-fb44005306be | Logged in |.
—Fri Nov 23 14:55:18 2012

(2 rows)

Sessions directory

By default sessions are saved locally on disk under the OMERO user directory located at ~/omero/sessions. The
location of the current session file can be retrieved using the omero sessions file command:

$ omero sessions file
/Users/ome/omero/sessions/localhost/root/aec828e1-79bf-41£3-91e6-ad4ac76fflcd5

To customize the OMERO user directory, use the OMERO_USERDIR environment variable:

$ export OMERO_USERDIR=/tmp/omero_dir

$ omero login root@localhost:4064 -w omero

Created session bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd (root@localhost:4064). Idle.
—timeout: 10.0 min. Current group: system

$ omero sessions file
/tmp/omero_dir/omero/sessions/localhost/root/bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd

$ omero logout

If you want to use a custom directory for sessions exclusively, use the OMERO_SESSIONDIR environment variable:

1.2. OMERO clients 25

OMERO

$ export OMERO_SESSIONDIR=/tmp/my_sessions

$ omero login root@localhost:4064 -w omero

Created session bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd (root@localhost:4064). Idle.
—timeout: 10.0 min. Current group: system

$ omero sessions file
/tmp/my_sessions/localhost/root/bf7b9fee-5e3f-40fa-94a6-1e23ceb43dbd

$ omero logout

Note: The OMERO_SESSION_DIR environment variable introduced in 5.1.0 to specify a custom sessions directory is
deprecated in 5.1.1 and above in favor of OMERO_SESSIONDIR.

If you have been using OMERO_SESSION_DIR and want to upgrade your custom sessions directory without losing locally
stored sessions:

* either set OMERO_SESSTIONDIR to point at the same location as OMERO_SESSION_DIR/omero/sessions

* or move all local sessions stored under the OMERO_SESSION_DIR/omero/sessions directory under the
OMERO_SESSION_DIR directory and replace OMERO_SESSION_DIR by OMERO_SESSIONDIR.

Switching current group

The sessions group command can be used to switch the group of your current session:

$ omero group list # list your groups
$ omero sessions group 2 # switch to group by ID or Name

Creating containers and annotations
The omero obj command allows users to create and update OMERO objects. A complete Glossary of all OMERO
Model Objects is available for reference.

This command can be used to create containers, i.e. projects, datasets, screens and folders. It can also be used to
create annotations, and, combined with the omero upload command, file annotations. These annotations can then
be attached to containers or imported images and plates. This page gives a few examples of some simple but fairly
common workflows.

Creating containers

Create a dataset with a name:

$ omero obj new Dataset name=NewDVSet
Dataset:51

And then update that dataset to add a description:

$ omero obj update Dataset:51 description='A dataset for new DV images'
Dataset:51

Create a screen with a name and description:

26 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

[$ omero obj new Screen name=Screen0®01 description='A short description'

To create a project/dataset hierarchy a link must be created between the two containers:

$ omero obj new Project name=NewImages

Project:101

$ omero obj new ProjectDatasetLink parent=Project:101 child=Dataset:51
ProjectDatasetLink:221

If you are comfortable using the command line then you can capture the command outputs to feed in to other commands,
for example:

$ dataset=$(omero obj new Dataset name=dataset-1)

$ project=$(omero obj new Project name=project-1)

$ omero obj new ProjectDatasetLink parent=$project child=$dataset
ProjectDatasetLink:222

Creating and attaching annotations

Create a comment annotation and attach it to a dataset:

$ omero obj new CommentAnnotation textValue='Hello World!'

CommentAnnotation:2

$ omero obj new DatasetAnnotationlLink parent=Dataset:51 child=CommentAnnotation:2
DatasetAnnotationLink:2

Upload a file and then use it as file annotation on an image:

$ omero upload analysis.csv

OriginalFile:275

$ omero obj new FileAnnotation file=OriginalFile:275

FileAnnotation:5

$ omero obj new ImageAnnotationLink parent=Image:51 child=FileAnnotation:5
ImageAnnotationLink:2

Manage tags

The omero tag subcommands manage the creation, linking and listing of tag annotations. All subcommands can be
listed using the -h option:

1.2. OMERO clients 27

OMERO

[$ omero tag -h

Create tags

To create a new tag annotation, use the omero tag create command:

§ omero tag create
Please enter a name for this tag: my_tag

To create a tag set containing two existing tags of known identifiers 1259 and 1260, use the omero tag createset
command:

$ omero tag createset --tag 1259 1260
Please enter a name for this tag set: my_tag_set

For both tags and tag sets, the name and an optional description can be passed using the --name and --desc options:

$ omero tag create --name my_tag --desc 'description of my_tag'
$ omero tag createset --tag 1259 1260 --name my_tag_set --desc 'description of my_tag_set

—

List tags

To list all the tags owned by the current user, use the omero tag list command:

$ omero tag list

+- 1261: 'my_tag_set'
N\

| +- 1259:'my_tag'

| +- 1260:'my_tag_2'
+- 1264: 'my_tag_set_2'
I\

| +- 1260:'my_tag_2'

| +- 1263:'my_tag_4'

Orphaned tags:
> 1262: 'my_tag_3'

To list all the tag sets owned by the current user, use the omero tag listsets command:

$ omero tag listsets

ID | Name

________ [==
1261 |lmy_tag_set

1264 |my_tag_set_2

28 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Link tags

Tags can be linked to objects on the server using the omero tag link command. The object must be specified as
object_type:object_id. To link the tag of identifier 1260 to the Image of identifier 1000, use:

[$ omero tag link Image:1000 1260]
Delete tags
Tags can be deleted using the omero delete command. The tag or tag set must be specified as

TagAnnotation:tag_id. To delete tag 123 use:

[$ omero delete TagAnnotation:123 J

By default the tags within a tag set will not be deleted with the tag set. To delete any included tags use the omero
delete --include option:

[$ omero delete TagAnnotation:123 --include TagAnnotation]

See also:

Deleting objects

Deleting objects

The omero delete command deletes objects. Further help is available using the -h option:

[$ omero delete -h]

This command will remove entire graphs of objects based on the IDs of the topmost objects. The command can be
modified to include the deletion of objects that would, by default, be excluded or exclude objects that would, by default,
be included using the omero delete --include and omero delete --exclude options.

Additionally, objects of the three annotation types, FileAnnotation, TagAnnotation and TermAnnotation are not deleted
by default when the objects to which they are linked are deleted.

It is also possible to delete objects lower in the hierarchy by specifying the type and ID of a topmost object and the type
of the lower object. For instance, deleting all of the images under a given project.

By default the command confirms the deletion of the target objects but it can also provide a detailed report of all
the deleted objects via an omero delete --report option. An omero delete --dry-run option can be used to
report on what objects would be deleted without actually deleting them.

Examples

Basic delete

$ omero delete OriginalFile:101
$ omero delete Project:51

In the first line, the original file with ID 101 will be deleted. In the second, the project with ID 51 will be deleted
including any datasets inside only that project and any images that are contained within deleted datasets only. Note that
any linked file, tag or term annotations will not be deleted.

1.2. OMERO clients 29

OMERO

Deleting multiple objects

Multiple objects can be specified with each type being followed by an ID or a comma-separated list of IDs. The order
of objects or IDs is not significant, thus all three calls below are identical in deleting project 51 and datasets 53 and 54.

$ omero delete Project:51 Dataset:53,54
$ omero delete Dataset:54,53 Project:51
$ omero delete Dataset:53 Project:51 Dataset:54

To delete a number of objects with sequentially numbered IDs a hyphen can be used to specify an ID range. This form
can also be mixed with comma-separated IDs.

$ omero delete Project:51 Dataset:53-56 --force
$ omero delete Dataset:53-56,65,101-105,201,202 --force

When deleting multiple objects in a single command, if one object cannot be deleted then the whole command will fail
and none of the specified objects will be deleted.

The omero delete --dry-run option can be useful as a check before trying to delete large numbers of objects. If
specifying objects with a range, it is best to pass either omero delete --dry-run or omero delete --force.

Note: If no flag is passed, the command will default to omero delete --dry-run and warn that this behavior is
deprecated. Future versions will default to omero delete --force.

Deleting lower level objects

To delete objects below a specified top-level object the following form of the object specifier is used.

[$ omero delete Project/Dataset/Image:51 J

Here the all of images under the project 51 would be deleted. It is not necessary to specify intermediate objects in the
hierarchy and so:

[$ omero delete Project/Image:51 J

would have the same effect as the call above. Links can also be deleted and so:

[$ omero delete Project/DatasetImagelink:51 Dataset/DatasetImagelLink:53]

would effectively orphan all images under project 51 and dataset 53 that are not also under other datasets.

Including and excluding objects

--include
Include linked objects that would not ordinarily be deleted:

[$ omero delete Image:51 --include FileAnnotation,TagAnnotation,TermAnnotation]

As mentioned above these three annotation types are not deleted by default and so this call overrides that default
by including any of the three annotation types in the delete:

30 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

[$ omero delete Image:51 --include Annotation

This call would also delete any annotation objects linked to the image.

--exclude

Exclude linked objects that would ordinarily be deleted:

[$ omero delete Project:51 --exclude Dataset

This will delete project 51 but not any datasets contained in that project.

The two options can be used together:

[$ omero delete Project/Dataset:53 --exclude Image --include FileAnnotation

)

This will delete any datasets under project 53, that are not otherwise contained elsewhere, excluding any images in
those datasets but including any file annotations linked to the deleted datasets. In this case the images that are not
otherwise contained in datasets will be orphaned.

For an example on deleting tags directly see Delete tags.

Further options

--ordered

Delete the objects in the order specified.

Normally all of the specified objects are grouped into a single delete command. However, each object can be
deleted separately and in the order given. Thus:

[$ omero delete Dataset:53 Project:51 Dataset:54 --ordered

would be equivalent to making three separate calls:

$ omero delete Dataset:53
$ omero delete Project:51
$ omero delete Dataset:54

--report

Provide a detailed report of what is deleted:

$ omero delete Project:502 --report

omero.cmd.Delete2 Project 502... ok

Steps: 3
Elapsed time: 0.597 secs.
Flags: []

Deleted objects
Dataset:603
DatasetImagelLink:303
Project:503
ProjectDatasetLink:353
Channel: 203

Image:503
LogicalChannel:203

(continues on next page)

1.2,

OMERO clients 31

OMERO

(continued from previous page)

OriginalFile:460,459
Pixels:253

Fileset:203
FilesetEntry:253
FilesetJobLink:264,265,262,263,261
IndexingJob:315
JobOriginalFileLink:303
MetadataImportJob:312
PixelDatalob:313
ThumbnailGenerationJob:314
UploadJob:311

StatsInfo:72

--dry-run

Run the command and report success or failure but do not delete the objects. This can be combined with the
omero delete --report toprovide adetailed confirmation of what would be deleted before running the delete
itself.

--force

Delete multiple objects in a single command. Both comma-separated lists and ranges of IDs using a hyphen will
work:

[$ omero delete Project:51 Dataset:53-56,65,101-105 --force

The command will fail and no objects will be deleted if any of the specified objects cannot be deleted.

Moving objects between groups

Warning: Data does not need to be assigned to a group where the data owner is a member, and administrators may
wish to change the ownership of data or move it between groups in several steps of a larger workflow. However, it
is generally expected that data should end up in a group where the data owner is a member, so that they can view
their data in the OMERO clients.

Who may move data

* a full administrator
* arestricted administrator with Chgrp privilege

* the owner of the data if they are a member of the target group

32

Chapter 1. OMERO Overview and CLI User Documentation

OMERO

How to move data

¢ CLI: See below
¢ OMERO.web and OMERO.insight

The omero chgrp command moves objects between groups. Further help is available using the -h option:

[$ omero chgrp -h

This command will move entire graphs of objects based on the IDs of the topmost objects. The command can be
modified to include the movement of objects that would, by default, be excluded or exclude objects that would, by
default, be included using the omero chgrp --include and omero chgrp --exclude options.

It is also possible to move objects lower in the hierarchy by specifying the type and ID of a topmost object and the type
of the lower object. For instance, moving all of the images under a given project.

By default the command confirms the movement of the target objects but it can also provide a detailed report of all the
moved objects via an omero chgrp --report option. An omero chgrp --dry-run option can be used to report
on what objects would be moved without actually moving them.

Examples

Basic move

omero chgrp 5 OriginalFile:101

omero chgrp Group:5 Project:51

omero chgrp ExperimenterGroup:5 Project:51
omero chgrp lab_group Project:51

A A o

In the first line, the original file with ID 101 will be moved to the group with ID 5. In the second and third, project
51 will be moved to group 5 including any datasets inside only that project and any images that are contained within
moved datasets only. If group 5 is named ‘lab_group’ then the last line will have the same effect as the previous two.
Note that any linked annotations will also be moved.

Moving multiple objects

Multiple objects can be specified with each type being followed by an ID or a comma-separated list of IDs. The order
of objects or IDs is not significant, thus all three calls below are identical in moving project 51 and datasets 53 and 54
to group 5.

$ omero chgrp 5 Project:51 Dataset:53,54
$ omero chgrp 5 Dataset:54,53 Project:51
$ omero chgrp 5 Dataset:53 Project:51 Dataset:54

To move a number of objects with sequentially numbered IDs a hyphen can be used to specify an ID range. This form
can also be mixed with comma-separated IDs.

$ omero chgrp 5 Project:51 Dataset:53-56
$ omero chgrp 5 Dataset:53-56,65,101-105,201,202

1.2. OMERO clients 33

https://help.openmicroscopy.org/sharing-data#moving

OMERO

Note: When moving multiple objects in a single command, if one object cannot be moved then the whole command
will fail and none of the specified objects will be moved. The omero chgrp --dry-run option can be useful as a
check before trying to move large numbers of objects.

Moving lower level objects

To move objects below a specified top-level object the following form of the object specifier is used.

[$ omero chgrp 5 Project/Dataset/Image:51]

Here the all of images under the project 51 would be moved. It is not necessary to specify intermediate objects in the
hierarchy and so:

[$ omero chgrp 5 Project/Image:51]

would have the same effect as the call above.

Including and excluding objects

--include

Linked objects that would not ordinarily be moved can be included in the move using the --include option:

[$ omero chgrp 5 Image:51 --include Annotation]

This call would move any annotation objects linked to the image.

--exclude

Linked objects that would ordinarily be moved can be excluded from the move using the --exclude option:

[$ omero chgrp 5 Project:51 --exclude Dataset J

This will move project 51 but not any datasets contained in that project.

The two options can be used together:

[$ omero chgrp 5 Project/Dataset:53 --exclude Image --include FileAnnotation]

This will move any datasets under project 53, that are not otherwise contained elsewhere, excluding any images in those
datasets but including any file annotations linked to the moved datasets. In this case the images that are not otherwise
contained in datasets will be orphaned.

Further options

--ordered

Move the objects in the order specified.

Normally all of the specified objects are grouped into a single move command. However, each object can be
moved separately and in the order given. Thus:

$ omero chgrp 5 Dataset:53 Project:51 Dataset:54 --ordered]

34 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

would be equivalent to making three separate calls:

$ omero chgrp 5 Dataset:53
$ omero chgrp 5 Project:51
$ omero chgrp 5 Dataset:54

--report

Provide a detailed report of what is moved:

[$ omero chgrp 5 Project:502 --report

--dry-run

Run the command and report success or failure but does not move the objects. This can be combined with the
omero chgrp --report to provide a detailed confirmation of what would be moved before running the move
itself.

Changing ownership of objects

Warning: Data does not need to be assigned to a group where the data owner is a member, and administrators may
wish to change the ownership of data or move it between groups in several steps of a larger workflow. However, it
is generally expected that data should end up in a group where the data owner is a member, so that they can view
their data in the OMERO clients.

Who may change ownership of data

* a full administrator
* arestricted administrator with Chown privilege

 an owner of the group that the data is in if the target user is a member of the group

How to change ownership of data

The omero chown command transfers objects to the ownership of a different user. Further help is available using the
-h option:

[$ omero chown -h

The omero chown command can transfer entire graphs of objects based on the IDs of the topmost objects. The com-
mand can be modified to include the transfer of objects that would, by default, be excluded or exclude objects that
would, by default, be included using the omero chown --include and omero chown --exclude options.

It is also possible to transfer objects lower in the hierarchy by specifying the type and ID of a topmost object and the
type of the lower object. For instance, transferring all of the images under a given project.

All the data of a given user can be transferred using the omero chown command. This is useful when somebody leaves
a lab to move on to another project or institution and their previous work is to be curated or continued by a colleague.
This feature has to be considered as advanced and might be slow and demanding of CPU resources in cases of complex
data.

By default the command confirms the transfer of the target objects but it can also provide a detailed report of all the
transferred objects via an omero chown --report option. An omero chown --dry-run option can be used to
report on which objects’ ownership would change without actually transfering them.

1.2. OMERO clients 35

OMERO

Examples

Basic transfer of ownership

$ omero chown 5 OriginalFile:101

$ omero chown User:5 Project:51

$ omero chown Experimenter:5 Project:51
$ omero chown jane Project:51

In the first line, the ownership of original file with ID 101 will be transferred to the user with ID 5. In the second and
third, the ownership of project 51 will be transferred including any datasets inside only that project and any images that
are contained within transferred datasets only, as long as all the mentioned objects (project, datasets and images) are
originally owned by one user. If user 5 is named ‘jane’ then the last line will have the same effect as the previous two.
Note that any linked annotations will be transferred depending on the permission level of the group in which the data
and users are in.

Transferring multiple objects

Multiple objects can be specified with each type being followed by an ID or a comma-separated list of IDs. The order
of objects or IDs is not significant, thus all three calls below are identical in transferring ownership of project 51 and
datasets 53 and 54 to user 5.

$ omero chown 5 Project:51 Dataset:53,54
$ omero chown 5 Dataset:54,53 Project:51
$ omero chown 5 Dataset:53 Project:51 Dataset:54

To transfer a number of objects with sequentially numbered IDs a hyphen can be used to specify an ID range. This
form can also be mixed with comma-separated IDs.

$ omero chown 5 Project:51 Dataset:53-56
$ omero chown 5 Dataset:53-56,65,101-105,201,202

Note: When transferring multiple objects in a single command, if one object cannot be transferred then the whole
command will fail and none of the specified objects will be transferred. The omero chown --dry-run option can be
useful as a check before trying to move large numbers of objects.

Transferring lower level objects

To transfer objects below a specified top-level object the following form of the object specifier is used.

[$ omero chown 5 Project/Dataset/Image:51 J

Here the all of images under the project 51 would be transferred. It is not necessary to specify intermediate objects in
the hierarchy and so:

[$ omero chown 5 Project/Image:51 }

would have the same effect as the call above.

36 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Transferring all objects belonging to specified users

Note that this feature is advanced and might be potentially slow. To transfer ownership of all objects belonging to a
user or group of users the following form of the user specifier is used.

[$ omero chown 10 Experimenter:1,3,7 J

Here ownership of all the objects belonging to users 1, 3 and 7 would be transferred to user 10.

Including and excluding objects

--include

Linked objects that would not ordinarily be transferred can be included in the transfer using the —include option:

[$ omero chown 5 Image:51 --include Annotation J

This call would move any annotation objects linked to the image.

--exclude

Linked objects that would ordinarily be transferred can be excluded from the transfer using the —exclude option:

[$ omero chown 5 Project:51 --exclude Dataset]

This will transfer project 51 but not any datasets contained in that project.

The two options can be used together:

[$ omero chown 5 Project/Dataset:53 --exclude Image --include FileAnnotation J

This will transfer any datasets under project 53, that are not otherwise contained elsewhere, excluding any images in
those datasets but including any file annotations linked to the moved datasets. In this case the images that are not
otherwise contained in datasets will be orphaned.

Further options

--ordered

Move the objects in the order specified.

Normally all of the specified objects are grouped into a single transfer command. However, each object can be
transferred separately and in the order given. Thus:

[$ omero chown 5 Dataset:53 Project:51 Dataset:54 --ordered J

would be equivalent to making three separate calls:

$ omero chown 5 Dataset:53
$ omero chown 5 Project:51
$ omero chown 5 Dataset:54

--report

Provide a detailed report of what is transferred:

1.2. OMERO clients 37

OMERO

[$ omero chown 5 Project:502 --report

--dry-run
Run the command and report success or failure but does not transfer the objects. This can be combined with the

omero chown --report to provide a detailed confirmation of what would be transferred before running the
move itself.

Note that changing ownership requires elevated privileges and can only be carried out by full administrators, restricted
administrators with the correct privileges, or group owners.

See also:

OMERO.cli as an OMERO admin tool
System administrator documentation for the Command Line Interface. This includes guidance for managing
groups and users which can be done by restricted administrators with the correct privileges.

Command Line Interface as an OMERO development tool
Developer documentation for the Command Line Interface

1.3 Additional resources

OMERO for scientists introduces OMERO for new users, while the feature pages provide an overview of the
platform features by type, including community developed apps and integrations which could help OMERO
meet your research needs more fully.

* You can try out OMERO without committing to installing your own server by applying for an account on our
demo server.

* Workflow-based user assistance guides are provided on our help website.

e The OME YouTube channel features tutorials and presentations.

As OMERQO is an open source project with developers and users in many countries, connecting to the community
can provide you with a wealth of experience to draw on for help and advice.

Additional OMERO apps add functionality to the OMERO.web or Command-Line clients.

1.3.1 Community support

The Open Microscopy Environment provides a number of resources for both our user and developer communities to
assist in use and development of our software. Contributions through our mailing lists and forums are always welcome.

Web

The Open Microscopy Environment website is at https://www.openmicroscopy.org. Bio-Formats can be found at https:
//www.openmicroscopy.org/bio-formats.

38 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org/omero/scientists
https://www.openmicroscopy.org/omero/new
https://help.openmicroscopy.org/demo-server
https://help.openmicroscopy.org/
https://www.youtube.com/channel/UCyySB9ZzNi8aBGYqcxSrauQ
https://www.openmicroscopy.org/omero/apps/
https://www.openmicroscopy.org
https://www.openmicroscopy.org
https://www.openmicroscopy.org/bio-formats
https://www.openmicroscopy.org/bio-formats

OMERO

Forums

The primary support channel is the forum. The legacy OME forum and the list archives for ome-devel and ome-users
contain historical support topics and remain available as read-only.

1.3.2 What’s new for OMERO 5.6 for users

Updates and new features for OMERO 5.6 include:
* Decoupled OMERO.py and OMERO.web to allow more frequent releases.
* Filter Images by Map Annotations in OMERO.web.

See the User help website for information on how to incorporate these new features into your current workflows.

1.3.3 CHANGELOGS

1.3.4 Links to decoupled repositories

Starting from OMERO 5.5, the following repositories have been decoupled.

omero-build:

* omero-gateway-java CHANGELOG.md
* omero-blitz CHANGELOG.md

* omero-server CHANGELOG.md

* omero-renderer CHANGELOG.md

e omero-romio CHANGELOG.md

* omero-common CHANGELOG.md

¢ omero-model CHANGELOG.md

omero clients:

* omero-matlab CHANGELOG.md
¢ omero-insight CHANGELOG.md
* omero-py CHANGELOG.md

* omero-web CHANGELOG.md

1.3. Additional resources 39

https://www.openmicroscopy.org/forums
https://www.openmicroscopy.org/community/
http://lists.openmicroscopy.org.uk/pipermail/ome-devel/
http://lists.openmicroscopy.org.uk/pipermail/ome-users/
https://help.openmicroscopy.org/
https://github.com/ome/omero-gateway-java/blob/v5.8.2/CHANGELOG.md
https://github.com/ome/omero-blitz/blob/v5.7.1/CHANGELOG.md
https://github.com/ome/omero-server/blob/v5.6.9/CHANGELOG.md
https://github.com/ome/omero-renderer/blob/v5.5.14/CHANGELOG.md
https://github.com/ome/omero-romio/blob/v5.7.4/CHANGELOG.md
https://github.com/ome/omero-common/blob/v5.6.3/CHANGELOG.md
https://github.com/ome/omero-model/blob/v5.6.12/CHANGELOG.md
https://github.com/ome/omero-matlab/blob/v5.5.6/CHANGELOG.md
https://github.com/ome/omero-insight/blob/master/CHANGELOG.md
https://github.com/ome/omero-py/blob/v5.16.0/CHANGELOG.md
https://github.com/ome/omero-web/blob/v5.22.1/CHANGELOG.md

OMERO

1.3.5 OMERO version history

5.6.9 (October 2023)

This release includes the following upgrade of the OMERO.server Java components:
* omero-gateway-java 5.8.2
e omero-blitz 5.7.1
* omero-server 5.6.9
» omero-renderer 5.5.14
* omero-romio 5.7.4
e omero-common 5.6.3
* omero-model 5.6.12
Improvements include:
* remove support for ADH and let Ice choose the default SSL protocol.
* revert “Java client init: no “anon” among jdk.tls.disabled Algorithms”
* an upgrade of Bio-Formats to version 7.0.0

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

This version of the OMERO.server has been tested with:
* OMERO.py 5.16.0
* OMERO.web 5.22.1
* OMERO.dropbox 5.6.2

5.6.8 (July 2023)

This release includes the following upgrade of the OMERO.server Java components:
* omero-gateway-java 5.8.1
* omero-blitz 5.6.3
* omero-server 5.6.8
¢ omero-renderer 5.5.13
* omero-romio 5.7.3
* omero-common 5.6.2
e omero-model 5.6.11
Improvements include:
* support histogram for tiled images and fix generation of histogram for float images
* add default scanning period in logback.

* an upgrade of Bio-Formats to version 6.14.0

40 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Note:

This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further informa-

tion. We also recommend to re-index the database especially if the OMERO server has a large number of High Content
Screening data.

This version of the OMERO.server has been tested with:

5.6.7

OMERO.py 5.14.0
OMERO.web 5.22.0
OMERO.dropbox 5.6.2

(March 2023)

This release includes the following upgrade of the OMERO.server Java components:

omero-gateway-java 5.8.0
omero-blitz 5.6.2
omero-server 5.6.7
omero-renderer 5.5.12
omero-romio 5.7.2
omero-common 5.6.1

omero-model 5.6.10

Improvements include:

Note:

address performance issues when indexing fileset

add omero.search.max_fileset_size property to indicated the maximum size of the fileset to be considered
for indexing

run the PixelDataThread Application events in SYSTEM Thread pool
declare logback-classic as explicit dependency and set to 1.2.x
an upgrade of Bio-Formats to version 6.12.0

This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further informa-

tion. We also recommend to re-index the database especially if the OMERO server has a large number of High Content
Screening data.

This version of the OMERO.server has been tested with:

OMERO.py 5.13.1
OMERO.web 5.19.0
OMERO.dropbox 5.6.2

1.3. Additional resources 41

OMERO

5.6.6 (December 2022)

This release includes the following upgrade of the OMERO.server Java components:
* omero-gateway-java 5.7.0
* omero-blitz 5.6.0
* omero-server 5.6.5
* omero-renderer 5.5.11
e omero-romio 5.7.1
e omero-common 5.6.0
* omero-model 5.6.9
as well as the upgrade of omero-scripts to version 5.7.1.
Improvements include:
» enhancement of the Java Command line importer developer user experience
* the option for omero.server.nodedescriptors to be queried from a client
* anew property omero.qga.feedback to configure the QA system the feedback is submitted to.
* an upgrade of Bio-Formats to version 6.11.1

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

This version of the OMERO.server has been tested with:
* OMERO.py 5.13.1
* OMERO.web 5.16.0
¢ OMERO.dropbox 5.6.2

5.6.5 (June 2022)

This release includes the following upgrade of the OMERO.server Java components:
¢ omero-gateway-java 5.6.10
e omero-blitz 5.5.12
* omero-server 5.6.4
* omero-renderer 5.5.10
e omero-romio 5.7.0
e omero-common 5.5.10
* omero-model 5.6.7
as well as the upgrade of omero-scripts to version 5.7.0.
Improvements include:
* anew server configuration allowing to control the pyramidal requirement for floating-point images
* an upgrade of Bio-Formats to version 6.10.0

¢ the inclusion of the OMEZarrReader version 0.3.0 for reading OME-NGFF data

42 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

This version of the OMERO.server has been tested with:
e OMERO.py 5.11.2
* OMERO.web 5.14.1
* OMERO.dropbox 5.6.2

5.6.4 (April 2022)
This release improves and expands integration testing to handle Django 3.2.x. It also removes obsolete code. More
importantly, it has been tested with:

e omero-blitz 5.5.10

* omero-gateway-java 5.6.9

e omero-py 5.11.1

* omero-web 5.14.0

* omero-dropbox 5.6.2

* omero-scripts 5.6.2

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

5.6.3 (October 2020)
This release improves and expands integration testing and removes obsolete code. More importantly, it has been tested
with:

e omero-blitz 5.5.8

* omero-gateway-java 5.6.5

e omero-py 5.8.1

* omero-web 5.8.1

* omero-dropbox 5.6.2

5.6.2 (July 2020)
This release adds installation documentation for server and web on CentOS 8 and Ubuntu 20.04. We have dropped
support for Ubuntu 16.04 and removed the corresponding installation instructions.
This version has been tested with:
e omero-blitz 5.5.7
* omero-gateway-java 5.6.4
e omero-py 5.7.1
e omero-web 5.7.0

e omero-dropbox 5.6.2

1.3. Additional resources 43

OMERO

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

5.6.1 (March 2020)

Security release focused on fixing vulnerabilities 2019-SV1 through 2019-SV6. This version has been tested with:
e omero-blitz 5.5.6
* omero-gateway-java 5.6.3
* omero-py 5.6.2
* omero-web 5.6.3
e omero-dropbox 5.6.1

Note: This upgrade will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further infor-
mation.

5.6.0 (January 2020)
First release of OMERO with support for Python 3. All Python code has been removed from the distributed ZIP file
and will need to be installed from PyPI. This version has been tested with:

e omero-blitz 5.5.5

* omero-gateway-java 5.6.2

e omero-py 5.6.0

e omero-web 5.6.1

* omero-dropbox 5.6.1

5.5.1 (July 2019)

Bug fix release focusing on installation issues that were seen with 5.5.0 as well as an upgrade of Bio-Formats to 6.1.1.

¢ web:

Allow the customization of the web logo

Allow overriding server configuration

Dynamically look up client download links

Fix description in new Project, Dataset etc.

Fix layout of the user account form

* Java gateway:

New methods added to allow change group of objects

New methods added to load objects (datasets, etc.) by name

New methods added to get original and repository paths of images

Minor fixes in createDataset and getPixelSize methods
e import:

— Add import target support for creating Projects

44 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org/security/advisories/

OMERO

* scripts:
— Enable annotating Projects and Datasets with the Populate Metadata script

¢ server:

Fix SSL cipher issue to allow Insight to be used from Fedora 30

Fix issue with loading Hibernate’s DTD when offline

Properly close OMERO.tables which kept sessions alive

Note: Due to the stricter closing of OMERO.tables, it may be necessary to update plugins like omero-metadata which
previously were leaking files.

5.5.0 (June 2019)

This version does not require a database upgrade.
For more information about the aim of the 5.5 series and future plan, please read our blog post.

This release focuses on dropping support for Java 7, Python 2.6 and Ice 3.5, adding support for Java 11 and PostgreSQL
10, and on decoupling the Java components to new, separate repositories, each with a new Gradle build system:

* https://github.com/ome/omero-dsl-plugin
* https://github.com/ome/omero-model
* https://github.com/ome/omero-common
* https://github.com/ome/omero-romio
* https://github.com/ome/omero-renderer
* https://github.com/ome/omero-server
* https://github.com/ome/omero-blitz
* https://github.com/ome/omero-gateway-java
* https://github.com/ome/omero-blitz-plugin
* https://github.com/ome/omero-insight
* https://github.com/ome/omero-matlab
* https://github.com/ome/omero-javapackager-plugin
* https://github.com/ome/omero-api-plugin
This has the goal of enabling more fine-grained releases.

A new restriction is that the names of server configuration properties may include only letters, numbers and the symbols

[T R TIE LEN TN T
s s T

New plugins like omero-artifact-plugin allow reducing the boilerplate code in the build scripts of the decoupled repos-
itories. Though initially disruptive, we hope this modernization and modularization will ease participation in the
development of OMERO.

Additionally, this release improves the Web interface when OMERO is opened to the public and contains some useful
CLI improvements.

¢ build:
— Remove the generation of Ivy dependencies.html files

* web:

1.3. Additional resources 45

https://blog.openmicroscopy.org/
https://gradle.org
https://github.com/ome/omero-dsl-plugin
https://github.com/ome/omero-model
https://github.com/ome/omero-common
https://github.com/ome/omero-romio
https://github.com/ome/omero-renderer
https://github.com/ome/omero-server
https://github.com/ome/omero-blitz
https://github.com/ome/omero-gateway-java
https://github.com/ome/omero-blitz-plugin
https://github.com/ome/omero-insight
https://github.com/ome/omero-matlab
https://github.com/ome/omero-javapackager-plugin
https://github.com/ome/omero-api-plugin

OMERO

Introduce Advanced Search to allow and/or search options
— Fix description in new Project, Dataset etc.
— Allow user to create new Map Annotations for multiple selected objects at once
— Fix date display
— Remove / from 3rdparty in ome.viewportlmage.js
— Remove usage of deprecated calls
— Remove apache config
— Do not break display of Tag dialog when large font size is configured in browser
— Disable refresh button while existing refresh in progress
— Improve public user support
— Add ability to customize incorrect login text
* cli:
— Disable foreground indexing
— Improve logging of error when importing data via cli command
— Clearly indicate empty log files when running a diagnostic

— Fix bug when running config load passing a directory instead of a file

Add option to delete keys from map annotations

Add error code discovery

Deprecate the CLI upload module and plugin

5.4.10 (January 2019)

This release addresses a login issue for Java clients such as OMERO.insight. New releases of Java include a change to
the java.security file that disables anonymous cipher suites. This change causes SSLHandshakeException when
the client attempts to authenticate to OMERO.blitz. The OMERO 5.4.10 release has some clients check the security
property jdk.tls.disabledAlgorithms for the value “anon” and remove it if present thus allowing authentication
to proceed.

5.4.9 (October 2018)

This release addresses a critical import issue where files can be silently skipped.
Import improvements include:

e ImportCandidates returns filesets even when files are shared between several filesets independently of the
scanning order

* insight: bug fixes for the lightweight importer Ul

Other improvements include:
* BlitzGateway: new API to read OriginalFile as file-like objects
* server: add code to dispose of Graphics objects in the server

* Javadoc: add links to developer documentation for graph operations

46 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

5.4.8 (September 2018)
This release focuses on a number of import performance improvements while including several other fixes as well as
an upgrade of Bio-Formats.
Import improvements include:
¢ cli: new experimental —parallel-upload and —parallel-fileset flags to the import command
e cli: new fs importtime cli command

e cli: add support for —skip, —parallel-upload, —parallel-fileset and —readers options in bulk import configuration
files

* insight: new options for skipping various import steps to speed up the process (match cli’s —skip option)
* insight: supporting imports with thousands of files by providing a lightweight UI

* insight: new loading placeholder when browsing data to show when an image is busy being processed and not
ready to generate a thumbnail

* insight: added error placeholder when browsing data to indicate a failed import
* server: preventing recalculation of checksums for upload
* server: providing better performance logging, accessible to users via fs logfile
* as well as preservation of Bio-Formats’ knowledge of channel colors where provided.
Other client changes include:
* web: better handling of large numbers of channels
» web: fixed socket leakage on unclosed web sessions
* web: fixed issue with bulk annotation table handling
e cli: deprecating admin sessionlist and config list
Sysadmin improvements include:
* new %thread% option for omero.fs.repo.path as well as fix a few bugs for dealing with parallel imports
* new omero.threads.background_threads property to limit the number of simultaneous imports

This release also upgrades the version of Bio-Formats which OMERO uses to 5.9.2.

5.4.7 (July 2018)

This is a security release which also includes a number of bug fixes. It is highly recommended that you upgrade
your server.

See the security advisories page for details on 2018-SV1, 2018-SV2 and 2018-SV3.

Impacts of the security vulnerability fixes include:

* omero.security.password_required=false no longer applies for administrators: their correct password is always
required

¢ administrators can no longer change the password of other administrators who are more privileged in any way

* administrators can no longer reset their password and receive the new one by e-mail: they must instead have
another administrator who is at least as privileged set a new password manually

e cli: the session UUID has been removed from the standard output when logging in but can still be retrieved using
bin/fomero sessions key

1.3. Additional resources 47

https://www.openmicroscopy.org/security/advisories/

OMERO

Improvements include:
* web: fix loss of privileges when editing full admins
» web: fix exceptions on invalid connections
* web: fix CSS in group/user search element
* web: fix error when public user is disabled
e web: gray out user role when editing root user
* insight: permit open_with on original files
* read-only: reduce error logging for scripts and pixel data
e scripts: improve error messages for invalid MATLAB
* as well as various documentation improvements
Sysadmin improvements include:
* log locale and time zone information on startup
Developer updates include:
e cli: clean up “communicator not destroyed” logging
¢ cli: don’t hang when incorrect password passed in a script
e java: add a map annotation example
* java: throw a clear exception when -1 is used for all groups
* web: fix @render_response when extending base templates
* matlab: contributions from Kouichi Nakamura for working with annotations

This release also upgrades the version of Bio-Formats which OMERO uses to 5.9.0. Note: this is a significant upgrade
and will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further information.

5.4.6 (May 2018)

This introduces a significant new subsystem for read-only operation with which servers can be configured not to make
changes to the database, the filesystem, or both. The goal is to permit horizontal scaling of OMERO by running multiple
servers in parallel to increase the throughput of data and metadata for large-scale analysis or publishing. Additionally,
a read-only copy of an existing OMERO can be opened safely to the public for experimentation. For example, this
infrastructure supports the public OMERO web and the Jupyter environment of the Image Data Resource. Information
on how to configure a read-only server is available at Clustering.

Further improvements include:
* enabled big image support in ImagelJ/Fiji
¢ reduced the number of threads used by OMERO.web
* fixed other bugs in OMERO.web including:

broken History tab

handling of script params

pagination calculations

public user login

browsing to user’s data in IE

48 Chapter 1. OMERO Overview and CLI User Documentation

https://idr.openmicroscopy.org/

OMERO

* fixed the chosen login ports for OMERO.cli
Developer updates include:
* anew command to set custom physical pixel size using OMERO.cli
¢ deprecated Repository::pixels, TinylmportFixture and OMEROImportFixture
* improved test infrastructure
* reduced background events in the center panel plugin when not displaying Thumbnails
¢ added extra controls when specifying map and gamma in the rendering engine

This release also upgrades the version of Bio-Formats which OMERO uses to 5.8.2. Note: this is a significant upgrade
and will invalidate the Bio-Formats Memoizer cache. Please see the upgrade guide for further information.

5.4.5 (March 2018)

This is a bug-fix release reactivating the thumbnail cache inadvertently disabled in 5.4.4 while fixing a pyramid issue.
Improvements include:

* reactivated thumbnail caching

* improved removepyramids help

* fixed display of thumbnails when searching for images by ID

¢ increased OMERO.web log size

* fixed CLI config list subcommand

* fixed leaking services in OMERO.py

 improved rendering of non-tile large images using OMERO.py and webgateway

This release does not upgrade the version of Bio-Formats which OMERO uses, which remains at 5.7.3.

5.4.4 (March 2018)

This is a bug-fix release which also introduces some new functionality.
It includes a security fix for 2017-SV6. It is highly recommended that you upgrade your server.
Improvements include:

* images can now be filtered by Tag in the center panel of OMERO.web

* enabled search by “File” and “Tag” annotations separately in OMERO.web, as opposed to only being able to
search by All annotations

* fixed switching between grid display and thumbnail display in OMERO.web

* fixed the image preview and disabled projection in OMERO.insight when trying to project an image with all the
channels turned off

* fixed parsing of polygons and polyline ROIs so they can be opened in Image]
* fixed creation of OMERO pyramids for little-endian files

 improved error message when login fails for OMERO.insight

 improved handling of idle connections in OMERO.insight

 improved loading speed of LUT

1.3. Additional resources 49

https://www.openmicroscopy.org/security/advisories/2017-SV6-job-file-link

OMERO

OMERO.insight and OMERO.importer are now compatible with Java 9

Sysadmin improvements include:

improved installation documentation for OMERO.web, and OMERO.server on Debian 9, Ubuntu 16.04 and
CentOS 7

added an admin command and script to allow deletion of corrupted pyramids created by a bug introduced with
OMERO 5.2 (new uncorrupted pyramids can then be generated - see OMERQO.server upgrade for details)

allowed enforcement of a secure connection when importing data

added commands to the CLI sessions plugin to enable the creation and removal of user sessions

Developer updates include:

improved test infrastructure and coverage

allowed filtering by namespace (ns) in webclient, API and annotations

added support for more rendering parameters to the API

added the option to respect a specific tile size

added a method to load planes using JavaGateway

added an example to the documentation for using “sudo” to create sessions for others with the JavaGateway

documentation is now compatible with Sphinx 1.7

This release does not upgrade the version of Bio-Formats which OMERO uses, which remains at 5.7.3.

5.4.3 (January 2018)

This is a bug fix release for a resource leak in omero.gateway.BlitzGateway introduced with 5.4.2 that caused long-
running processes to hang. No other changes are included.

5.4.2 (January 2018)

This is a bug-fix release.

Improvements include:

added documentation on a complete workflow for publishing data from OMERO.server

added references to the new OMERO pyramid format documentation (within the OME Data Model and File
Formats documentation)

faster loading of thumbnails for large Plates after a recent regression

made projecting images belonging to another user only possible for users with the required permissions to save
the new images

improved the public user experience for password-less access
updated SwingX library version used by OMERO.insight to stop insight-ij plugin crashing in Fiji
CLI updates:

— import --target into a container without the necessary permissions now fails before file upload starts
and more transparently

— admin mail timeout is now configurable via --wait

— added admin log command for inserting statements to the server log

50

Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Sysadmin changes include:

added warning about the need to regenerate your NGINX config for every upgrade
fixed documentation bug affecting OMERO-version-specific guidance
improved OMERO.tables startup stability

server performance improvements and reduction in ERROR logging

Developer updates include:

extended Python and Java examples to include Map Annotations and histograms
added methods for updating OMERO.tables

Java Gateway fixes for sessions and rendering

fixed retrieval of Plate thumbnail URLSs

improved ‘Editing OMERO.web’ documentation

improved Slice documentation for API deprecations

added instructions to Extensions on how to create CLI plugins that are pip installable

substantial effort to make third-party repositories easily testable; see omero-test-infra for more information

This release also upgrades the version of Bio-Formats that OMERO uses to 5.7.3.

5.4.1 (November 2017)

This is a bug-fix release.

Improvements include:

labeled zoom slider bars in the UI to differentiate from horizontal scrollbars and make clear thumbnails can be
zoomed (including Plate and Well thumbnails)

fixes for installation walkthrough documentation - installation of script dependencies and gunicorn, and clarifi-
cation of which user account to use for pip install actions

fixed checking of “guest” user

update to fetch third-party artifacts over https to allow OMERO to build even without a local Maven cache already
populated

added javax.activation dependency to allow OMERO.insight to work with Java 9
import of files reporting extreme pixel sizes now fail rather than hanging
pyramid-making now aborts when a tile fails

various test fixes

CLI fixes:

improved help output for graphs commands to make it clearer that --include and --exclude expect class
names not object IDs

allowed setting the OMERO_PASSWORD environment variable instead of using the -w command-line option

made passwords hidden by default when running omero config get

fixed the CLI metadata tablestest plugin to not use an empty list of Columns

This release also upgrades the version of Bio-Formats that OMERO uses to 5.7.2.

1.3. Additional resources 51

https://github.com/ome/omero-test-infra

OMERO

5.4.0 (October 2017)
A full, production-ready release of OMERO 5.4.0; featuring a new configurable user role “Restricted Administrators”;
further improvements to OMERO.web; additions to OMERO.cli; and many fixes and performance improvements:

 added Administrators with restricted privileges to allow sysadmins to delegate management tasks to facility man-
agers without granting them full system admin privileges, or to allow trusted users such as image analysts to carry
out tasks on behalf of all other users

* fixed color conversion to RGBA
¢ added support for exporting images in a plate as OME-TIFF
* improved creation of rendering settings for images without any stats e.g. 32bit images
 improved performance for moving large Plates
* fixed projection of images if the range of timepoints specified is not the full range
* added support for transfering ownership of all the data of a given user using CLI
» renamed “Reverse Intensity” command to “Invert” in image viewers
¢ added support for ImageColumn with Screen and Plate targets in the populate_metadata script
¢ OMERO.web UI fixes:
— improved display of Plates and Wells

fixed label position for Wells
— added the ability to display Image and Well metadata in the Tables section for the same Plate
— improved copy/paste of rendering settings workflow
— improved layout of left-hand panel including the position of the search panel
— added support for administrators with restricted privileges to create Project/Dataset for other users
— rolled back the display of tables in the viewer
— fixed forgotten password functionality
Sysadmin changes include:
* added support for the creation of administrators with restricted privileges in OMERO.web admin panel
¢ added method to create administrators with restricted privileges specifying a password
* added specific installation instructions for Debian 9
* added configuration to limit queries that public users can do in OMERO.web

¢ created minimal NGINX configuration file that can be included in a fixed file to allow custom NGINX options
to be defined only once (e.g. SSL options)

* installed django-redis by default

* CLI improvements and fixes:

fixed admin plugin so “cleanse” can handle larger directories

added to chown plugin ability to target all of given users’ data

adjusted handling of standard input

added infrastructure to load external CLI plugins

dropped support for command admin ports

52 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Developer updates include:

added method to JavaGateway to manipulate admin privileges

fixed issue with JSONP decorator

removed SciPy dependency

adjusted OMERO.blitz API to allow some query results to be cached

added support to the rendering engine to update a series of settings in one call
added method to OMERO.py to manipulate advanced rendering settings
allowed the Maven repository to be overridden

removed unused 3rd party libraries in OMERO.web

added support for PyTables version 3.4+

deprecated Path Object in OMERO Model

updated the documentation for server installation on Mac OS to no longer use the homebrew formulae from
https://github.com/ome/homebrew-alt (these are not working and will not be fixed)

Further changes to the Python BlitzGateway are described in What’s new for OMERO 5.6 for developers.

This release also upgrades the version of Bio-Formats which OMERO uses to 5.7.1.

5.3.5 (October 2017)

This is a security release - see the security advisory for further details.

It is highly recommended that you upgrade your server.

5.3.4 (September 2017)

This is a security release - see the security advisory for further details.

This release also upgrades the version of Bio-Formats which OMERO uses to 5.5.3.

It is highly recommended that you upgrade your server.

5.3.3 (June 2017)

This is a bug-fix release.

Improvements include:

support for two new lookup tables from Janelia
fixed loading of Well in right-panel when browsing Well under Tag tree or from search results

fixed rotation of labels in figure scripts

Sysadmin changes include:

clarified the upgrade of the “Open With” option
allowed installation of OMERO.web with ice 3.5
fixed recursive loading of feedback in OMERO.web

1.3. Additional resources 53

https://github.com/ome/homebrew-alt
https://www.openmicroscopy.org/2017/09/20/bio-formats-5-7-1.html
https://www.openmicroscopy.org/security/advisories/2017-SV4-guest-user
https://www.openmicroscopy.org/security/advisories/2017-SV5-filename-2
https://www.openmicroscopy.org/2017/07/05/bio-formats-5-5-3.html
https://www.janelia.org/

OMERO

* provided patch for OMERO.server installation on OS using OpenSSL 1.1.0 e.g. Debian 9 see Troubleshooting
OMERO

Developer updates include:
¢ added an example of how to retrieve shapes from a ROI using batch querying for scalability
* improved logging of errors during deletion
* added new methods to Java Gateway
» improved login options in Java Gateway
* specified an image’s dataset in its URL to give more context to OMERO.web apps

This release also upgrades the version of Bio-Formats which OMERO uses to 5.5.2.

5.3.2 (May 2017)

This is a bug-fix release.
Improvements include:
* improved populate_metadata plugin
* fixed deletion of a range of objects from CLI
* textual annotations without a namespace can now be added at import using the CLI
* improved thumbnails retrieval in OMERO.web
* added “Open With” option to the right-hand panel in OMERO.web

e private group owners are now not offered the ability to annotate other people’s data in OMERO.web U], an action
which was not permitted by the server anyway

 preview of wells now available in the right-hand panel
Sysadmin changes include:
* made the Django middleware classes configurable using a new property
¢ added property to allow connections from specified origins (CORS)
* administrators can now use the CLI to move data between groups without belonging to those groups

e for OMERO.web apps to be available via “Open With” option, administrators need to use the
“omero.web.open_with” configuration option

Developer updates include:
* exposed more enumerations from ome-model
* added ROIs support to the Web API

This release also upgrades the version of Bio-Formats which OMERO uses to 5.5.0.

54 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org/2017/06/15/bio-formats-5-5-2.html
https://www.openmicroscopy.org/2017/05/08/bio-formats-5-5-0.html

OMERO

5.3.1 (April 2017)

This is a bug-fix release focusing on shares.

Improvements include:

enabled viewing images in share

enabled importing hidden image files (Windows client issue)
clarified installation of OMERO.web

saved polygon and polyline as defined in the OME model
fixed viewing of images without pixels size

added support for large image export as jpeg/png from OMERO.insight

This release also upgrades the version of Bio-Formats which OMERO uses to 5.4.1.

5.3.0 (March 2017)

A full, production-ready release of OMERO 5.3.0; featuring a major reworking of OMERO.web and web apps; dropping
support for Windows for the server and for deploying OMERO.web using Apache; and introducing new user features
and many fixes and performance improvements:

improved support for many file formats via Bio-Formats 5.4.0

introduced ROI Folders

new Ul for displaying Screen Plate Well data in OMERO.web and OMERO.insight
support for lookup tables and reverse intensity rendering

color mapping for multiple channels without set colors has been improved to use RGBRGB rather than RGBBB
(i.e. to loop through red, green, blue rather than setting all later channels to blue)

support for histograms in the clients and server
ability to filter by ratings in OMERO.web
added ‘Open With...’ functionality to OMERO.web

color of shapes is now handled according to the data model, using RGBA rather than ARGB format (an sql script
is available to upgrade existing shapes; this will not happen automatically as part of the OMERO upgrade)

improved performance for moving and deleting data
Wells can now be annotated and searched by annotations
enabled downloading/exporting of plate data

improved reading of tables data

script improvements including ability to create tiled images from big ROISs, fixes for creating standard images
from ROIs, and to stop the Combine_Images script from ignoring pixel sizes set on the target images

names for plates and images set in the metadata read by Bio-Formats are now imported into OMERO and the
filename (which was previously used) is only used where an alternative has not been set

many bug fixes

Sysadmin changes include:

added support for Ice 3.6.3
official OMERO.web apps are now all installable from PyPI

1.3. Additional resources 55

https://www.openmicroscopy.org/2017/04/13/bio-formats-5-4-1.html

OMERO

OMERO.web has been decoupled from the server and can now be deployed separately

dropped support for Windows for OMERO.server
OMERO.web deployment via Apache is no longer supported
OMERO.web also now requires Python 2.7

CLI improvements including updates to the import output to make it more usable by scripts etc.

options added for customizing the tree in OMERO.web
introduced hide-password option in CLI
new options added to omero config

removed deprecated client menu properties

Developer updates include:

Further details on breaking changes are available on What’s new for OMERO 5.3 for developers. Work on the Web
API is ongoing and will include moving away from the use of JSONP and introducing Django CORS.

performed major code cleanup

major Web API rework

adjustment to support the upcoming Java 1.9

made python testing package public so it can be used by external clients
improved build system integration with local Maven

made Scripts repository and official OMERO.web apps pep8 and flake8 compatible
removed restriction on name length

added support for enumeration changes

utils script classes deprecated

deprecated shares

deprecated search bridges

disabled jquery cache

5.2.8 (March 2017)

This is a security release including three security vulnerability fixes.

https://www.openmicroscopy.org/security/advisories/2017-SV 1-filename prevents users from accessing and manipu-
lating other people’s data by creating an original file and changing its path to point to another user’s file on the underlying

filesystem.

https://www.openmicroscopy.org/security/advisories/2017-SV2-edit-rw prevents users in read-write groups from edit-

ing official scripts.

https://www.openmicroscopy.org/security/advisories/2017-SV3-delete-script prevents the deletion of official scripts

by users without the correct permissions to do so.

It is highly recommended that you upgrade your server.

56

Chapter 1. OMERO Overview and CLI User Documentation

https://docs.openmicroscopy.org/omero/5.3.0/developers/whatsnew.html
https://www.openmicroscopy.org/security/advisories/2017-SV1-filename
https://www.openmicroscopy.org/security/advisories/2017-SV2-edit-rw
https://www.openmicroscopy.org/security/advisories/2017-SV3-delete-script

OMERO

5.2.7 (December 2016)

This is a release aimed at system administrators or developers wanting to build OMERO with Ice 3.6.3.
This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.10.

All scripts handling Regions of Interest (ROIs) now support ROI not linked to any plane as defined by the OME Model.

5.2.6 (October 2016)

This is a bug-fix release focusing on services closure and a DB upgrade fix. Improvements include:
* fixed closure of session in Java when using Ice 3.5
* fixed memory leak where services were not correctly closed
* added a DB upgrade patch to fix errors only affecting DBs that have been upgraded from OMERO 4.4
* fixed a MATLAB regression introduced in 5.2.2, casting error.
* fixed error in logs on getProjectedThumbnail

Support for OMERO.web deployment using Apache has also been deprecated and is likely to be removed during the
5.3.x line.

5.2.5 (August 2016)
This is a security release to fix the access privileges of the share function, which were potentially allowing users to
access private data belonging to other users via the APL

See https://www.openmicroscopy.org/security/advisories/2016-SV2-share for details. Shares will now respect user
privileges as set by the group permission level. Note that Shares now only support images even when used via the API.

It is highly recommended that you upgrade your server. For those not in a position to do so as a matter of urgency, a
workaround is provided which deletes all shares and disables their creation.

5.2.4 (May 2016)
This is a security release to fix the cleanse.py script used by the “bin/omero admin cleanse” command, which was not
properly respecting user permissions and may lead to data loss.

See https://www.openmicroscopy.org/security/advisories/2016-SV 1-cleanse for details. The script and command have
now been made admin-only.

It is highly suggested that you upgrade your server or apply the patch available from the security page.

5.2.3 (May 2016)

A bug-fix release. Improvements include:
* fixed problem with float images

« all scripts currently exposed to users via our website have been reviewed and fixed where necessary so they are
all now 5.2.x compatible, and a new omero-install workflow has been developed to ensure these are reviewed
regularly going forward

* better support for metadata annotations in clients including tag/tagset support and performance issues

¢ fixes in OMERO.web for deleting MIFs

1.3. Additional resources 57

https://www.openmicroscopy.org/2016/05/09/bio-formats-5-1-10.html
https://www.openmicroscopy.org/security/advisories/2016-SV2-share
https://www.openmicroscopy.org/security/advisories/2016-SV1-cleanse

OMERO

* improvements to the navigation of large datasets and display of plates in OMERO.web
* other OMERO.web bug fixes
* OMERO.insight and CLI import improvements

other OMERO.insight bug fixes, including for downloading data

Developer updates include:

* Java gateway improvements

System administrator updates include:

¢ Ice 3.6.2 support for UNIX-like systems, including specific installation walkthroughs
* redis support for websessions caching

* afix to allow OMERO.web to be run in a Docker container

» improved OMERO.web configuration

» warnings added regarding the end of Windows support in the 5.3.0 release (note that we will be preparing a guide
for migrating from Windows for existing servers and adding it to the documentation as soon as we can)

This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.9.

5.2.2 (February 2016)

A bug-fix release which also introduces some new client features. Improvements include:

* display of ROI masks in OMERO.web image viewer
¢ display of OMERO.tables data for Wells in the OMERO.web right hand panel

* ‘Populate Metadata’ script to enable generation of OMERO.tables for Wells is now usable from both
OMERO.web and OMERO.insight (note this is still in development and has some limitations)

¢ measurement tool fixes

* fixed pixel size metadata and scalebar in OMERO.web image viewer for images with pixel size units other than
micrometer

* fixed OMERO.web handling of turning off interpolation of pixels
* previous and next buttons fixed in OMERO.web image viewer

¢ delete and change group performance improvements

¢ better handling of dates in search

* client support for map annotations in OME-TIFF

¢ disabled orphaned container feature

* OMERO.web clean-up to remove obsolete volume viewer

Developer updates include:

* Python API examples for creating Polygon and Mask shapes

* Python API example for ‘“Populate Metadata” to create OMERO.tables for Wells

* OMERO.tables documentation extended

» updated “What’s New for developers’ to clarify that pojos has been renamed as omero.gateway.model

¢ dynamic scripts functionality documented

58

Chapter 1. OMERO Overview and CLI User Documentation

https://blog.openmicroscopy.org/tech-issues/future-plans/deployment/2016/03/22/windows-support/
https://www.openmicroscopy.org/2016/04/18/bio-formats-5-1-9.html

OMERO

* dynamic loading of omero.client server settings into HTTP sessions
System administrator updates include:

¢ clarification of OMERO.web documentation for nginx deployment, including an experimental solution to resolve
download issues

* documentation of hard-linking issues for in-place import on linux systems

Note that the OMERO Virtual Appliance has been discontinued and will not be updated for version 5.2.2 or any later
releases.

This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.8.

5.2.1 (December 2015)

A bug-fix release focusing on improving installation documentation and workflows. Other improvements include:
* bug fix for missing hierarchy when viewing High Content Screening data
* improvements to the right-hand panel in OMERO.insight
* measurement tool fixes
* OMERO.web fix for displaying size units
System administrator updates include:
* improved installation documentation, including detailed walkthroughs for specific OS
* OMERO.web deployment fixes

Developer updates include:

OMERO Javadocs now link to the relevant version of Bio-Formats Javadocs for inherited methods
* clean-up of server dependencies

* jstree clean-up

e CLI graph operation improvements for deleting

¢ minimal-omero-client and pom-omero-client clean-up

This release also upgrades the version of Bio-Formats which OMERO uses to 5.1.7.

5.2.0 (November 2015)

A full, production-ready release of OMERO 5.2.0; dropping support for Java 1.6; featuring major upgrading of
OMERO.web; re-working of the Java Gateway; and introducing new user features and many fixes and performance
improvements:

 improved support for many file formats via Bio-Formats 5.1.5

* faster import for images with a large number of ROIs

* performance improvements for OMERO.web including faster data tree loading

» Java Web Start has been dropped, it is no longer possible to launch the desktop clients from the web
 reworked display of metadata and annotations in both UI clients

* many bugs fixed

Developer and system administrator updates include:

1.3. Additional resources 59

https://www.openmicroscopy.org/2016/02/15/bio-formats-5-1-8.html
https://www.openmicroscopy.org/2015/12/07/bio-formats-5-1-7.html

OMERO

» the OMERO web framework no longer bundles a copy of the Django package, this dependency must be installed
manually

* updated jstree to 3.08 and now using json for all tree loading to substantially improve performance
» removed FastCGI support, OMERO.web can be deployed using WSGI

* configuration property omero.graphs.wrap which allowed switching back to the old server code for moving
and deleting data has now been removed. You should migrate to using the new graph request operations before
5.3 when the old request operations will be removed

* introduced new Java Gateway to facilitate the development of Java applications

¢ aligned OMERO Rect with OME-XML schema for ROI. Clients using the OMERO.blitz server API to work
with ROIs will need to be updated

5.1.4 (September 2015)

A bug-fix release covering all components. Improvements include:
* channel buttons fixed in OMERO.web
» improved UI experience when moving annotated data between groups in OMERO.web
 improved performance for loading annotations in the right-hand panel of OMERO.web
* much better handling of ROIs covering large planes in OMERO.insight
* rendering setting fixes for copy and paste actions in OMERO.insight
* rendering fixes for floating point data
¢ Admins can now configure whether the clients interpolate images by default
* better formatting of Delta-T and exposure times in the clients
* directories are now preserved when downloading multiple original files

¢ various improvements to the OMERO-ImageJ handling of ROIs and measurements, including the ability to name
measurement tables

e current session key can now be returned via the CLI

* other CLI improvements including usability of ‘chmod’ for downgrading group permissions, and listing empty
tagsets

¢ added support for groups in OMERO.matlab methods
Developer updates include:
* improvements to web logging to log full request and status code
* fixed joda-time version mismatch
¢ cleanup of old insight code to remove remaining references to OMERO.editor

Support for deployment of OMERO.web using FastCGI has also been deprecated in this release and is scheduled to
be removed in 5.2.0. Sysadmins should move to using WSGI instead. We are also intending to stop distributing
Java Webstart for launching OMERO.insight from your browser, as security concerns mean browsers are increasingly
moving away from supporting this type of application. You can read further information regarding this decision on our
Web Start blog post.

60 Chapter 1. OMERO Overview and CLI User Documentation

https://blog.openmicroscopy.org/tech-issues/future-plans/2015/09/23/java-web-start/

OMERO

5.1.

3 (July 2015)

A bug-fix release which also introduces some new functionality. Improvements include:

* tagging actions extended; you can now use tag sets to tag images on import
* tagging ome-tiff images at import has also been fixed

* greatly improved workflow and bug fixes for the Share functionality in OMERO.web which enables you to share
images with users outside of your group (including removal of part of the UI)

* group admins and owners can now change ownership of data via the CLI
* better reporting for the ‘delete’ and ‘chgrp’ functionality in the CLI

» fixed display of images in plates with multiple acquisitions

* fixed export of results as .xls files from OMERO.insight

 improved workflow for ImageJ and OMERO interactions

¢ support for WSGI OMERO.web deployment

* fixed OMERO.mail service for web errors

« fixes for ROI display in OMERO.web (thanks to Luca Lianas of CRS4)

* fixes and workflow improvements for running scripts and script dialogs

Developer updates include:

* OMERO.web clean-up (removal of ‘-locked’)

* reorganization of the server bundle to move various licenses and dependencies under a new ‘share’ folder
* refactoring of ‘Chown2’, ‘Chmod?2’, ‘Chgrp2’ and ‘Delete2’

* addition of dynamic scripts

* the ‘rstring’ implementation is now more lenient and should better handle unicode

* Bio-Formats submodule removed from OMERO; decoupling effort means OMERO now consumes the Bio-
Formats release build from the artifactory

This release also includes the fix for the Java security issue, as discussed in the recent blog post. Testing suggests
this fix should not have any performance implications. You should upgrade your Java version to take advantage of the
security fix.

5.1.

2 (May 2015)

A bug-fix release which also introduces some new functionality. Improvements include:

* support for Read-Write groups

the LDAP plugin can now set users as group owners whether on creation or via the improved sync_on_login
option

users logged into the webclient can now automatically log in via webstart

results tables from ImagelJ/Fiji can be attached to images in OMERO and the ImagelJ/Fiji workflow has been
improved

better delete functionality and warnings in the UI

improved graph operations like ‘delete’ and ‘chgrp’, as well as the new ‘chmod’ operation (for changing group
permissions), are now used across the clients including the CLI

1.3.

Additional resources 61

https://blog.openmicroscopy.org/tech-issues/2015/07/21/java-issue/

OMERO

* an API for setting and querying session timeouts is now available via the CLI
* magnification now reflects microscopy values (e.g. 40x) rather than a percentage in both clients
» more readable truncation of file names in the OMERO.insight data tree

* OMERO.web fixes and improvements including:

interpolation

optimization of plate grid and right-hand panel

option to download single original files

significant speed-up in loading large datasets

* deployment fixes include:

new default permissions on the var/ directory

better checks of the DropBox directory permissions

new and some deprecated environment variables

a startup check for lock files on NFS

use /var/run for omero.fcgi
Critical bugs which were fixed include:
* the in-place import file handle leak (which was a regression in 5.1.1)

e various unicode and unit failures were corrected

5.1.1 (April 2015)

A bug-fix release focusing on user-facing issues and cleaning resources for developers. Improvements include:
For OMERO.web:

* significant review of the web share functionality

e correction of thumbnail refreshing

* fixes to the user administration panel

* fix for embedding of the Javascript image viewer
For OMERGO.insight:

* improved open actions

* tidying of the menu structure

* correction of the mouse zoom behavior

* fix for the Drag-n-Drop functionality
Other updates include:

* overhaul of the CLI session log-in logic

* cleaning and testing of all code examples

* further removal of the use of deprecated methods

62 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

5.1.0 (April 2015)

A full, production-ready release of OMERO 5.1.0; updating the Data Model to the January 2015 schema, including
support for units and new more flexible user-added metadata; and introducing new user features, new supported formats
and many fixes and performance improvements:

support for units throughout the Data Model allowing for example, pixel sizes for electron microscopy to be
stored in nanometers rather than being set as micrometers

new, searchable key-value pairs annotations for adding experimental metadata (replacing OMERO.editor, which
has been removed)

improved workflow for rendering settings in the UI and parity between the clients
import images to OMERO from ImageJ and save ROIs and overlays from ImageJ to OMERO

importing as another user, previously only available for administrators, is now usable by group owners as well,
allowing you to import data that will then be owned by the user you import it for

improved performance for moving and deleting data

removed the auto-levels calculation for initial rendering settings to substantially speed up performance, by using
the min/max pixel intensities, or defaulting to full pixel range where min/max is unavailable

import times are much improved for large datasets such as HCS and SPIM data
improved performance for many file formats and new supported formats via Bio-Formats (now over 140)
new OMERO.mail feature lets admins configure the server to email users

support for configuring the server download policy to control access to original file download for public-facing
OMERO.web deployments

many developer updates such as removal of deprecated methods, and updates to OMERO.web and the C++
implementation (see the 5.1.0-m1 to 5.1.0-m5 developer preview release details below and the “What’s New’ for
developers page)

5.1.0-m5 (March 2015)

Developer preview release - only intended as a developer preview for updating code before the full public release
of 5.1.0. Use at your own risk.

Changes include:

implementation of OMERO.mail for emailing users via the server

performance improvements for importing large datasets

support for limiting the download of original files

various fixes for searching and filtering map annotations and converting between units
deprecation of IUpdate.deleteObject API method

versioning of all JavaScript files to fix browser refresh problems

clarifying usage of OMERO.web views and templates including RequestContext

1.3. Additional resources 63

OMERO

5.1.0-m4 (February 2015)
Developer preview release - only intended as a developer preview for updating code before the full public release
of 5.1.0. Use at your own risk.
Changes include:
* final Database changes - image.series is now exposed in Hibernate
* improved deletion performance
¢ client bundle clean-up
* other clean-up work including pep8 and removal of deprecated methods and components
* new Map annotations are now included in the UI and search functionality
* ImageJ plugin updates which allow
— importing of images and saving ROIs to OMERO from within the plugin
— viewing images stored in OMERO and their ROIs generated within OMERO from within the plugin

— updating ROIs on OMERO-stored images within the plugin and saving these back to OMERO without
needing to re-import the image

* OMERO.matlab updates re: annotations
* OMERO.tables internal HDF5 format has changed

With thanks to Paul Van Schayck and Luca Lianas for their contributions.

5.0.8 (February 2015)

This is a bug-fix release for one specific issue causing OMERO.insight to crash when trying to open the Projection tab
for an image with multiple z-stacks.

5.0.7 (February 2015)

This is a bug-fix release covering a number of issues:
* rendering improvements including 32-bit and float support
* vast improvements in Mac launching (separate clients for your Java version)
* faster import of complex plates
* OMERO.dropbox improvements
* ROI and measurement tool fixes

OMERO.matlab updates

64 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

5.1.0-m3 (December 2014)
Developer preview release - 3 of 4 development milestones being released in the lead up to 5.1.0. Only intended as a
developer preview for updating code before the full public release of 5.1.0. Use at your own risk.
Changes affecting developers include:
* implementation of units in the OMERO clients
* conversions between units
* OMERO.web updates
* server-side Graph work to improve speed for moving and deleting

* OMERO.insight bug-fixes especially for ROIs

5.1.0-m2 (November 2014)
Developer preview release - 2 of 3 development milestones being released in the lead up to 5.1.0. Only intended as a
developer preview for updating code before the full public release of 5.1.0. Use at your own risk.
Model changes include:

* units support, meaning units now have real enums

* minor fixes for model changes introduced in m1
The units changes mean that the following fields have changed:

* Plane.PositionX, Y, Z; Plane.DeltaT; Plane.ExposureTime

* Shape.StrokeWidth; Shape.FontSize

» DetectorSettings. Voltage; DetectorSettings.ReadOutRate

* ImagingEnvironment. Temperature; ImagingEnvironment.AirPressure

 LightSourceSettings.Wavelength

* Plate.WellOriginX, Y

* Objective.WorkingDistance

* Pixels.PhysicalSizeX, Y, Z; Pixels. TimeIncrement

e StageLabel. X, Y, Z

* LightSource.Power

* Detector.Voltage

* WellSample.PositionX, Y

* Channel. EmissionWavelength; Channel.PinholeSize; Channel . ExcitationWavelength

e TransmittanceRange.CutOutTolerance; TransmittanceRange.CutlnTolerance; TransmittanceRange.CutOut;
TransmittanceRange.Cutln

» Laser.RepetitionRate; Laser.Wavelength
Other changes that may affect developers include:
* ongoing C++ implementation improvements
* ongoing work to add unit support in OMERO.insight
* further flake8 work

1.3. Additional resources 65

OMERO

» removal of webtest app from OMERO.web to a separate repository
» removal of deprecated methods in IContainer and RenderingEngine
» removal of deprecated services IDelete and Gateway

* Blitz gateway fixes

» CLI fixes

* ROI and tables work

5.0.6 (November 2014)

This is a critical security fix for two vulnerabilities:
* https://www.openmicroscopy.org/security/advisories/2014-SV3-csrf
* https://www.openmicroscopy.org/security/advisories/2014-SV4-poodle
It is strongly suggested that you upgrade your server and follow the steps outlined on the security vulnerability pages.

Additionally, a couple of bug fixes for system administrators are included in this release.

5.1.0-m1 (October 2014)
Developer preview release - 1 of 3 development milestones being released in the lead up to 5.1.0. Only intended as a
developer preview for updating code before the full public release of 5.1.0. Use at your own risk.
Model changes include:
¢ channel value has changed from an int to a float
e acquisitionDate on Image is now optional
* Pixels and WellSample types are no longer annotatable
* the following types are now annotatable: Detector, Dichroic, Filter, Instrument, LightSource, Objective, Shape

e introduction of a “Map” type which permits storing key-value pairs, and a Map annotation type which allows
linking a Map on any annotatable object

Other changes that may affect developers include:
» strict flake8’ing of all Python code
¢ C++ build is now based on CMake and is hopefully much more user-friendly
* new APIs: SendEmail and DiskUsage

* the password table now has a “changed” field

66 Chapter 1. OMERO Overview and CLI User Documentation

https://www.openmicroscopy.org/security/advisories/2014-SV3-csrf
https://www.openmicroscopy.org/security/advisories/2014-SV4-poodle

OMERO

5.0.5/4.4.12 (September 2014)

This is a critical security fix for two vulnerabilities:
* https://www.openmicroscopy.org/security/advisories/2014-SV 1-unicode-passwords
* https://www.openmicroscopy.org/security/advisories/2014-SV2-empty-passwords

It is highly suggested that you upgrade your server and follow the steps outlined on the security vulnerability pages.

5.0.4 (September 2014)

This is a bug-fix release for the Java 8 issues. It also features a fix for uploading masks in OMERO.matlab.

You need to upgrade your OMERO server if you want to take advantage of further improvements in Bio-Formats support
for ND2 files.

5.0.3 (August 2014)

This is a bug-fix release addressing a number of issues including:
» improved metadata saving in MATLAB
* many bug fixes for ND2 files
* several other bug fixes to formats including LZW, CZI, ScanR, DICOM, InCell 6000
* support for NDPI and Zeiss LSM files larger than 4GB
 export of RGB images in ImageJ
e search improvements
* group owner enhancements
* Webclient updates including multi-file download

To take advantage of improvements in Bio-Formats support for ND2 files, you need to upgrade your OMERO.server
as well as your clients.

5.0.2 (May 2014)

This is a bug-fix release addressing a number of issues across all components, including:
* import improvements for large image datasets
* shared rendering settings
* better tagging workflows
* disk space usage reporting for OMERO.web admins
* OMERO.matlab annotation handling
* custom Web Start intro page templates
* searching by image ID

To take advantage of improvements in Bio-Formats support for .czi files, you need to upgrade your OMERO.server as
well as your clients.

1.3. Additional resources 67

https://www.openmicroscopy.org/security/advisories/2014-SV1-unicode-passwords
https://www.openmicroscopy.org/security/advisories/2014-SV2-empty-passwords

OMERO

4.4.11 (April 2014)

This is a bug-fix release for the Java Web Start issue. You only need to upgrade if this is a blocker for you and you
cannot upgrade to 5.0.x as yet. Also note that the OMERO.insight-ij plugin version 4.4.x no longer works for Fiji, we
are working on a fix for this. Plugin version 5.0.x is unaffected.

5.0.1 (April 2014)

This is a bug-fix release addressing a number of issues across all components, including:
* code signing to fix the Java Web Start issues
* stability improvements to search
* MATLAB fixes
e improvements to groups, user menus, file name settings etc

* new import scenario documentation covering ‘in-place’ importing.

5.0.0 (February 2014)

This represents a major change in how the OMERO server handles files at import compared with all previous versions
of OMERO. Referred to as ‘OMERO.fs’, this change means that OMERO uses Bio-Formats to read your files directly
from the filesystem in their original format, rather than converting them and duplicating the pixel data for storage. In
addition, it continues our effort to support new multidimensional images. The changes are especially important for
sites working with large multi-GB datasets, e.g. long time lapse, HCS and digital pathology data.

4.4.10 (January 2014)

This is a bug-fix release addressing a number of issues across all components, including:
 improved tile-loading
* better network-disconnect handling
» more flexible
* webapp deployment
* Ice 3.5.1 support (except Windows)

 improved modification of metadata, users and groups

4.4.9 (October 2013)

This is a bug-fix release addressing a number of issues across all components, also including:
* Ice compatibility issues
* new scripting sharing service
* new user help website
* new partner project pages.
The minimum system requirement is Java 1.6 (Java 1.5 is no longer supported).

A security vulnerability was identified and resolved, meaning that we strongly recommend all users upgrade their
OMERQO clients and servers.

68 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

4.4.8p1 (July 2013)

This is a patch release addressing a network connection problem in the clients introduced by a new version of Java.

4.4.8 (May 2013)

This is bug-fix release addressing two specific issues: a problem with the OMERO.insight client for Linux, and image
thumbnails not loading for Screens/Plates in Private/Read-Only groups in OMERO.web. You only need to upgrade if
you are an OMERO.insight user on Linux or you are using OMERO.web to view HCS data in Private or Read-Only
groups.

4.4.7 (April 2013)

This is a point release including several new features and fixes across all components. This includes improvements
in viewing of ‘Big’ tiled images, new permission features, new OMERO.web features, and several utility functions in
OMERO.matlab.

4.4.6 (February 2013)

This is bug-fix release addressing a number of issues across all components. This includes a major fix to repair the
C++ binding support for Ice 3.4. There has also been a potentially breaking update to the CLI.

4.4.5 (November 2012)

This is bug-fix release focusing on improvements to the OMERO clients. OMERO.web now supports “batch de-
annotation”, filtering of images by name and improved export to OME-TIFF and JPEG. OMERO.insight has fixes to
thumbnail selection and image importing and exporting.

4.4.4 (September 2012)

This is a bug-fix release addressing a number of issues across all components.
¢ OMERO.insight fixes include connection and configuration options and tagging on import.

* OMERO.web improvements include big image and ROI viewer fixes, improved admin and group functionality
and rendering/zooming fixes.

* OMERO.server now has improved LDAP support and VM and homebrew deployments as well as fixes for file
downloads above 2GB, permissions, memory leaks and JDKS.

4.4.3 (August 2012)

This is a critical security fix for:
* https://www.openmicroscopy.org/security/advisories/2012-SV 1-1dap-authentication

Anyone using OMERO 4.4.2 or earlier with LDAP authentication should immediately upgrade to 4.4.3.

1.3. Additional resources 69

https://www.openmicroscopy.org/security/advisories/2012-SV1-ldap-authentication

OMERO

4.4.2 (August 2012)

This release is a major bug fix for archiving files larger than 2 GB. If you do not archive files larger than 2 GB, you do
not need to upgrade your clients or your server. There is also a minor fix for an OMERO.imagej plugin security issue,
but it is only necessary to update the version of Bio-Formats that is installed in ImageJ.

4.4.1 (July 2012)

This is a minor release which fixes two import issues. See #9372 and #9377. If you are not using BigTIFF or
PerkinElmer .flex files, then you do not need to upgrade.

4.4.0 (July 2012)
This is a major release, which focuses on providing new functionality for controlling access to data, as well as significant
improvements in our client applications.

The major theme of 4.4.0 is what we refer to as “Permissions”, the system by which users control access to their data.
It is now possible to move data between groups, and much, much more.

We also added a few more things for users in 4.4.0, like:
* OMERO.insight webstart
* Importing from OMERO.insight is now complete
 Better integration of OMERO.insight with ImageJ
* A bottom-to-top reworking of the OMERO.web design
For developers and sysadmins, there are a few things as well:
* Support for Ice 3.4
* Removed support for PostgreSQL 8.3

Beta 4.3.4 (January 2012)

This is a point release is a security update to address an LDAP vulnerability.

Beta 4.3.3 (October 2011)

This point release is a short follow on to 4.3.2 to handle various issues found by users.

Beta 4.3.2 (September 2011)

This is a point release, focusing on fixes for OMERO.web, export, and documentation. A couple of LDAP fixes were
also added, following requests from the community. We also included something many of you have asked for some
time, OMERO on virtual machines.

70 Chapter 1. OMERO Overview and CLI User Documentation

https://trac.openmicroscopy.org/ome/ticket/9372
https://trac.openmicroscopy.org/ome/ticket/9377

OMERO

Beta 4.3.1 (July 2011)

This point release focuses on fixes for Big Images, OMERO.web and others.

Beta 4.3.0 (June 2011)
This is a major release, focusing on new functionality for large, tiled images, and significant improvements in our client
applications.

The major theme of 4.3.0 is what we refer to as “Big Images”, namely images with X,Y images larger that 4k x 4k. With
this release, OMERO’s server and Java and web clients support tiling and image pyramids. This means we have the
functionality you have probably seen in online map tools, ready for use in any image file format supported by OMERO
(and obviously Bio-Formats). This is especially important for digital pathology, and other uses of stitched imaging.

While the major focus of 4.3.0 was Big Images, there are a number of other new updates. For users, we have worked
hard to synchronise functionality and appearance across the OMERO clients. This includes viewing of ROIs in
OMERO.web. We are not done, but we have made a lot of progress. Moreover, data import is now MUCH faster
and available from within OMERO.insight.

Beta 4.2.2 (December 2010)

Fixes blocker reported using 4.2.1. Starting with this milestone, all tickets for the insight client are managed on Trac.

Beta 4.2.1 (November 2010)

This is a point release, focusing on fixes for delete functionality, and significant improvements in the way OMERO.web
production server is deployed.

Beta 4.2.0 (July 2010)

This release is a major step for OMERO, enabling a number of critical features for a fully functional data management
system:

User and Group Permissions and data visibility between users

updates to the OME SPW Model and improvements in HCS data visualisation

SSL connection between OMERO clients and server;

full scripting system, accessible from command line and within OMERO.insight, including Figure Export and
FLIM Analysis

ROIs generated in OMERO.insight stored on server

extended use of OMERO.Tables for analysis results

performance improvements for import and server-side import histories

revamped, fully functional OMERO.web web browser interface

upgrade of Backend libraries in OMERO.server

1.3. Additional resources 71

OMERO

Beta 4.1.1 (December 2009)

This release fixes a series of small bugs in our previous Beta 4.1 release.

Beta 4.1 (October 2009)

Improved support for metadata, especially for confocal microscopy; OMERO supports all of the file formats enabled
by Bio-Formats. Export to OME-TIFF and QuickTime/AVI/MPEG from OMERO. Various improvements to OMERO
clients to improve workflow and use.

This release introduces OMERO.qa - a feedback mechanism, to allow us to communicate more effectively with our
community. OMERO.qa supports uploading of problematic files, and tracking of responses to any user queries. More-
over, OMERO.qa includes a demo feature: in collaboration with Urban Liebel at Karlsruhe Institute of Technology, we
are providing demo accounts for OMERO. Use the Demo link at qa to contact us if you are interested in this.

For users who have had problems with memory-based crashes in OMERO.insight, the new OpenGL-based ImageViewer
may be of interest. Also, we are now taking advantage of our modeling of HCS data, and releasing our first clients
that support Flex, MIAS, and InCell 1000 file formats. OMERO.dropbox has been substantially extended, and now
supports all the file formats supported by OMERO.

Beta 4.0.1 (April 2009)

A quick patch release that fixes some bugs and adds some new functionality:
* Fixed Windows installation and updated docs.
* Bug fixes (scriptingEngine, importer).
* Fix lif import, add Li-Cor 2D (OMERO does gels!).
* API .dv and OME .ome.tiff now supported by OMERO.fs.
» Support negative pixel values in Rendering Engine.

* Archived images are now fully supported in OMERO.

OMERO.web merged with OmeroPy in distribution.

Beta 4.0 (March 2009)
This release consists of a major change in the remoting infrastructure, complete migration of existing OMERO clients
to the ICE framework, two new OMERO clients, and integration of OMERO.editor into OMERO.insight.
OMERO:.server updates:

» remove JBOSS, and switch all remoting to ICE

* improve session management, supporting creation of many thousands of session

* addition of an import service for server-side importing

* DB upgrades to support the metadata completion facilities

* substantial improvement to the interaction between the indexing engine and the rest of server.
OMERO.importer updates:

* migration to Blitz interface, giving much faster performance

» more efficient importing, complete metadata support for Zeiss LSM510, Leica LIF, Zeiss ZVI, Applied Precision
DV, and MetaMorph STK

72 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

* addition of command line importer for batch import
OMERO.insight updates:
* migration to Blitz interface, giving much faster performance
* updates to metadata display, include complete support for OME Data Model
* much expanded integration of protocol management via OMERO.editor, within OMERO.insight
* support for image delete
* refinement of Projection Interface

OMERO.web: all new browser-based client for OMERO. Enables sharing of images with colleagues with an account
on server.

OMERO.editor: a management tool for experimental protocols, now fully integrated with OMERO.insight, so that
protocols and experimental descriptions can be saved along with images and datasets. Includes a new parameters
function, so that protocols in traditional documents can be easily imported into OMERO. Supports, tables and .xls
files. Also runs as a standalone application.

OMERO.fs: a new OMERO client, that monitors a specific directory and enables automatic imports. In its first incar-
nation, has quite limited functionality, supporting automatic import of LSM510 files only.

Beta 3.2 (November 2008)

The final update in the Beta3.x series. A number of fixes:
* faster thumbnailing and better support for large numbers of thumbnails
 improved handling of Leica .lei and Zeiss .zvi files
* extended support for reading OMERO.editor files in OMERO.insight
* measurement tool fixes in OMERO.insight
* fixed memory problem in OMERO.insight on Windows
¢ fixed thumbnailing and session bugs on OMERO.server

* fixed DB upgrades for older PostgreSQL versions

Beta 3.0 (June 2008)

This release of OMERO is a major update of functionality. In OMERO.server, we have added support for StructuredAn-
notations a flexible data management facility that allows essentially any kind of accessory data to be linked to images
and experiments stored in OMERO. Alongside this, we provide an indexing engine, that provides a flexible searching
facility for essentially any text stored in an installation of OMERO.server. Finally, we are releasing our first examples
of clients that use the OMERO.blitz server, a flexible, distributed interface that supports a range of client environments.
One very exciting addition is OMERO matlab, a gateway that can be used to access OMERO from MATLAB®.

OMERO Beta3.0 includes a substantial reworking of our clients as well. OMERO.insight has been substantially up-
dated, with an updated interface to provide a more natural workflow and support for many different types of annota-
tions, through the StructuredAnnotations facility. The new search facilities are supported with smart user interfaces,
with auto-complete, etc. New file formats have been added to OMERO.importer, including support for OME-XML,
and an improved import history facility is now available. Finally, Beta3.0 includes the first release of our experimental
electronic notebook tool, OMERO.editor. This represents our recent efforts to capture as much metadata around an
experiment as possible.

1.3. Additional resources 73

OMERO

Beta 2.3.3 insight (April 2008)

A new Beta 2.3.3 OMERO.insight has been released, this adds rotation to ellipse figure, and new format for saving
intensity values.

Note: this version saves the ROIs in a format which is incompatible with previous saved ROIs.

Beta 2.3.1 importer (February 2008)

A new Beta 2.3.1 OMERO.importer has been released which includes a number of new formats: Zeiss AxioVision ZVI
(Zeiss Vision Image), Nikon NIS-Elements .ND2 , Olympus FluoView FV1000, ICS (Image Cytometry Standard),
PerkinElmer UltraView, and Jpeg2000.

The OMERO downloads for Beta 2.3 include a number of new options: a new import history feature, a Windows server
installation, and a new tagging feature for OMERO.insight.

Note: milestone:3.0-Beta2.3 and prior Mac OS X installers for OMERO.server do not work on Mac OS X Leopard
(10.5). Please follow the UNIX-based platform manual install instructions. Mac OS X installers for OMERO.insight
and OMERO.importer work just fine under Leopard and can be used.

Beta 2.3 (December 2007)

This is a patch release for OMERO.server to fix a memory problem. In OMERO.insight, updating of the tagging facility,
viewing of others’ rendering settings and support for server-side compression of images before transport to client.

Beta 2.2 (November 2007)

In this release we have updated OMERO.server to run a newer version of JBOSS and provided support for copying
display settings across a range of images. More new file formats. OMERO.insight has been updated to support copying
display settings across many images. Image Viewer has been substantially updated.

Beta 2.1 (August 2007)

This is a client-only release. OMERO.insight now supports basic ROI measurements and a series of new file formats
have been added. The OMERO downloads for Beta 2.0 have been simplified. OMERO.insight and OMERO.importer
have been combined into a single download file called ‘OMERO.clients’ and the user documentation is now included
inside of the server and client downloads.

Beta 2.0 (June 2007)

Note: this version will still work with the Beta 1 server release.

This major update provided our first support for multiple platforms via OMERO.Blitz. OMERO.insight now supports
viewing work of multiple users. Beta 2 is our first release of the Web2.0-like ‘tag’ system developed in collaboration
with Usable Image from Dundee University Computing department. This version addresses issues with using our tools
under Java 1.6

74 Chapter 1. OMERO Overview and CLI User Documentation

OMERO

Beta 1.1 (March 2007)

Patch release to fix time-out issues.

Beta 1 (January 2007)

The first public OMERO release, providing simple data management. Limited file format support (DV, STK, TIFF).
Simple data visualization and management.

Milestone M3 (November 2006)

Rendering and compression API and client-side import. Access control and permissions system. Importer based on
Bio-Formats.

Milestone M2 (July 2006)

The stateful rendering service is functional and all rendering code moved from Shoola Java client to the server. Also,
the stateless services (IQuery,IUpdate,IPojos) are frozen and testing and documentation is checked and solidified.

Milestone M1 (April 2006)

Contains minimal functionality needed to run Shoola Java client without Perl server to demonstrate acceleration of
metadata access. Application deployed on JBoss (https://www.jboss.org). No ACLs or permissions.

1.3. Additional resources 75

https://www.jboss.org

OMERO

76 Chapter 1. OMERO Overview and CLI User Documentation

CHAPTER
TWO

SYSTEM ADMINISTRATOR DOCUMENTATION

This documentation begins with information aimed at OS-level administrators and moves on to day-to-day management
of OMERO for facility managers (who may find it useful to read the Facility Managers help guide for an overview first).

2.1 Getting started

The OMERO server system provides storage and processing of image data which conforms to the OME Specification.
It can be run on commodity hardware to provide your own storage needs, or run site-wide to provide a large-scale
collaborative environment.

Although getting started with the server is relatively straightforward, it does require installing several software systems,
and more advanced usage including backups and integrated logins, needs a knowledgeable system administrator.

2.1.1 Usage

You may find the OMERO clients overview user guide useful before working through the installation and maintenance
guides provided in this section of the documentation.

2.1.2 Components
The server system is composed of several components, each of which runs in a separate process but is co-ordinated
centrally.

* OMERQO.blitz - the data server provides access to metadata stored in a relational database as well as the binary
image data on disk.

e OMERQO.dropbox - a filesystem watcher which notifies the server of newly uploaded or modified files and runs
a fully automatic import (designed as the first implementation of OMERO.fs referred to in the architecture dia-
gram).

* OMERQO.processor - a process-launcher for running user-defined scripts.
* OMERQO.tables - provide a way to efficiently store large, tabular results.
* OMERQ.indexer - keeps a full-text search index up-to-date for searching.

If you are interested in building components for the server, modifying an existing component, or just looking for more
background information, there is a section about the server within the Developer Documentation; the best starting point
is the OMERQO.server overview for developers.

77

https://help.openmicroscopy.org/facility-manager.html
https://docs.openmicroscopy.org/latest/ome-model/specifications/

OMERO

2.1.3 Background reading

What’s new for OMERO 5.6 for sysadmins

 Server configuration using self-signed certificates. We recommend to read OMERO.server upgrade.

 Version requirements has been updated to reflect changes in version support for 5.6.0 and tentative plans for 6.0.0.
The biggest change is of course the removal of support for Python 2.

* Installation walkthroughs now all suggest use of a virtualenv for installing Python packages. The upgrade guides
will help with the migration. See Migration to Python 3 for more information.

 See the previous What’s new page for more details.

For a full list of bug fixes and other improvements, see the CHANGELOGS.

Version requirements

Summary of changes for OMERO 5.6

We aim to support OMERO on the environments specified below, based on the availability of support by upstream
developers and operating system distributions. This applies over the lifetime of the 5.6 release and includes security
support. Support is limited to those environments on which OMERQO is routinely tested.

This page details the minimum version requirements for the current (5.6) release and also possible changes for the next
release.

It is intended to provide a roadmap in order that sysadmins may plan ahead and ensure that prerequisites are in place
for future upgrades.

Level Meaning

unsupported/new
supported/suboptimal
supported/optimal
supported/deprecated

unsupported/old

PO<OK

unsupported/broken

unsupported/misc

Please check the full support levels table for more info on each support level.

78 Chapter 2. System Administrator Documentation

https://docs.openmicroscopy.org/omero/5.5/sysadmins/whatsnew.html

OMERO

Bitness

Rationale: OMERO is tested on 64-bit systems only.

Bitness OMERO 5.4 OMERO 5.5 OMERO 5.6
32-bit v for Ice and native code [client] e e

64-bit ﬂ a 0

NGINX

nginx OMERO 5.4 OMEROS5.5 OMERO 5.6
1.8 v

1.10 a
1.12

1.14

ROLD
< < BSR4

1.16

Operating system support

The following subsections detail the versions of each operating system which are supported by both its upstream de-
velopers (for security and general updates) and by OME for OMERO building and server deployment.

UNIX (FreeBSD)

It only really makes sense to support the base toolchain for major releases and the Ports tree (which is continually
updated); these will be covered in the dependencies, below.

Linux (CentOS and RHEL)

General overview for RHEL and CentOS

Version Release date Supported unti OMERO 5.4 OMERO 5.5 OMERO 5.6 Details

6 Nov 2010 Nov 2020 v e e Reference
7 June 2014 June 2024 a o ‘Q Reference
8 May 2019 May 2029 Reference

2.1. Getting started 79

https://access.redhat.com/articles/3078
https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product
https://wiki.centos.org/About/Product

OMERO

RHEL/CentOS 7 is supported at present. Given the long life of enterprise releases, we intend to support only the latest
release at any given time or else it ties us into very old dependencies.

Linux (Ubuntu)

General overview

Version Release date Supported untii OMERO 5.4 OMERO 5.5 OMERO 5.6

14.04 LTS Apr2014 Apr 2019 0 6
16.04 LTS Apr 2016 Apr 2021 a a e

18.04 LTS Apr 2018 Apr 2028 o

20.04 LTS Apr 2020 Apr 2030

Only the LTS releases are supported due to resource limitations upon CI and testing. Only the last two LTS releases
are supported (being a bit more frequent than CentOS/RHEL). There is currently no CI testing for any version.

Microsoft Windows

Client support only. See blog post explanation

MacOS X

MacOS X is typically suited only to client use, not serious server deployment, although the server can be expected to
run on versions with current security support for testing purposes.

Dependencies

The following subsections detail the versions of each dependency needed by OMERO which are supported by both
its upstream developers (for security and general updates) and by OME for OMERO building and server and client
deployment.

Note: Versions in brackets are in development distributions and may change without notice.

80 Chapter 2. System Administrator Documentation

https://wiki.ubuntu.com/Releases
https://blog.openmicroscopy.org/tech-issues/future-plans/deployment/2016/03/22/windows-support/

OMERO

Package lists

Operating system Details

CentOS 6 /RHEL 6 EOL

CentOS 7/RHEL 7 Reference

Ubuntu Reference

Homebrew Reference

FreeBSD Ports Reference
PostgreSQL

General overview

OMERO support policies

Version Release date Supported unti OMERO 5.4 OMERO 5.5 OMERO 5.6
9.3 Sep 2013 Sep 2018 v Q 0
9.4 Dec 2014 Dec 2019 v 0
9.5 Jan 2016 Jan 2021 v
9.6 Sep 2016 Sep 2021 a v
10 Oct 2017 Nov 2022 0 v
11 Oct 2018 Nov 2023 0
12 Sep 2019 Nov 2024
13 Sep 2020 Nov 2025
14 Sep 2021 Nov 2026

Version provided by distribution

If no version is provided, a suitable repository is indicated.

2.1. Getting started

81

http://mirror.centos.org/centos/7/os/x86_64/Packages/
https://packages.ubuntu.com/search?keywords=foo&searchon=names&suite=all§ion=all
https://github.com/Homebrew/homebrew-core/tree/master/Formula
https://svnweb.freebsd.org/ports/head/
https://www.postgresql.org/support/versioning/

OMERO

Ver- CentOS/RHEL Ubuntu Home- FreeBSD

sion brew Ports

11 6 (postgresql), 7 (postgresql), 8 (post- 16.04, 18.04, 20.04 (post- Yes Yes
gresql) gresql)

12 6 (postgresql), 7 (postgresql), 8 (post- 16.04, 18.04, 20.04 (post- Yes Yes
gresql) gresql)

13 7 (postgresql) 16.04, 18.04, 20.04 (post- Yes Yes

gresql)
14 7 (postgresql) 18.04, 20.04 (postgresql) Yes Yes
Details Reference

The PostgreSQL project provides packages for supported platforms therefore distribution support is not necessary.

Python

OMERO support policies

Version Release date Supported unti OMERO 5.4 OMERO 5.5 OMERO 5.6 Details

2.6 Oct 2008 Oct 2013 9‘ 2 e 0 PEP 361
2.7 Jul 2010 Jan 2020 0 0 0 PEP 373
32 Feb 2011 Feb 2016 A A A PEP 392
3.3 Sep 2012 Sep 2017 A A A PEP 398
34 Mar 2014 Mar 2019 A A A PEP 429
35 Sep 2015 Sep 2020 A A PEP 478
3.6 Dec 2016 Dec 2021 A A 0 PEP 494
3.7 Jun 2018 Jun 2023 A A PEP 537

! For OMERO.web, Python 2.7 is the minimum supported version.
2 For OMERO.py and OMERO.server 5.4, Python 2.6 is the minimum supported version.

82

Chapter 2. System Administrator Documentation

https://yum.postgresql.org/11/redhat/rhel-6-x86_64/
https://yum.postgresql.org/11/redhat/rhel-7-x86_64/
https://yum.postgresql.org/11/redhat/rhel-8-x86_64/
https://yum.postgresql.org/11/redhat/rhel-8-x86_64/
https://apt.postgresql.org/pub/repos/apt/
https://apt.postgresql.org/pub/repos/apt/
https://yum.postgresql.org/12/redhat/rhel-6-x86_64/
https://yum.postgresql.org/12/redhat/rhel-7-x86_64/
https://yum.postgresql.org/12/redhat/rhel-8-x86_64/
https://yum.postgresql.org/12/redhat/rhel-8-x86_64/
https://apt.postgresql.org/pub/repos/apt/
https://apt.postgresql.org/pub/repos/apt/
https://yum.postgresql.org/13/redhat/rhel-7-x86_64/
https://apt.postgresql.org/pub/repos/apt/
https://apt.postgresql.org/pub/repos/apt/
https://yum.postgresql.org/14/redhat/rhel-7-x86_64/
https://apt.postgresql.org/pub/repos/apt/
https://packages.ubuntu.com/search?keywords=postgresql&searchon=names&suite=all§ion=all
https://www.postgresql.org/download/
https://www.python.org/dev/peps/pep-0361/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0392/
https://www.python.org/dev/peps/pep-0398/
https://www.python.org/dev/peps/pep-0429/
https://www.python.org/dev/peps/pep-0478/
https://www.python.org/dev/peps/pep-0494/
https://www.python.org/dev/peps/pep-0537/

OMERO

Version provided by distribution

Version CentOS/RHEL Ubuntu Homebrew FreeBSD Ports
2.6 6 10.04 N/A Yes

2.7 7 14.04, 16.04, 18.04 Yes Yes

3.2 N/A N/A N/A Yes

3.3 N/A N/A N/A Yes

3.4 7 (EPEL) 14.04 N/A Yes

3.5 N/A 16.04 N/A Yes

3.6 7 (EPEL) 18.04 Yes Yes

Details Python 2 Python 3

Python 2.7 support ends in 2020;
The Django version used by OMERO.web (1.11.26) is supported on Python 3.5, 3.6 and 3.7

Ice

General overview

OMERO support policies

Ver- Release Supported OMERO OMERO OMERO Details

sion date until 5.4 5.5 5.6

3.5 Mar 2013 Oct 2013 v 0 e 3.5.0,3.5.1

3.6 June 2015 TBA a a a 3.6.0 (3.6.1 A), 3.6.2, 3.6.3,
3.6.4,3.6.5.

3.7 July 2017 TBA 3.7.0,3.7.1,3.7.2,3.7.3.

Version provided by distribution

If no version is provided, a suitable repository is indicated.

Version CentOS/RHEL Ubuntu Homebrew FreeBSD Ports
3.5 6, 7 (zeroc) 14.04, 16.04 N/A N/A

3.6 6, 7 (zeroc) 14.04, 16.04 (zeroc) Yes Yes

3.7 7 (zeroc) 16.04, 18.04 (zeroc) Yes Yes

Details Reference

2.1. Getting started

83

https://dl.fedoraproject.org/pub/epel/7/x86_64/
https://dl.fedoraproject.org/pub/epel/7/x86_64/
https://packages.ubuntu.com/search?keywords=python2&searchon=names&suite=all§ion=all
https://packages.ubuntu.com/search?keywords=python3&searchon=names&suite=all§ion=all
https://zeroc.com/downloads/ice
https://forums.zeroc.com/discussion/6093/ice-3-5-0-released
https://forums.zeroc.com/discussion/6283/ice-3-5-1-released
https://forums.zeroc.com/discussion/6631/ice-3-6-0-and-ice-touch-3-6-0-released
https://forums.zeroc.com/discussion/45941/ice-3-6-0-and-ice-touch-3-6-1-released
https://forums.zeroc.com/discussion/46347/ice-ice-e-and-ice-touch-3-6-2-released
https://forums.zeroc.com/discussion/46475/ice-ice-e-and-ice-touch-3-6-3-released
https://forums.zeroc.com/discussion/46550/ice-ice-e-and-ice-touch-3-6-4-released
https://forums.zeroc.com/discussion/46700/ice-3-6-5-released
https://forums.zeroc.com/discussion/46530/ice-3-7-0-and-ice-touch-3-7-0-released
https://forums.zeroc.com/discussion/46620/ice-3-7-1-released
https://forums.zeroc.com/discussion/46670/ice-3-7-2-released
https://forums.zeroc.com/discussion/46704/ice-3-7-3-released
https://zeroc.com/downloads/ice/3.5/
https://zeroc.com/downloads/ice/3.6/
https://zeroc.com/downloads/ice/3.6/
https://zeroc.com/downloads/ice/3.7/
https://zeroc.com/downloads/ice/3.7/
https://packages.ubuntu.com/search?keywords=ice&searchon=names&suite=all§ion=all

OMERO

Java

General overview

OMERO support policies

Version Release date Supported unti OMERO 5.4 OMERO 5.5 OMERO 5.6 Details

7 Jul 2011 Apr 2015 v 6 e Reference
8 Mar 2014 Jun 2023 0 0 Reference
11 Sep 2018 Oct 2024 0 Reference
12 Sep 2018 Oct 2024
13 Sep 2018 Oct 2024

Version provided by distribution

Version CentOS/RHEL Ubuntu Homebrew FreeBSD Ports
7 6,7 14.04 N/A Yes

8 6,7 16.04, 18.04 N/A N/A

11 7 18.04 N/A Yes

Details Reference

Note that all distributions provide OpenJDK due to distribution restrictions by Oracle. Oracle Java may be used if
downloaded separately.

NGINX

General overview and roadmap

84 Chapter 2. System Administrator Documentation

https://www.oracle.com/technetwork/java/eol-135779.html
https://www.oracle.com/technetwork/java/eol-135779.html
https://access.redhat.com/articles/1299013
https://access.redhat.com/articles/1299013
https://packages.ubuntu.com/search?keywords=jdk&searchon=names&suite=all§ion=all
https://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
https://nginx.org/en/download.html
https://trac.nginx.org/nginx/roadmap

OMERO

OMERO support policies

Version Release date Supported unti OMERO 5.4 OMERO 5.5 OMERO 5.6
1.6 Apr 2014 Apr 2015 v Q 9
1.8 Apr 2015 Jan 2016 v 0
1.10 Apr 2016 Apr 2017 0 v
1.12 Apr 2017 Apr 2018 0
1.14 Apr 2018 Apr 2019 0
1.16 Apr 2019 TBA a

Version provided by distribution

If no version is provided, a suitable repository is indicated.

Version CentOS/RHEL Ubuntu

Homebrew FreeBSD Ports

1.12 7 (EPEL)
1.14 N/A
Details

14.04 (nginx)
16.04, 18.04 (nginx)

N/A
Yes
Reference

Yes
Yes

Support levels

The following table defines the symbols used throughout this page to describe the support status of a given component,
as it progresses from being new and not supported, to supported and tested on a routine basis, and to finally being old
and no longer supported nor tested.

2.1. Getting started

85

https://dl.fedoraproject.org/pub/epel/7/x86_64/
https://launchpad.net/~nginx/+archive/ubuntu/stable
https://launchpad.net/~nginx/+archive/ubuntu/stable
https://packages.ubuntu.com/search?keywords=nginx&searchon=names&suite=all§ion=all

OMERO

Leve Meaning Description

N

PO < O

unsup- New version not yet regularly tested and not officially supported; may or may not work (use at
ported/new own risk)

sup- Version which is tested, confirmed to work correctly, but may not offer optimal perfor-
ported/subop mance/experience

sup- Version which is regularly tested, confirmed to work correctly, recommended for optimal per-
ported/optim formance/experience

sup- Version which is less tested, expected to work correctly, but may not offer optimal perfor-
ported/depre« mance/experience; official support may be dropped in the next major OMERO release

unsup- Old version no longer tested and no longer officially supported; may or may not work (use at
ported/old own risk)

unsup- Known to not work

ported/broker

unsup- Not supported for some reason other than the above
ported/misc

System requirements

Hardware

OMERO.server

The system requirements for OMERO.server vary greatly depending on image size and number of users. The minimum
requirements should be easily exceeded by any recently bought hardware.

An OMERO:.server specification for between 25-50 users might be:

Quad-core Intel or AMD CPU
8 GB RAM
256 GB solid-state drive space for OMERO.server distribution

Hard drive space proportional to the image sizes expected (likely between 10 and 100 TB)

A specification for a server future-proofed for 3-4 years might be:

Intel Xeon Gold 6426 Processor

8x 32 GB DDR5-4800

2 x 2 TB SSD RAIDI for OS, PostgreSQL DB, scratch, log files, etc.

10 GbE connectivity to a separate fileshare for the OMERO binary repository

86

Chapter 2. System Administrator Documentation

OMERO

Storage

Hard drive space should be proportional to the image sizes expected. The drive space should permit proper locking,
which is often not the case with remotely mounted shares. See the binary repository section for more information.

RAM

RAM is not going to scale linearly, particularly with the way the JVM works. You are probably going to hit a hard
ceiling between 4 and 6 GB for JVM size (there is really not much point in having it larger anyway). With a large
database and aggressive PostgreSQL caching your RAM usage could be larger. Still, even for a large deployment,
it is not cost effective to use more than a few GBs of RAM for this purpose. Performance and monitoring provides
information about fine-tuning the server processes’ memory usage. In summary, depending on hardware layout 16, 24
or 32 GB of RAM would be ideal for your OMERO server. If you have a separate database server more than 16 GB of
RAM may not be of much benefit to you at all.

CPU

CPU is not something that an OMERO system is usually ever limited by. However, when it is limited, it is almost
always limited by single thread performance and not by the CPU core count. A 16 system core count should be more
than enough. You are not going to get a huge OMERO performance increase by, for example, throwing 24 cores at the
problem; a specification with a focus on higher single thread performance is going to give you better performance.

Further examples

Example production server set-ups provides details on some production set-ups in use by OMERO admins, along with
how many users and the amount of data they support, which you may find helpful.

OMERO.insight and OMERO.importer

The recommended client specification is:
* Intel or AMD CPU
* § GB RAM
* 120 GB solid-state drive (SSD)

Client configuration

When performing some operations the clients make use of temporary file storage and log directories. The table below
indicates the default values for each directory and the environment variables for overriding their locations:

Client directory Environment variable Default location (UNIX) Default location (Windows)

OMERO user directory OMERO_USERDIR $HOME/omero %HOMEPATH%\ omero

Temporary files OMERO_TMPDIR $HOME/omero/tmp %HOMEPATH%\ omero\ tmp

Local sessions OMERO_SESSIONDIR $HOME/omero/ %HOMEPATH%\omero\
sessions sessions

Log files $HOME/omero/log %HOMEPATHY%\omero\log

2.1. Getting started 87

https://www.cpubenchmark.net/singleThread.html#server-thread

OMERO

Note that setting OMERO_USERDIR will also change the default location for the temporary files and the local sessions.

If your home directory is stored on a network, possibly NFS mounted (or similar), then these temporary files are being
written and read over the network. This can slow access down.

See also:

Troubleshooting performance issues with the clients
Troubleshooting section about client performance issues on NFS

Software

Each component of the OMERO platform has a separate set of prerequisites. Where possible, we provide tips on getting
started with each of these technologies, but we can only provide free support within limits.

Package OMERO.server Java Python Ice PostgreSQL
OMERO.importer Required Required

OMERO.insight Required Required

OMERO:.server Required Required Required Required
OMERO.web Required Required Required

OMERO.py Required for some functionality Required Required

OMERO.cpp Required for some functionality Required

For full details on which versions of these are supported for OMERO 5.6 and how we intend to update these going
forward, see the Version requirements section.

Example production server set-ups
CellNanOs (Center of Cellular Nanoanalytics), University of Osnabriick

The OMERO server at CellNanOS serves a community of 75-100 users and 17 microscope stations (13 different sys-
tems), producing 180-1360 GB of data per day. It is hosted on RedHat 7.3 with data stored on an IBM GPFS file
system.

Hardware

e Dell R630 running RedHat 7.3, 32 cores, 128 GB RAM
« IBM GPFS storage, 6 TB SSDs, 178 TB SATA

Network infrastructure

1-10 GBit connection between microscope workstations and OMERO

88 Chapter 2. System Administrator Documentation

https://www.cellnanos.uni-osnabrueck.de/en/startpage.html

OMERO

Backup/archive

« IBMTSM 1.4 PB

¢ daily migration of new data to tape, archive on tape

Micron, Oxford

The OMERO server at Micron, Oxford houses two OMERO instances, the databases for both these instances, and a
single OMERO.web instance which serves them both. The second OMERO instance (Raff OMERO) originated from
another group’s private OMERO server, which is now managed by Micron, but there was no way to merge this data into
the main server. The main OMERO instance is configured to interface to a departmental LDAP server to authenticate
users and get initial authorization details.

OMERO Server

i . -

Main OMERO E
= \\ = OMERO Processor
m o
; Raff OMERO @ AN .
m I_
= =

OMERO web —

OMERO Datai

OMERO Datal in the diagram is a large filestore server which hosts all the image data. This is made available to the
OMERQO server itself via a Samba mount. This server has 36 TiB of space of which OMERO is using 16 TiB and Raff
OMERO is using 600 GiB. This is backed up to a tape robot.

OMERO Processorl consists of a 32 core, 128GiB RAM processing machine for doing image analysis. This is con-
nected on a completely private network to the OMERO server (to avoid issues with configuring OMERO.grid to be
secure) and runs scripts using OMERO.grid.

2.1. Getting started 89

https://micronoxford.com/

OMERO

Stats

¢ 90 users

* 40 groups

36 TiB of data storage space, of which 16.6 TiB is currently in use

¢ Performance statistics to come

IMCF, Biozentrum, University of Basel

The OMERO server at the IMCF / Biozentrum has around 650 users and uses more than 200 TB of data storage space,
with an average monthly increase of 10 TB (as of mid-2021). Itis run on CentOS 7 with data hosted on a native-mounted
GPFS file system.

Hardware

Remote storage consists of:
* native-mounted GPFS volume
Local storage consists of:
* 2 x 240 GB SATA SSD, RAID 1, OS and OMERO software
* 2 x 400 GB SATA SSD, RAID 1, Postgres DB
Computational resources:
¢ Lenovo System x3650 M5
¢ 12 Cores (2 x Intel Xeon E5-2643v3 3.4GHz)
* 256 GB RAM

Network infrastructure

* 40 Gbit/s Infiniband connection to GPFS storage

¢ 10 Gbit/s Ethernet connection to the client network

GReD Research Center, Clermont-Ferrand, France

The Genetics, Reproduction and Development Research Center has 65 users and currently uses 3 TB of storage, with
an average monthly increase of 90 GB. It is run on Debian Squeeze.

90 Chapter 2. System Administrator Documentation

https://www.biozentrum.unibas.ch/imcf
https://www.gred-clermont.fr

OMERO

Hardware

¢ 11 TB of storage spread over 8 local hard drives (2 TB), RAID 5
Computational resources:

¢ 1 Intel Xeon ES506 (4 physical cores)

* 8 GB of memory

Network infrastructure

The server is hosted inside the faculty of medicine where the network works at 100 Mbit/s. There are are 4 Gbit/s ports
on the server but only one is currently in use.

Image Data Resource

The Image Data Resource is an OMERO repository maintained by OME and deployed on the EMBL-EBI Embassy
Cloud which publishes reference imaging datasets. See the IDR deployment page for more information about the
architecture and the IDR studies page for the most up-to-date metrics.

Known limitations

Time zone

‘We do not recommend changing the time zone on your server. The server is currently set to use local time and changing
time zones will result in a mismatch between the original data import times stored in the server and the way the clients
report them.

Too many open file descriptors

Starting with OMERO 5, the server works directly from original files. At times, this requires a significant number of
open file handles. If you are having problems with large or frequent imports, are seeing “Too many open file descriptors”
or similar, you may need to increase the maximum number of open files per process. On Linux, this may be done by
setting the nofile limit in /etc/security/limits.conf, for example:

omero soft nofile 10000
omero hard nofile 12000

This permits the omero user to have 10000 open files per process, which may be increased up to a maximum of 12000
by the user. The username and limits will need adjusting for the specifics of your installation and usage requirements.
Note that these settings take effect only for new logins, so the server and the shell or environment the server is started
from will require restarting. Run ulimit -a as the user running OMERO to verify that the changes have taken effect.

2.1. Getting started 91

https://idr.openmicroscopy.org
https://idr.openmicroscopy.org/about/deployment
https://idr.openmicroscopy.org/about/studies

OMERO

Changing group permissions

If a group contains a projection made by one member from data owned by another user, you cannot make the group
into a private group.

File format support
Large images

When you import an image over a certain size, OMERO will generate a pyramid of lower resolution images if it
doesn’t already exist in the file. The threshold size is configurable using omero.pixeldata.max_plane_height and
omero.pixeldata.max_plane_width but set to 3192x3192 pixels by default. However, this process can be very
resource-intensive, depending on the size of the image as well as the image format and any data compression used, for
example see PixelData threads and pyramid generation issues.

Further, OMERO never generates pyramids for large floating-point pixel type images.
For large floating-point images, follow the recommended workflow to have the best experience (see below).

The OMERO pyramid generation process should be considered as deprecated and instead it is recommended that users
avoid these issues by converting their data to pyramidal OME-TIFF files before importing into OMERO. A number of
suitable tools are available such as bioformats2raw & raw2ometiff, bfconvert, Kheops, tifffile, aicsimageio, libvips and
QuPath.

Large floating-point images

Pyramids of image tiles are currently not generated for large floating-point pixel type images.
This primarily affects the following file formats:

e Gatan DM3

* MRC

* TIFF

However, in some cases, the floating-point images without pyramids can be viewed in OMERO clients at full resolution
(if the images are not too large).

This behaviour is configured by omero.pixeldata.max_plane_float_override. By default (True), OMERO
overrides the requirement for floating-point images above the omero.pixeldata.max_plane_height and omero.
pixeldata.max_plane_width to have pyramids, which allows them to be treated as regular images and possibly
viewed in the clients.

However, this also allows OMERO to attempt the calculation of minimal and maximal pixel intensity for these images
(normally disabled for large images because it is resource intensive to read every pixel value).

When the omero.pixeldata.max_plane_float_override is setto False on your server, OMERO will not attempt
to treat large floating-point images as if they are smaller images, so any large images without pre-generated pyramids
will not be viewable. However, this will protect the server from expensive attempts to calculate min/max pixel values.

It is recommended to pre-generate pyramidal OME-TIFF images as described above and to set omero.pixeldata.
max_plane_float_override to False on your server.

92 Chapter 2. System Administrator Documentation

https://forum.image.sc/t/pixeldata-threads-and-pyramid-generation-issues/49794
https://www.openmicroscopy.org/2018/11/29/ometiffpyramid.html
https://www.glencoesoftware.com/blog/2019/12/09/converting-whole-slide-images-to-OME-TIFF.html
https://docs.openmicroscopy.org/latest/bio-formats/users/comlinetools/conversion.html
https://github.com/BIOP/ijp-kheops
https://pypi.org/project/tifffile/
https://github.com/AllenCellModeling/aicsimageio
https://github.com/libvips/libvips
https://qupath.github.io/
https://docs.openmicroscopy.org/latest/ome-model/omero-pyramid/
https://docs.openmicroscopy.org/bio-formats/7.0.0/formats/gatan-digital-micrograph.html
https://docs.openmicroscopy.org/bio-formats/7.0.0/formats/mrc.html
https://docs.openmicroscopy.org/bio-formats/7.0.0/formats/tiff.html
https://docs.openmicroscopy.org/latest/ome-model/omero-pyramid/

OMERO

Import of OME-NGFF

The import of OME-NGFF is currently limited to the command-line (CLI) importer only.

Naming of OME-NGFF images in OMERO

The default naming of the OME-NGFF Images imported into OMERO is not intuitive at the moment. Use the omero
import -n option to achieve explicit naming.

Depth of scanning prior to import

The import might fail if the hierarchy of folders is exceeding the depth of scanning (default: 4). For formats using
deeper hierarchy of folders such as OME-NGFF use omero import --depth option to set the depth of scanning of
10 (or more if necessary).

Calculation of minima and maxima pixel values

If images are imported with one of the omero import --skip options skipping calculation of the global minima and
maxima pixel values, OMERO clients will use the extrema of the pixel type range by default. Users can adjust the
minima/maxima via the rendering settings. Recalculating minima and maxima pixel values after import is currently
not supported.

Flex data in OMERO.tables

If you are using the advanced configuration setting FlexReaderServerMaps for importing Flex data split between
multiple directories for use with OMERO.tables, you should not upgrade beyond 5.0.x. Neither the 5.1 line nor OMERO
5.2 support this functionality.

LDAP

Enabling synchronization of LDAP on user login may override admin actions carried out in the clients, see Synchro-
nizing LDAP on user login for details.

2.2 Installation

This section provides guidance on how to install and set up OMERO.server and OMERO.web on any of the sup-
ported UNIX and UNIX-like platforms. Following the installation links below you will find specific walkthroughs
provided for several systems, with detailed step-by-step instructions. Reading through the OMERO.server installation
and OMERO.web installation and maintenance pages first is recommended as this explains the entire process rather
than just being a series of commands.

2.2. Installation 93

https://ngff.openmicroscopy.org/latest/
https://ngff.openmicroscopy.org/latest/
https://ngff.openmicroscopy.org/latest/

OMERO

2.2.1 OMERO.server installation

This section covers the installation of OMERO.server on UNIX and UNIX-like platforms. This includes all BSD, Linux
and Mac OS X systems. Depending upon which platform you are using, you may find a more specific walk-through
listed below but we recommend you read through this page first as it explains the entire process rather than just being
a series of commands. The walk-throughs describs how to install the recommended versions, not all the supported
versions. This should be read in conjunction with Version requirements.

Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process.

Recommended:

OMERO.server installation on CentOS 7
Instructions for installing OMERO.server from scratch on CentOS 7 with Ice 3.6 and Python 3.6.

OMERQO.server installation on Debian 10
Instructions for installing OMERO.server from scratch on Debian 10 with Ice 3.6 and Python 3.7.

OMERO.server installation on Ubuntu 18.04
Instructions for installing OMERO.server from scratch on Ubuntu 18.04 with Ice 3.6 and Python 3.6.

Upcoming:
OMERQO.server installation on Ubuntu 20.04

Instructions for installing OMERO.server from scratch on Ubuntu 20.04 with Ice 3.6 and Python 3.8.
Development:

OMERQO.server installation on OS X with Homebrew
Instructions for installing and building OMERO.server on Mac OS X with dependencies installed using Home-
brew. It is aimed at developers since typically MacOS X is not suited for serious server deployment.

OMERO.server installation on CentOS 7

This is an example walkthrough for installing OMERO on CentOS 7, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.6. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web instal-
lation on CentOS 7 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough, we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/0OMERO

(continues on next page)

94 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR
export PGPASSWORD="$OMERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 11:

To install Java 11 and other dependencies:

yum -y install epel-release
yum -y install unzip wget bc

install Java
yum -y install java-1l-openjdk

install dependencies

yum -y install python3
yum -y install openssl

To install Ice 3.6.5:

curl -sL https://zeroc.com/download/Ice/3.6/el7/zeroc-ice3.6.repo > \
/etc/yum.repos.d/zeroc-ice3.6.repo

yum -y install glacier2 \
icebox \

icegrid \

icepatch2 \
libfreeze3.6-c++ \
libice3.6-c++ \
libicestorm3.6

To install PostgreSQL 11:

yum -y install https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-
—redhat-repo-latest.noarch.rpm
yum -y install postgresqlll-server postgresqlll

(continues on next page)

2.2. Installation 95

OMERO

(continued from previous page)

PGSETUP_INITDB_OPTIONS=--encoding=UTF8 /usr/pgsql-11/bin/postgresql-11-setup initdb

sed -i.bak -re 's/A(host.*)ident/\1md5/' /var/lib/pgsql/11/data/pg_hba.conf
systemctl start postgresql-11.service

systemctl enable postgresql-11.service

Note: if you are installing PostgreSQL in a Docker container, some of the commands above will not work. For more
details check step01_centos7_pg_deps.sh

Create a local omero-server system user, and a directory for the OMERO repository:

useradd -mr omero-server

Give a password to the omero user
e.g. passwd omero-server

chmod a+X ~omero-server

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psql -P pager=off -h localhost -U "$OMERO_DB_USER" -1

Installing OMERO.server

The following step is run as root.

We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip
$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-py-centos7/releases/
—download/®.2.1/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server

96 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-install/blob/develop/linux/step01_centos7_pg_deps.sh

OMERO

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -gq $SERVER -0 OMERO.server-ice36.zip

unzip -g OMERO.server®

Change the ownership of the OMERO.server directory and create a symlink:

change ownership of the folder
chown -R omero-server OMERO.server-*
In -s OMERO.server-*/ OMERO.server

Configuring OMERO.server

The following steps are run as the omero-server system user. (su - omero-server)

The variable OMERODIR set in settings. env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO. server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"

omero config set omero.db.name "$OMERO_DB_NAME"

omero config set omero.db.user "$OMERO_DB_USER"

omero config set omero.db.pass "$OMERO_DB_PASS"

omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"

psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop
client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

[omero certificates

Additionally on CentOS7, it is necessary to prevent the OMERO.server from advertising Diffie-Hellmann key exchange
to the clients. While this key-exchange algorithm is disabled in the OMERO side, if it is advertised it can lead to client
errors (e.g. omero-py>=>5.13.0), which will fail to connect to OMERO because of a dh-key error. To prevent this, it
might be necessary to remove Diffie-Hellmann key exchange from the IceSSL configuration. On CentOS7, this can be
done by running the following code:

[omero config set omero.glacier2.IceSSL.Ciphers=HIGH: !DH

See also Client Server SSL verification.

2.2. Installation 97

https://github.com/ome/omero-certificates

OMERO

Running OMERO.server

The following steps are run as the omero-server system user. (Su - omero-server)

OMERO should now be set up. To start the server run:

[omero admin start

Should you wish to start OMERO automatically, a systemd service file could be created. = An example
omero-server-systemd.service is available.

Copy the systemd. service file and configure the service:

cp omero-server-systemd.service /etc/systemd/system/omero-server.service
systemctl daemon-reload

systemctl enable omero-server.service

You can then start up the service.

Securing OMERO

The following steps are run as root.

If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on Ubuntu 18.04

This is an example walkthrough for installing OMERO on Ubuntu 18.04, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.6. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web installa-
tion on Ubuntu 18.04 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

98 Chapter 2. System Administrator Documentation

OMERO

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/0OMERO

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR
export PGPASSWORD="$OMERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 11:

To install Java 11 and other dependencies:

apt-get update
apt-get -y install unzip wget bc

to be installed if daily cron tasks are configured
apt-get -y install cron

install Java
apt-get update -q
apt-get install -y openjdk-11-jre

install dependencies

start-add-dependencies
apt-get update
apt-get -y install \
unzip \
wget \
python3 \
python3-venv
end-add-dependencies

To install Ice 3.6.5:

apt-get update && \
apt-get install -y -g \

(continues on next page)

2.2. Installation 99

OMERO

(continued from previous page)

build-essential \
db5.3-util \
libbz2-dev \
libdb++-dev \
libdb-dev \
libexpat-dev \
libmcpp-dev \
libssl-dev \

mcpp \
zliblg-dev

cd /tmp

wget -q https://github.com/ome/zeroc-ice-ubuntul804/releases/download/0.3.0/ice-3.6.5-0.
—3.0-ubuntul804-amd64.tar.gz

tar xf ice-3.6.5-0.3.0-ubuntul804-amd64.tar.gz

mv ice-3.6.5-0.3.0 ice-3.6.5

mv ice-3.6.5 /opt

echo /opt/ice-3.6.5/1ib/x86_64-1linux-gnu > /etc/ld.so.conf.d/ice-x86_64.conf

ldconfig

To make Ice available to all users and activate the virtual environment, set the following in /etc/profile:

Environment file for OMERO

export ICE_HOME=/opt/ice-3.6.5

export PATH="$ICE_HOME/bin:$PATH"

#Remove commented out export below if Ice is not set globally accessible
#export LD_LIBRARY_PATH="$ICE_HOME/1ib64:$ICE_HOME/lib:$LD_LIBRARY_PATH"
export SLICEPATH="$ICE_HOME/slice"

and add the virtual environment to PATH:

VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin: $PATH

To install PostgreSQL 11:

apt-get install -y gnupg

echo "deb http://apt.postgresql.org/pub/repos/apt/ bionic-pgdg main" > /etc/apt/sources.
—list.d/pgdg.list

wget --quiet -0 - https://www.postgresql.org/media/keys/ACCC4CF8.asc | apt-key add -
apt-get update

apt-get -y install postgresql-11

service postgresql start

Create a local omero-server system user, and a directory for the OMERO repository:

useradd -mr omero-server

Give a password to the omero user
e.g. passwd omero-server

chmod a+X ~omero-server

(continues on next page)

100 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psgl -P pager=off -h localhost -U "$OMERO_DB_USER" -1

Installing OMERO.server

The following step is run as root.

We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip
$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-ubuntul804/releases/
—.download/®.3.0/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -gq $SERVER -0 OMERO.server-ice36.zip

unzip -q OMERO.server®

Change the ownership of the OMERO.server directory and create a symlink:

change ownership of the folder
chown -R omero-server OMERO.server-*
In -s OMERO.server-+*/ OMERO.server

See also Client Server SSL verification.

2.2. Installation 101

OMERO

Configuring OMERO.server

The following steps are run as the omero-server system user. (Su - omero-server)

The variable OMERODIR set in settings.env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO. server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"

omero config set omero.db.name "$OMERO_DB_NAME"

omero config set omero.db.user "$OMERO_DB_USER"

omero config set omero.db.pass "$OMERO_DB_PASS"

omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"

psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop
client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

[omero certificates]

Running OMERO.server

The following steps are run as the omero-server system user. (Su - omero-server)

OMERO should now be set up. To start the server run:

[omero admin start J

Should you wish to start OMERO automatically, a init.d file could be created. An example omero-server-init.dis
available.

Copy the init.d file and configure the service:

cp omero-server-init.d /etc/init.d/omero-server
chmod a+x /etc/init.d/omero-server

update-rc.d -f omero-server remove
update-rc.d -f omero-server defaults 98 02

You can then start up the service by running:

[service omero-server start]

102 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-certificates

OMERO

Securing OMERO

The following steps are run as root.

If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on Ubuntu 20.04

This is an example walkthrough for installing OMERO on Ubuntu 20.04, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.8. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web installa-
tion on Ubuntu 20.04 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/0OMERO

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR
export PGPASSWORD="$0MERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin: $PATH

2.2. Installation 103

OMERO

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 12:

To install Java 11 and other dependencies:

apt-get update
apt-get -y install unzip wget bc

to be installed if daily cron tasks are configured
apt-get -y install cron

install Java

apt-get -y install software-properties-common
add-apt-repository ppa:openjdk-r/ppa

apt-get update -q

apt-get install -y openjdk-11-jre

install dependencies

start-add-dependencies
apt-get update
apt-get -y install \
unzip \
wget \
python3 \
python3-venv
end-add-dependencies

To install Ice 3.6.5:

apt-get update && \
apt-get install -y -g \
build-essential \
db5.3-util \
libbz2-dev \
libdb++-dev \
libdb-dev \
libexpat-dev \
libmcpp-dev \
libssl-dev \

mcpp \

zliblg-dev

cd /tmp

wget -q https://github.com/ome/zeroc-ice-ubuntu2004/releases/download/0.2.0/ice-3.6.5-0.
—2.0-ubuntu2004-amd64. tar.gz

tar xf ice-3.6.5-0.2.0-ubuntu2004-amd64.tar.gz

mv ice-3.6.5-0.2.0 ice-3.6.5

mv ice-3.6.5 /opt

echo /opt/ice-3.6.5/1ib64 > /etc/ld.so.conf.d/ice-x86_64.conf

ldconfig

104 Chapter 2. System Administrator Documentation

OMERO

To make Ice available to all users and activate the virtual environment, set the following in /etc/profile:

Environment file for OMERO

export ICE_HOME=/opt/ice-3.6.5

export PATH="$ICE_HOME/bin:$PATH"

#Remove commented out export below if Ice is not set globally accessible
#export LD_LIBRARY_PATH="$ICE_HOME/1ib64:$ICE_HOME/lib:$LD_LIBRARY_PATH"
export SLICEPATH="$ICE_HOME/slice"

and add the virtual environment to PATH:

VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin: $PATH

To install PostgreSQL 12:

apt-get update
apt-get -y install postgresql
service postgresql start

Create a local omero-server system user, and a directory for the OMERO repository:

useradd -mr omero-server

Give a password to the omero user
e.g. passwd omero-server

chmod a+X ~omero-server

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psql -P pager=off -h localhost -U "$OMERO_DB_USER" -1

Installing OMERO.server

The following step is run as root.

We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip

(continues on next page)

2.2. Installation 105

OMERO

(continued from previous page)

$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-ubuntu2004/releases/
—download/®.2.0/zeroc_ice-3.6.5-cp38-cp38-1linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -gq $SERVER -0 OMERO.server-ice36.zip

unzip -q OMERO.server*

Change the ownership of the OMERO.server directory and create a symlink:

change ownership of the folder
chown -R omero-server OMERO.server-*
In -s OMERO.server-*/ OMERO.server

Configuring OMERO.server

The following steps are run as the omero-server system user. (Su - omero-server)

The variable OMERODIR set in settings.env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO. server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"

omero config set omero.db.name "$OMERO_DB_NAME"

omero config set omero.db.user "$OMERO_DB_USER"

omero config set omero.db.pass "$OMERO_DB_PASS"

omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"

psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop
client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

[omero certificates

See also Client Server SSL verification.

106 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-certificates

OMERO

Running OMERO.server

The following steps are run as the omero-server system user. (Su - omero-server)

OMERO should now be set up. To start the server run:

[omero admin start J

Should you wish to start OMERO automatically, a init.d file could be created. An example omero-server-init.dis
available.

Copy the init.d file and configure the service:

cp omero-server-init.d /etc/init.d/omero-server
chmod a+x /etc/init.d/omero-server

update-rc.d -f omero-server remove
update-rc.d -f omero-server defaults 98 02

You can then start up the service by running:

[service omero-server start J

Securing OMERO

The following steps are run as root.

If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on Debian 10

This is an example walkthrough for installing OMERO on Debian 10, using a dedicated local system user. You can
use this as a guide for setting up your own test server. For production use you should also read the pages listed under
Optimizing Server Configuration. This guide will install Python 3.7. Since 5.6, a new OMERODIR variable is used, you
should first unset OMERO_HOME (if set) before beginning the installation process.

This guide describes how to install using the recommended versions for Java, Ice, PostgreSQL. This should be read
in conjunction with Version requirements.

This guide does not describe how to install OMERO.web. To deploy OMERO.web, please read OMERO.web installa-
tion on Debian 10 and IcePy 3.6.

These instructions assume your Linux distribution is configured with a UTF-8 locale (this is normally the default).

For convenience in this walkthrough we will use the omero-server system user and the main OMERO configura-
tion options have been defined as environment variables. When following this walkthrough you can either use your
own values, or alternatively create settings.env for example under /tmp e.g. /tmp/settings.env containing the
variables below and source it when required:

2.2. Installation 107

OMERO

OMERO_DB_USER=db_user
OMERO_DB_PASS=db_password
OMERO_DB_NAME=omero_database
OMERO_ROOT_PASS=omero_root_password
OMERO_DATA_DIR=/0OMERO

export OMERO_DB_USER OMERO_DB_PASS OMERO_DB_NAME OMERO_ROOT_PASS OMERO_DATA_DIR
export PGPASSWORD="$OMERO_DB_PASS"

Location of the OMERO.server
export OMERODIR=/opt/omero/server/OMERO.server

Location of the virtual environment for omero-py
VENV_SERVER=/opt/omero/server/venv3

export PATH=$VENV_SERVER/bin:$PATH

Installing prerequisites

The following steps are run as root.
Install Java 11, Ice 3.6.5 and PostgreSQL 11:

To install Java 11 and other dependencies:

apt-get update
apt-get -y install unzip wget bc

to be installed if daily cron tasks are configured
apt-get -y install cron

install Java
apt-get -y install default-jre

install dependencies
apt-get -y install\

python3 \
python3-venv

To install Ice 3.6.5:

apt-get update && \
apt-get install -y -q \
build-essential \
db5.3-util \

libbz2-dev \
libdb++-dev \

libdb-dev \
libexpat-dev \

(continues on next page)

108 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

libmcpp-dev \
libssl-dev \

mcpp \
zliblg-dev

cd /tmp

wget -q https://github.com/ome/zeroc-ice-debianl®/releases/download/0.1.0/ice-3.6.5-0.1.
—0-debianl®-amd64.tar.gz

tar xf ice-3.6.5-0.1.0-debianl0®-amd64.tar.gz

mv ice-3.6.5-0.1.0 ice-3.6.5

mv ice-3.6.5 /opt

echo /opt/ice-3.6.5/1ib/x86_64-1linux-gnu > /etc/ld.so.conf.d/ice-x86_64.conf

ldconfig

To make Ice available to all users, set the environment using omero-ice36.env:

[cat omero-ice36.env >> /etc/profile]

To install PostgreSQL 11:

apt-get install -y postgresql-11
service postgresqgl start

Create a local omero-server system user, and a directory for the OMERO repository:

useradd -mr omero-server

Give a password to the omero user
e.g. passwd omero-server

chmod a+X ~omero-server

mkdir -p "$OMERO_DATA_DIR"
chown omero-server "$OMERO_DATA_DIR"

Make the settings.env available to the omero-server system user by copying in to the user home directory. The file
will need to be sourced each time you switch user. You could add . ~/settings.env to the omero-server system
user bash profile.

Create a database user and initialize a new database for OMERO:

echo "CREATE USER $OMERO_DB_USER PASSWORD '$OMERO_DB_PASS'" | su - postgres -c psql
su - postgres -c "createdb -E UTF8 -O '$OMERO_DB_USER' '$OMERO_DB_NAME'"

psql -P pager=off -h localhost -U "$OMERO_DB_USER" -1

2.2. Installation 109

OMERO

Installing OMERO.server

The following step is run as root.

We recommend to create a virtual environment and install the Ice Python binding and the dependencies required by the
server using pip:

Create a virtual env
python3 -mvenv $VENV_SERVER

Upgrade pip
$VENV_SERVER/bin/pip install --upgrade pip

Install the Ice Python binding
$VENV_SERVER/bin/pip install https://github.com/ome/zeroc-ice-debianl®/releases/download/
—0.1.0/zeroc_ice-3.6.5-cp37-cp37m-linux_x86_64.whl

Install server dependencies
$VENV_SERVER/bin/pip install omero-server

Download and unzip OMERO.server:

cd /opt/omero/server
SERVER=https://downloads.openmicroscopy.org/omero/5.6/server-ice36.zip
wget -gq $SERVER -0 OMERO.server-ice36.zip

unzip -q OMERO.server*

Change the ownership of the OMERO.server directory and create a symlink:

change ownership of the folder
chown -R omero-server OMERO.server-*
In -s OMERO.server-+*/ OMERO.server

Configuring OMERO.server

The following steps are run as the omero-server system user.

The variable OMERODIR set in settings.env above must point to the location where OMERO.server is installed. e.g.
OMERODIR=/path_to_omero_server/OMERO.server.

Note that this script requires the same environment variables that were set earlier in settings.env, so you may need to
copy and/or source this file as the omero user.

Configure the database and the location of the data directory:

omero config set omero.data.dir "$OMERO_DATA_DIR"

omero config set omero.db.name "$OMERO_DB_NAME"

omero config set omero.db.user "$OMERO_DB_USER"

omero config set omero.db.pass "$OMERO_DB_PASS"

omero db script -f $OMERODIR/db.sql --password "$OMERO_ROOT_PASS"

psql -h localhost -U "$OMERO_DB_USER" "$OMERO_DB_NAME" < $OMERODIR/db.sql

Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1 have been
dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the Java Desktop

110 Chapter 2. System Administrator Documentation

OMERO

client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates after installing
the omero-certificates package.

[omero certificates J

See also Client Server SSL verification.

Running OMERO.server

The following steps are run as the omero-server system user.

OMERO should now be set up. To start the server run:

[omero admin start]

Should you wish to start OMERO automatically, a init.d file could be created. An example omero-server-init.dis
available.

Copy the init.d file and configure the service:

cp omero-server-init.d /etc/init.d/omero-server
chmod a+x /etc/init.d/omero-server

update-rc.d -f omero-server remove
update-rc.d -f omero-server defaults 98 02

You can then start up the service by running:

[service omero-server start]

Securing OMERO

The following steps are run as root.

If multiple users have access to the machine running OMERO you should restrict access to OMERO.server’s configu-
ration and runtime directories, and optionally the OMERO data directory:

chmod go-rwx $OMERODIR/etc $OMERODIR/var

Optionally restrict access to the OMERO data directory
chmod go-rwx "$OMERO_DATA_DIR"

OMERO.server installation on OS X with Homebrew

Overview

This walkthrough demonstrates how to install OMERO on a clean Mac OS X system (10.9 or later). Dependencies
are installed with Homebrew. The OMERO.server can be downloaded as a pre-built zip, or built from the source
code. It is aimed at developers since typically MacOS X is not suited for serious server deployment.

2.2. Installation 111

https://github.com/ome/omero-certificates

OMERO

Prerequisites
Xcode

Homebrew requires the latest version of Xcode. Install Xcode and the Command Line Tools for Xcode from the App
Store. If you have already installed it, make sure all the latest updates are installed.

Homebrew

Homebrew will install all packages under /usr/local. See also: Installation instructions on the Homebrew wiki.

Install Homebrew using the following command in terminal:

$ ruby -e "$(curl -£fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install)"

Java

Java may be installed using OpenJDK from AdoptOpenJDK. See Version requirements for supported versions.

After installing JDK, check your installation works by running:

$ java --version

openjdk 11.0.5 2019-10-15

Open]DK Runtime Environment AdoptOpen]DK (build 11.0.5+10)

Open]DK 64-Bit Server VM AdoptOpen]DK (build 11.0.5+10, mixed mode)

$ javac -version
javac 11.0.5

OS X Basics

In order to develop on OMERO, we recommend you ensure you have your Mac setup for development. The first step
to achieving this is to create a .bash_profile file in the root directory of your user folder.

To create a .bash_profile from terminal, if one does not already exist:

[$ touch ~/.bash_profile

To open your .bash_profile in a text editor, such as the built-in TextEdit app, use:

[$ open -a TextEdit.app ~/.bash_profile

Note: If you want changes to your .bash_profile to take effect without restarting OS X, run:

[$ source ~/.bash_profile

112 Chapter 2. System Administrator Documentation

https://github.com/Homebrew/brew/blob/master/docs/Installation.md
https://adoptopenjdk.net/

OMERO

Requirements

1. Open a command-line terminal and install git if not already present:

{$ brew install git]

2. Install PostgreSQL database server:

£$ brew install postgresql]

To ensure PostgreSQL uses UTF-8 encoding, open your bash profile and add the following environment variables:

export LANG=en_US.UTF-8
export LANGUAGE=en_US:en

3. Install NGINX:

£$ brew install nginx J

4. OMERO depends on Ice 3.6 and unfortunately does not run with the Ice version 3.7 or higher. To obtain Ice 3.6,
we need to add a fap to Homebrew:

$ brew tap zeroc-ice/tap
$ brew install zeroc-ice/tap/ice36

S

Note: If you already have a version of Ice that is not 3.6 installed, you can instruct Homebrew to unlink it
using *$ brew unlink ice’. You can then instruct Homebrew to link to Ice 3.6 using *$ brew link
ice@36°

Python

For developing with OMERO, or Python in general, we recommend the use of Virtualenv. Virtualenv allows develop-
ment of Python applications without having to worry about clashing third-party packages for different Python projects.

We will create 2 virtual environments below, ome for omero-py and another for omero-web (which also includes
omero-py). This allows more flexibility, but you can use just the omero-web virtual environment for everything if you
wish.

You can create virtual environments using either conda (preferred) OR venv.

Using conda (preferred)

1. Install Conda. See miniconda for more details.

2. Create virtual environments named omeropy:

[$ conda create -n omeropy -c conda-forge python=3.8 zeroc-ice omero-py]

3. Create virtual environments named omeroweb, activate it and install dependencies:

2.2. Installation 113

https://docs.conda.io/en/latest/miniconda.html

OMERO

$ conda create -n omeroweb -c conda-forge python=3.8 zeroc-ice omero-py
$ conda activate omeroweb
$ pip install "omero-web>=\ |version_web]|"

4. Activate the virtual environments:

[$ conda activate omeropy

]

5. You can now use the omero command. You will also need to ensure you are in the appropriate environment
when you install additional modules:

$ omero -h

Additional modules. For example:
$ pip install omero-metadata

Now go to the OMERQO installation section below.

OR using venv

1. install Python provided by Homebrew:

[$ brew install python

)

Follow the instructions from the brew Python install and set your system to use the Homebrew version of Python
rather than the Python shipped with OS X. Typically:

[$ brew link python

2. Check that Python is working and is version 3.7.x:

$ which python3
/usr/local/bin/python3

$ python3 --version
Python 3.7.4

3. Create a virtual environments for omero-py and/or omero-web using Python 3:

$ python3 -mvenv ~/Virtual/omeropy
$ python3 -mvenv ~/Virtual/omeroweb

4. Activate the Virtualenv environment(s) and install modules:

$ source ~/Virtual/omeropy/bin/activate
$ pip install "omero-py>=\ |version_py|"

In a different terminal:
$ source ~/Virtual/omeroweb/bin/activate
$ pip install "omero-web>=\ |version_web|"

L

5. You can now use the omero command in either virtual environment. You will also need to ensure you are in the
appropriate environment when you install additional modules:

114 Chapter 2. System Administrator Documentation

OMERO

$ omero -h

Additional modules. For example:
$ pip install omero-metadata

OMERQO installation
Pre-built server

1. Using the command-line terminal, prepare a place for your OMERO server to be downloaded to.
2. Find the current OMERO.server zip from the downloads page.

3. Download and extract the OMERO.server-x.x.x-ice36-bxx.zip.

Locally built server

1. Clone the source code from the project’s GitHub account to build locally:

[$ git clone --recursive https://github.com/ome/openmicroscopy

2. Navigate terminal into the openmicroscopy that was just created by performing the previous step:

£$ cd openmicroscopy

3. Execute the build script (this will take a few minutes, depending on how fast your Mac is)

[$ D onildiey

4. Once the build completes, the OMERO server build output will be located in openmicroscopy/dist.

See also:

Installing OMERO from source
Developer documentation page on how to check out to source code

Build System
Developer documentation page on how to build the OMERO.server

OMERO configuration

1. Open your .bash_profile in a text editor, such as the built-in TextEdit app:

£$ open -a TextEdit.app ~/.bash_profile

J

2. Add an environment variable OMERODIR to the .bash_profile which points to the location of the OMERO

executable:

Pre-built server...

export OMERODIR=/path/to/OMERO.server-x.x.x-ice36-bxx
...0R locally built server

export OMERODIR=/path/to/openmicroscopy/dist

2.2. Installation

https://downloads.openmicroscopy.org/latest/omero/artifacts/

OMERO

3. Using the command-line terminal, reload your .bash_profile using:

[$ source ~/.bash_profile J

Database

1. From a fresh command-line terminal, start the database server:

£$ pg_ctl -D /usr/local/var/postgres -1 /usr/local/var/postgres/server.log -w start J

2. To use OMERO, we need to first set up PostgreSQL. Open a command-line terminal and run the following
commands to create a user called db_user and a database called omero_database:

$ createuser -w -D -R -S db_user
$ createdb -E UTF8 -0 db_user omero_database

3. Activate the omeropy env:

$ conda activate omeropy
OR
$ source ~/Virtual/omeropy/bin/activate

4. Now set the OMERO configuration:

$ omero config set omero.db.name omero_database
$ omero config set omero.db.user db_user
$ omero config set omero.db.pass db_password

5. Create and run script to initialize the OMERO database:

$ omero db script --password omero -f - | psql -h localhost -U db_user omero_
—database

Note: (Optional) To make life easier, you can add an “alias’ to your .bash_profile to start and stop the Postgres
service:

alias startPg="'pg_ctl -D /usr/local/var/postgres -1 /usr/local/var/postgres/server.log -
—W start'

alias stopPg='pg_ctl -D /usr/local/var/postgres -1 /usr/local/var/postgres/server.log -w.
—stop'

Reload :file: .bash_profile' in OS X::

$ source ~/.bash_profile

116 Chapter 2. System Administrator Documentation

OMERO

Binary Repository

1. Create directory for OMERO to store its data:

$ mkdir /OMERO
$ omero config set omero.data.dir /OMERO

OMERO.web

1. Activate the omeroweb env:

$ conda activate omeroweb
OR
$ source ~/Virtual/omeroweb/bin/activate

2. Basic setup for OMERO using NGINX:

$ mv /usr/local/etc/nginx/nginx.conf /usr/local/etc/nginx/nginx.conf.orig
$ omero web config nginx-development > /usr/local/etc/nginx/nginx.conf

$ nginx -t

$ nginx

Note: The internal Django webserver can be used for evaluation and development. In this case please follow the
instructions under OMERO.web installation for developers.

Startup and shutdown

Since 5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. The variable OMERODIR must point to the location where OMERO.server is installed. e.g. OMERODIR=/
path_to_omero_server/OMERO. server.

If necessary start PostgreSQL database server:

[$ pg_ctl -D /usr/local/var/postgres -1 /usr/local/var/postgres/server.log -w start

Activate the omeropy env and start OMERO:

$ conda activate omeropy
OR
$ source ~/Virtual/omeropy/bin/activate

$ omero admin start

Activate the omeroweb env and start OMERO.web:

$ conda activate omeroweb

OR

$ source ~/Virtual/omeroweb/bin/activate
§ omero web start

Now connect to your OMERO.server using OMERO.insight or OMERO.web with the following credentials:

2.2. Installation 117

OMERO

U: root
P: omero

Activate the omeroweb env as above, and stop OMERO.web:

[$ omero web stop

Activate the omeropy env as above and stop OMERO:

[$ omero admin stop

Web configuration and maintenance

For more configuration options and maintenance advice for OMERO.web see OMERO.web installation and mainte-
nance.

Common issues
General considerations

If you run into problems with Homebrew, you can always run:

$ brew update
$ brew doctor

Also, please check the Homebrew Bug Fixing Checklist.

Below is a non-exhaustive list of errors/warnings specific to the OMERO installation. Some if not all of them could
possibly be avoided by removing any previous OMERO installation artifacts from your system.

Database

Check to make sure the database has been created and ‘UTF8’ encoding is used

[$ psql -h localhost -U db_user -1

This command should give similar output to the following:

List of databases
Name | Owner | Encoding | Collation | Ctype | Access privileges
———————————————— T e e T e e
omero_database | db_user | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
postgres | ome | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
template® | ome | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/ome +
| | | | | ome=CTc/ome
templatel | ome | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/ome +
| | | | | ome=CTc/ome
(4 rows)

118 Chapter 2. System Administrator Documentation

https://github.com/mxcl/homebrew/wiki/Bug-Fixing-Checklist

OMERO

PostgreSQL

If you encounter this error during installation of PostgreSQL:

[Error: You must "~ “brew link ossp-uuid' before postgresql can be installed]

try:

$ brew cleanup
$ brew link ossp-uuid

For recent versions of OS X (10.10 and above) some directories may be missing, preventing PostgreSQL from starting
up. In that case, it should be sufficient to reinitialize a PostgreSQL database cluster as:

$ rm -rf /usr/local/var/postgres
$ initdb -E UTF8 /usr/local/var/postgres

See also:

https://stackoverflow.com/questions/25970132/pg-tblspc-missing-after-installation-of-latest- version-of-os- x- yosemite-or-el

szip

If you encounter an MDS5 mismatch error similar to this:

==> Installing hdf5 dependency: szip

==> Downloading http://www.hdfgroup.org/ftp/lib-external/szip/2.1/src/szip-2.1.tar.gz
Already downloaded: /Library/Caches/Homebrew/szip-2.1.tar.gz

Error: MD5 mismatch

Expected: 902f831bcefb69c6b635374424acbead

Got: 0d6a55bb7787£f9££f8b9d608f23ef5beld

Archive: /Library/Caches/Homebrew/szip-2.1.tar.gz

(To retry an incomplete download, remove the file above.)

then manually remove the archived version located under /Library/Caches/Homebrew, since the maintainer may
have updated the file.

numexpr (and other Python packages)

If you encounter an issue related to numexpr complaining about NumPy having too low a version number, verify that
you have not previously installed any Python packages using pip. In the case where pip has been installed before
Homebrew, uninstall it:

[$ sudo pip uninstall pip J

and then try running python_deps. sh again. That should install pip via Homebrew and put the Python packages in
correct locations.

2.2. Installation 119

https://stackoverflow.com/questions/25970132/pg-tblspc-missing-after-installation-of-latest-version-of-os-x-yosemite-or-el

OMERO

Prerequisites

Installation will require:
* aclean, minimal operating system installation

* a “root” level account for which you know the password

Note: If you are unsure of what it means to have a “root” level account, or if you are generally having issues with the
various users/passwords described in this install guide, please see Which user account and password do I use where?.

The installation and configuration of the prerequisite applications are mostly outside the scope of this document. For
Linux distributions, use of the default package manager is recommended. For MacOS X, Homebrew is recommended.
This guide provides the package names to install for a number of contemporary systems. However, the names and
versions provided vary between releases. Please do check for similar packages if the one documented here is not
available for your system as it may be provided under an alternative name. “Debian” refers to Debian and derivative
distributions such as Ubuntu. “RedHat” refers to RedHat and related distributions such as CentOS, Fedora and Scientific
Linux.

 For Ubuntu you need to enable the universe repository. This should be enabled by default. If not enabled, it
may be enabled by editing /etc/apt/sources.list directly, in which case the entries may already exist but
are commented out, or by using Synaptic (10.04 and 10.10) or Ubuntu Software Center (11.04 onwards). Update
your package lists to ensure that you get the latest packages:

[$ sudo apt-get update }

Install packages by running:

[$ sudo apt-get install package

where package is the package name to install.

The following subsections cover the details for each package, in the order recommended for installation.

Java SE Runtime Environment (JRE)

If possible, install one of the following packages:

System Package

Debian openjdk-11-jre
Homebrew N/A (install Oracle Java)
RedHat java-11-openjdk

OMERO works with the OpenJDK JRE provided by most systems, or with Oracle Java. Version 8 or later is required.
Version 11 is recommended.

Your system may already provide a suitable JRE, in which case no extra steps are necessary. Linux distributions usually
provide OpenJDK, and older MacOS X versions have Java installed by default. Oracle Java is no longer provided by
BSD or Linux distributions for licensing reasons. If your system does not have Java available, for example on newer
MacOS X versions, or the provided version is too old, Oracle Java may be downloaded from the Oracle website.

120 Chapter 2. System Administrator Documentation

https://www.oracle.com/technetwork/java/javase/downloads/index.html

OMERO

Warning: Security

Installing Oracle Java outside the system’s package manager will leave your system without regular distribution-
supplied security updates, and so is not recommended.

To check which version of Java is currently available:

$ which java

/usr/bin/java

$ java -version

openjdk version "11.0.5" 2019-10-15

Open]DK Runtime Environment (build 11.0.5+10-post-Ubuntu-Qubuntul.118.04)

Open]DK 64-Bit Server VM (build 11.0.5+10-post-Ubuntu-Qubuntul.118.04, mixed mode,..
—sharing)

Python 3

Check you have Python (and check its version) by running:

$ python3 --version
Python 3.6.4

If possible, install the following packages:

System Package

Debian python3
Homebrew python3
RedHat python3

Ice

The Ice version may vary, depending upon the distribution version you are using. The Ice versions in currently supported
versions of Debian and Ubuntu are shown in the /ce of the Version requirements page.

Using version 3.6 of Ice is required. If your package manager provides Ice packages, using these is recommended
where possible. Distribution-provided packages often have additional bugfixes which are not present in the upstream
releases.

If needed, source and binary packages are available from ZeroC. The latest release is available from the ZeroC website.

Note: ZeroC Ice can always be built from source code for specific platforms if a binary package is not available.

Note: With Ice 3.6, the Python bindings are provided separately. If your package manager does not provide Ice python
packages, run pip install zeroc-ice to install the Ice Python bindings. See Using the Python Distribution for
further details.

2.2. Installation 121

https://wiki.ubuntu.com/Releases
https://zeroc.com
https://zeroc.com/downloads/ice
https://zeroc.com
https://doc.zeroc.com/display/Ice36/Using+the+Python+Distribution

OMERO

OMERO.scripts

If you wish to run the “Movie Maker” script, please install mencoder.

System Package

Debian mencoder

Homebrew mplayer

RedHat mencoder
Installation

Once the above prerequisites have been downloaded, installed and configured appropriately, the OMERO server itself
may be installed. You may wish to create a user account solely for the purpose of running the server, and switch to this
user for the next steps.

Server directory

Firstly, a directory needs to be created to contain the server. In this case ~/omero is used as an example:

[$ mkdir -p ~/omero J
Next, change into this directory:

[$ cd ~/omero]
OMERO.server

The release OMERO. server. zip is available from the OMERO downloads page. Download the version matching the
version of Ice installed on your system before continuing.

Installing a development version from source is also possible. See the Installing OMERQO from source section for further
details. This is not recommended unless you have a specific reason not to use a release version.

Once you have obtained the OMERO.server zip archive matching the version of Ice installed, unpack it:
$ unzip OMERO.server-5.6.9-ice36.zip

If your system does not provide an unzip command by default, install one of the following:

System Package

Debian unzip
Homebrew unzip
RedHat unzip

Optionally, give your OMERO software install a short name to save some typing later, to reflect what you set
OMERO_PREFIX to in the Environment variables section, below:

$ 1In -s OMERO.server-5.6.9-ice36 OMERO.server

122 Chapter 2. System Administrator Documentation

https://downloads.openmicroscopy.org/latest/omero5.5/

OMERO

This will also ease installation of newer versions of the server at a later date, by simply updating the link.

Note: Weaker ciphers like ADH are disabled by default in new versions of OpenSSL and TLS versions 1.0 and 1.1
have been dropped from JDK packages. In order to connect to an OMERO.server using any OMERO clients e.g. the
Java Desktop client, the OMERO.web client or the CLI and import data, you need to generate self-signed certificates
after installing the omero-certificates package.

Environment variables

If using distribution-provided packages such as Debian or RPM packages, or via the homebrew or macports package
manager, it should not be necessary to set any environment variables. However, if using third-party packages for any
required components, several variables may require setting in order for them to function correctly.

Please note that the precise details of these environment variables can change as new versions of software are released.

There are several methods for setting environment variables; which is most appropriate will depend upon how the
OMERO server is started. Options include:

/etc/security/pam_env.conf
Global environment set at login by PAM

/etc/profile or /etc/profile.d/omero
Global Bourne shell defaults (also used by derived shells such as bash and zsh)

~/.profile
User’s Bourne shell defaults (also used by derived shells)

/etc/bash.bashrc
Global bash defaults

~/.bashrc, ~/.bash_profile or ~/.bash_login
User’s bash configuration.

If OMERO is started as a service using an init script, a global setting should be preferred. If being started by hand
using a particular user, a user-specific configuration file may be more appropriate.

The following environment variables may be configured:

LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (MacOS X)
The Ice and PostgreSQL libraries must be on the library search path. If using the packages provided by your
distribution, this will already be the case. If using third-party binary distributions the 1ib (or 1ib64 if present
and using a 64-bit system) directory for each will require adding to the library search path.

OMERO_PREFIX
This is not strictly required, but may be set for convenience to point to the OMERO server installation, and is
used in this documentation as a shorthand for the installation path.

OMERO_TMPDIR
Directory used for temporary files. If the home directory of the user running the OMERO server is located on a
slow filesystem, such as NFS, this may be used to store the temporary files on fast local storage.

PATH
The search path must include the programs java, python, icegridnode and PostgreSQL commands such as
psql. If using the packages provided by your distribution, this will already be the case. If using third-party
binary distributions such as the ZeroC Ice package, Oracle Java, or PostgreSQL, the bin directory for each must
be added to the path. The OMERO bin directory may also be added to the search path ($OMERO_PREFIX/bin
if OMERO_PREFIX has been set).

2.2. Installation 123

https://github.com/ome/omero-certificates

OMERO

PYTHONPATH
The Ice python directory must be made available to python. If using the Ice packages provided by your distribu-
tion, this will already be the case. If using the ZeroC ice package, add the python directory to the python path.
For Ice 3.6, this should never be required.

OMERODIR
The path to the OMERO.server. This is a requirement for all CLI plugins using the Java server components
(admin, import, config, db...).

After making any needed changes, either source the corresponding file or log back in for them to take effect. Run env
to check them.

Creating a database

On most systems, a “postgres” user will be created which has admin privileges, while the UNIX root user itself does
not have admin privileges. Therefore it is necessary to either become the postgres user, or use sudo as shown below.

For the purposes of this guide, the following dummy data is used:

Username: db_user
Password: db_password
Database: omero_database

Warning: Security

These dummy values are examples only and should not be used. For alive or public server install these values should
be altered to reflect your security requirements—i.e. use your own choice of username and password instead. These
should not be the same username and/or password as your Linux/Mac root user!

You should also consider restricting access to your server machine, but that is outside the scope of this document.

» Create a non-superuser database user and record the name and password used. You will need to configure
OMERO to use this username and password later on.:

$ sudo -u postgres createuser -P -D -R -S db_user
Enter password for new role: # db_password
Enter it again: # db_password

¢ Create a database for OMERO to reside in:

£$ sudo -u postgres createdb -E UTF8 -0 db_user omero_database J

» Check to make sure the database has been created, you have PostgreSQL client authentication correctly set up
and the database is owned by the db_user user.

r$ psql -h localhost -U db_user -1
Password for user db_user:
List of databases
Name | Owner | Encoding
________________ o
omero_database | db_user | UTF8
postgres | postgres | UTF8
template® | postgres | UTF8
templatel | postgres | UTF8
(4 rows)

124 Chapter 2. System Administrator Documentation

OMERO

If you have problems, especially with the last step, take a look at OMERO.server and PostgreSQOL since the authenti-
cation mechanism is probably not properly configured.

Location for the your OMERO binary repository
¢ Create a directory for the OMERO binary data repository. /OMERO is the default location and should be used
unless you explicitly have a reason not to and know what you are doing.

e This is not where you want the OMERO application to be installed, it is a separate directory which the
OMERO:.server will use to store binary data.

* You can read more about the OMERQO binary repository.

[$ sudo mkdir /OMERO]

¢ Change the ownership of the directory. /OMERO must either be owned by the user starting the server (it is currently
owned by the system root) or that user must have permission to write to the directory. You can find out your
username and edit the correct permissions as follows:

$ whoami
omero
$ sudo chown -R omero /OMERO

Configuration

* You can view a parsed version of the configuration properties under Configuration properties glossary or parse
it yourself with omero config parse.

* Change any settings that are necessary using omero config, including the name and/or password for the
‘db_user’ database user you chose above or the database name if it is not “omero_database”. (Quotes are only
necessary if the value could be misinterpreted by the shell. See Forum post)

$ omero config set omero.db.name 'omero_database'
$ omero config set omero.db.user 'db_user'
$ omero config set omero.db.pass 'db_password'

You can also check the values that have been set using:

[$ omero config get]

* If you have chosen a non-standard OMERO binary repository location above, be sure to configure the omero.
data.dir property. For example, to use /srv/omero:

[$ omero config set omero.data.dir /srv/omero]

¢ Create the OMERO database initialization script. You will need to provide a password for the newly created
OMERO root user, either by using the --password argument or by entering it when prompted. Note that this
password is for the root user of the OMERO.server, and is not related to the root system user or a PostgreSQL
user role.

[$ omero db script --password omero_root_password }

2.2. Installation 125

https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=360#p922

OMERO

Using OMERO5.4 for version

Using 0 for patch

Using password from commandline
Saving to /home/omero/OMERO5.4__0.sql

Warning: Security

For illustrative purposes, the default password for the OMERO root user is shown as
omero_root_password. However, you should not use this default values for your installation, but
use your own choice of password instead. This should not be the same password as your Linux/Mac
root user or the database user!

* Initialize your database with the script.
$ psgql -h localhost -U db_user omero_database < OMERO5.4__0.sqgl
At this point you should see some output from PostgreSQL as it installs the schema for new OMERO database.

* Before starting the OMERO.server, run the OMERO diagnostics script to check that all of the settings are correct,
e.g.

[$ omero admin diagnostics]

* You can now start the server using:

$ omero admin start

Creating var/master

Initializing var/log

Creating var/registry

No descriptor given. Using etc/grid/default.xml

* If multiple users have access to the system running OMERO you should restrict access to the OMERO. server/
etc and OMERO. server/var directories, for example by changing the permissions on them:

[$ chmod 700 ~/omero/OMERO.server/etc ~/omero/OMERO.server/var]

You should also consider restricting access to the OMERO data repository. The required permissions will depend
on whether you are using Advanced import scenarios.

* Test that you can log in as “root”, either with the OMERO.insight client or on the command-line:

$ omero login

Server: [localhost]

Username: [root]

Password: # omero_root_password

You will be prompted for an OMERO username and password. Use the username and password set when running
omero db script.

« If your users are going to be importing many files in one go, for example multiple plates, you should make sure
you set the maximum number of open files to a sensible level (i.e. at least 8K for production systems, 16K for
bigger machines). See Too many open files for more information.

126 Chapter 2. System Administrator Documentation

OMERO

JVM memory settings
The OMERO server starts a number of Java services. Memory settings for these are calculated on a system-by-system

basis. An attempt has been made to have usable settings out of the box, but if you can afford to provide OMERO with
more memory, it will certainly improve your overall performance. See Memory configuration on how to tune the JVM.

Enabling movie creation from OMERO

OMERO has a facility to create AVI/MPEG Movies from images. The page OMERO.movie details how to enable it.
Post-installation items
Backup

One of your first steps after putting your OMERO server into production should be deciding on when and how you are
going to backup your database and binary data. Please do not omit this step.

Security

It is also now recommended that you read the Server security and firewalls page to get a good idea as to what you need
to do to get OMERO clients speaking to your newly installed OMERO.server in accordance with your institution or
company’s security policy.

Advanced configuration

Once you have the base server running, you may want to try enabling some of the advanced features such as
OMERO.dropbox or LDAP authentication. If you have Flex data, you may want to watch the HCS configuration
screencast. See Configuration properties glossary on how to get the most out of your server.

Troubleshooting

My OMERO install doesn’t work! What do I do now? Examine the Troubleshooting OMERO page and if all else fails
post a message to the forum mentioned on the Community support page. Especially the Server fails to start and Remote
clients cannot connect to OMERQO installation sections are a good starting point.

OMERO diagnostics

If you want help with your server installation, please include the output of the diagnostics command:

$ omero admin diagnostics

OMERO Diagnostics 5.6.9

Commands: java -version 11.0.5 (/usr/bin/java)

Commands: python -V 3.6.9 (/opt/omero/server/venv3/bin/python)
Commands: icegridnode --version 3.6.5 (/usr/bin/icegridnode)

Commands : icegridadmin --version 3.6.5 (/usr/bin/icegridadmin)

2.2. Installation 127

http://cvs.openmicroscopy.org.uk/snapshots/movies/omero-4-1/mov/FlexPreview4.1-configuration.mov
http://cvs.openmicroscopy.org.uk/snapshots/movies/omero-4-1/mov/FlexPreview4.1-configuration.mov
https://www.openmicroscopy.org/forums

OMERO

Commands: psql --version 11.6 (/usr/bin/psql)

Commands : openssl version 1.1.111 (/usr/bin/openssl)

Server: icegridnode running

Server: Blitz-0 active (pid = 30324, enabled)
Server: DropBox active (pid = 30343, enabled)
Server: FileServer active (pid = 30345, enabled)
Server: Indexer-0 active (pid = 30348, enabled)
Server: MonitorServer active (pid = 30351, enabled)
Server: OMERO.Glacier?2 active (pid = 30353, enabled)
Server: OMERO.IceStorm active (pid = 30376, enabled)
Server: PixelData-0 active (pid = 30393, enabled)
Server: Processor-0 active (pid = 30394, enabled)
Server: Tables-0 inactive (disabled)

Server: TestDropBox inactive (enabled)

OMERO: SSL port 4064

OMERO: TCP port 4063

Log dir: /opt/omero/server/OMERO.server/var/log exists

Log files: Blitz-0.log 22.8 KB errors=0 warnings=9
Log files: DropBox.log 1.3 KB errors=0 warnings=1
Log files: FileServer.log 114 B

Log files: 1Indexer-0.log 1.3 KB errors=0 warnings=>5
Log files: MonitorServer.log 882 B

Log files: PixelData-0.log 1.8 KB errors=0 warnings=4
Log files: Processor-0.log 592 B errors=0 warnings=1
Log files: Tables-0.log 841 B

Log files: TestDropBox.log n/a

Log files: master.err 34.4 KB errors=2 warnings=0
Log files: master.out empty

Log files: Total size 0.06 MB

Environment : OMERODIR=/opt/omero/server/OMERO. server
Environment : OMERO_HOME=(unset)

Environment :OMERO_NODE=(unset)

Environment :OMERO_MASTER=(unset)

Environment :OMERO_TEMPDIR=(unset)

Environment :PATH=/opt/omero/server/venv3/bin: /usr/local/bin: /usr/bin: /bin
Environment : ICE_HOME=(unset)

Environment:LD_LIBRARY_PATH=(unset)

Environment :DYLD_LIBRARY_PATH=(unset)

OMERO SSL port:4064
OMERO TCP port:4063

OMERO data dir: '/OMERO' Exists? True Is writable? True

OMERO temp dir: '/home/omero-server/tmp' Exists? True Is writable? True .
—~(Size: ®)

JVM settings: Blitz-${index} -Xmx621m -XX:MaxPermSize=512m,._
—-XX:+IgnoreUnrecognizedVMOptions

JVM settings: Indexer-${index} -Xmx414m -XX:MaxPermSize=512m,,

—-XX:+IgnoreUnrecognizedVMOptions

128 Chapter 2. System Administrator Documentation

OMERO

JVM settings: PixelData-${index} -Xmx621m -XX:MaxPermSize=512m,,
—-XX:+IgnoreUnrecognizedVMOptions
JVM settings: Repository-${index} -Xmx414m -XX:MaxPermSize=512m._

—-XX:+IgnoreUnrecognizedVMOptions

Update notification

Your OMERO.server installation will check for updates each time it is started from the Open Microscopy Environment
update server. If you wish to disable this functionality you should do so now as outlined on the OMERO upgrade checks

page.

2.2.2 OMERO.web installation and maintenance

OMERO.web is a Python 3 client of the OMERO platform that provides a web-based UI and JSON API. This sec-
tion provides links to detailed step-by-step walkthroughs describing how to install, customize, maintain and run
OMERO.web for several systems. OMERO.web is installed separately from the OMERO.server.

OMERO.web can be deployed with:
* WSGI using a WSGI capable web server such as NGINX and Gunicorn

¢ the built-in Django lightweight development server. This type of deployment should only be used for testing
purpose only; see the OMERO.web installation for developers page.

If you need help configuring your firewall rules, see Server security and firewalls for more details.

Depending upon which platform you are using, you may find a more specific walkthrough listed below. The guides
use the example of deploying OMERO.web with NGINX and Gunicorn. OMERO can automatically generate a con-
figuration file for your webserver. The location of the file will depend on your system, please refer to your webserver’s
manual. See in the section Customizing your OMERO.web installation in the various walkthroughs for more options.

Configuration

You will find in the various guides how to create the NGINX OMERO configuration file and the configuration steps
for the NGINX and Gunicorn. Advanced Gunicorn setups are also described to enable the download of binary data
and to handle multiple clients on a single worker thread switching context as necessary while streaming binary data
from OMERO.server. Depending on the traffic and scale of the repository you should configure connections and speed
limits on your server to avoid blocking resources.

Walkthroughs

Recommended:

OMERQO.web installation on CentOS 7 and IcePy 3.6
Instructions for installing OMERO.web from scratch on CentOS 7 with Ice 3.6.

OMERQO.web installation on Debian 10 and IcePy 3.6
Instructions for installing OMERO.web from scratch on Debian 10 with Ice 3.6.

OMERQO.web installation on Ubuntu 18.04 and IcePy 3.6
Instructions for installing OMERO.web from scratch on Ubuntu 18.04 with Ice 3.6.

Upcoming:

OMERO.web installation on Ubuntu 20.04 and IcePy 3.6
Instructions for installing OMERO.web from scratch on Ubuntu 20.04 with Ice 3.6.

2.2. Installation 129

https://wsgi.readthedocs.org
https://nginx.org/
https://docs.gunicorn.org/
https://nginx.org/
https://docs.gunicorn.org/

OMERO

OMERO.web installation on CentOS 7 and IcePy 3.6

Please first read OMERO.server installation on CentOS 7.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

yum -y install epel-release
yum -y install unzip
yum -y install python3

yum -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

yum -y install redis
systemctl enable redis.service

systemctl start redis.service

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

[python3 -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-py-centos7/
—releases/download/0.2.1/zeroc_ice-3.6.5-cp36-cp36m-1linux_x86_64.whl

130 Chapter 2. System Administrator Documentation

OMERO

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
—.web/omero-web/nginx.conf. tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

» Session engine:

* OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

* Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
—cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

» After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends.
—cache

2.2. Installation 131

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://redis.io/
https://github.com/jazzband/django-redis/

OMERO

» Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/'

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:
* Debug mode, see omero.web.debug.

» Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

* Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin: $PATH:

e omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

* omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example
to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
—.omero/web/omero-web/var/log/error.log"

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional

configuration of OMERO.web. See the django-cors-headers page for more details on the settings.
Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

132 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/settings.html
https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers

OMERO

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
—middleware.CorsMiddleware"}"'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.

—CorsPostCsrfMiddleware"}"'

omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]"'
or to allow all

omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
if [-f /etc/nginx/conf.d/default.conf]; then
mv /etc/nginx/conf.d/default.conf /etc/nginx/conf.d/default.disabled
fi
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

systemctl enable nginx

systemctl start nginx

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
—include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

Running OMERO.web

Since OMERO.web 5.16.0, the package whitenoise is installed by default.
Optional: Install Django Redis:

[/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0"

The following steps are run as the omero-web system user.

Optional: Configure the cache:

2.2. Installation 133

https://nginx.org/en/docs/http/configuring_https_servers.html
https://github.com/jazzband/django-redis

OMERO

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
", "LOCATION": "redis://127.0.0.1:6379/0"}}"'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": ®, "class": "whitenoise.
—middleware.WhiteNoiseMiddleware"}'

omero web start
Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a systemd.service file could be created. See below an example file
omero-web-systemd.service:

[Unit]

Description=0MERO.web

Not mandatory, NGINX may be running on a different server
Requires=nginx.service

After=network.service

[Service]

User=omero-web

Type=forking
PIDFile=/opt/omero/web/omero-web/var/django.pid
Restart=no

RestartSec=10
Environment="PATH=/opt/omero/web/venv3/bin: /usr/local/bin: /usr/bin:/bin:/usr/local/sbin:/
—usr/sbin"
Environment="0OMERODIR=/opt/omero/web/omero-web"
ExecStart=/opt/omero/web/venv3/bin/omero web start
ExecStop=/opt/omero/web/venv3/bin/omero web stop

[Install]
WantedBy-multi-user.target

Copy the systemd.service file, then enable and start the service:

cp omero-web-systemd.service /etc/systemd/system/omero-web.service
systemctl daemon-reload
systemctl enable omero-web.service

systemctl stop omero-web.service

(continues on next page)

134 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

systemctl start omero-web.service

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:
¢ Session cookies omero.web.session_expire_at_browser_close:

— A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

[omero config set omero.web.session_expire_at_browser_close "True"]

— The age of session cookies, in seconds. The default value is 86400:

[omero config set omero.web.session_cookie_age 86400]

¢ Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

[omero web clearsessions]

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb. log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

2.2. Installation 135

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install https://pypi.org/project/futures:

[/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

[/opt/omero/web/venv3/bin/pip install 'gevent>=0.13'

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

SELinux

The following steps are run as root.

If you are running a system with SELinux enabled and are unable to access OMERO.web you may need to adjust the
security policy:

if [$(getenforce) != Disabled]; then

yum -y install policycoreutils-python

(continues on next page)

136 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/
https://docs.gunicorn.org/en/stable/settings.html#worker-connections
https://wiki.centos.org/HowTos/SELinux

OMERO

(continued from previous page)

setsebool -P httpd_read_user_content 1
setsebool -P httpd_enable_homedirs 1
semanage port -a -t http_port_t -p tcp 4080

fi

OMERO.web installation on Ubuntu 18.04 and IcePy 3.6

Please first read OMERO.server installation on Ubuntu 18.04.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

2.2. Installation 137

OMERO

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

[pythonS -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-ubuntul8®4/
—.releases/download/0.2.0/zeroc_ice-3.6.5-cp36-cp36m-linux_x86_64.whl

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
—.web/omero-web/nginx.conf. tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

» Session engine:

* OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

138 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions

OMERO

» Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
—cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

» After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends. J
—.cache

» Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/’

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:
* Debug mode, see omero.web.debug.

» Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

* Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin: $PATH:

e omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

* omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example

to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
—.omero/web/omero-web/var/log/error.log"

2.2,

Installation 139

https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.gunicorn.org/en/stable/settings.html

OMERO

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional

configuration of OMEROQO.web. See the django-cors-headers page for more details on the settings.
Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
—middleware.CorsMiddleware"}"'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.

—CorsPostCsrfMiddleware"}"'

omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]"’
or to allow all

omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
—include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

140 Chapter 2. System Administrator Documentation

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html

OMERO

Running OMERO.web

Since OMERO.web 5.16.0, the package whitenoise is installed by default.
Optional: Install Django Redis:

[/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0"

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
", "LOCATION": "redis://127.0.0.1:6379/0"}}"'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": ®, "class": "whitenoise.
—middleware.WhiteNoiseMiddleware"}"'

omero web start
Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash

#

/etc/init.d/omero-web

Subsystem file for "omero" web

#

BEGIN INIT INFO

Provides: omero-web

Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2345

Default-Stop: 016

Short-Description: OMERO.web

END INIT INFO

#

Redhat

chkconfig: - 98 02
description: init file for OMERO.web
#it#

RETVAL=0

(continues on next page)

2.2. Installation 141

https://github.com/jazzband/django-redis

OMERO

(continued from previous page)

prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER: -omero-web}
OMERO=/o0pt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR: -/opt/omero/web/venv3}

start() {

echo -n $"Starting $prog:"

su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web.,
—start" &> /dev/null && echo -n ' OMERO.web'

sleep 5
RETVAL=$?
["$RETVAL" = 0]
echo
}
stop(Q {

echo -n $"Stopping $prog:
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web.,
—stop" &> /dev/null && echo -n ' OMERO.web'

RETVAL=$?
["$RETVAL" = 0]
echo
}
status() {

echo -n $"Status $prog:"

su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web..
—status"

RETVAL=$7?
3

case "$1" in
start)
start
i
stop)
stop
restart)
stop
start
33
status)
status

echo $"Usage: $0 {start|stop|restart|status}"

(continues on next page)

142 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)
RETVAL=1
esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:
¢ Session cookies omero.web.session_expire_at_browser_close:

— A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

[omero config set omero.web.session_expire_at_browser_close "True" }

— The age of session cookies, in seconds. The default value is 86400:

{omero config set omero.web.session_cookie_age 86400 J

¢ Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

[omero web clearsessions }

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

2.2. Installation 143

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb. log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install https://pypi.org/project/futures:

[/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

[/opt/omero/web/venvS/bin/pip install 'gevent>=0.13'

144 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/

OMERO

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

OMERO.web installation on Ubuntu 20.04 and IcePy 3.6

Please first read OMERO.server installation on Ubuntu 20.04.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.8 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update

apt-get -y install unzip
apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

2.2. Installation 145

https://docs.gunicorn.org/en/stable/settings.html#worker-connections

OMERO

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

[pythonS -mvenv /opt/omero/web/venv3

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-ubuntu2004/
—.releases/download/0.2.0/zeroc_ice-3.6.5-cp38-cp38-linux_x86_64.whl

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
—.web/omero-web/nginx.conf. tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

» Session engine:

* OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

146 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions

OMERO

» Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
—cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

» After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends. J
—.cache

» Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/’

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:
* Debug mode, see omero.web.debug.

» Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

* Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin: $PATH:

e omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

* omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example

to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
—.omero/web/omero-web/var/log/error.log"

2.2,

Installation 147

https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.gunicorn.org/en/stable/settings.html

OMERO

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional

configuration of OMEROQO.web. See the django-cors-headers page for more details on the settings.
Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
—middleware.CorsMiddleware"}"'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.

—CorsPostCsrfMiddleware"}"'

omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]"’
or to allow all

omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
—include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

148 Chapter 2. System Administrator Documentation

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html

OMERO

Running OMERO.web

Since OMERO.web 5.16.0, the package whitenoise is installed by default.
Optional: Install Django Redis:

[/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0"

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
", "LOCATION": "redis://127.0.0.1:6379/0"}}"'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": ®, "class": "whitenoise.
—middleware.WhiteNoiseMiddleware"}"'

omero web start
Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash

#

/etc/init.d/omero-web

Subsystem file for "omero" web

#

BEGIN INIT INFO

Provides: omero-web

Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2345

Default-Stop: 016

Short-Description: OMERO.web

END INIT INFO

#

Redhat

chkconfig: - 98 02
description: init file for OMERO.web
#it#

RETVAL=0

(continues on next page)

2.2. Installation 149

https://github.com/jazzband/django-redis

OMERO

(continued from previous page)

prog=omero-web

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER: -omero-web}
OMERO=/o0pt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR: -/opt/omero/web/venv3}

start() {

echo -n $"Starting $prog:"

su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web.,
—start" &> /dev/null && echo -n ' OMERO.web'

sleep 5
RETVAL=$?
["$RETVAL" = 0]
echo
}
stop(Q {

echo -n $"Stopping $prog:
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web.,
—stop" &> /dev/null && echo -n ' OMERO.web'

RETVAL=$?
["$RETVAL" = 0]
echo
}
status() {

echo -n $"Status $prog:"

su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web..
—status"

RETVAL=$7?
3

case "$1" in
start)
start
i
stop)
stop
restart)
stop
start
33
status)
status

echo $"Usage: $0 {start|stop|restart|status}"

(continues on next page)

150 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)
RETVAL=1
esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

cron
service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:
¢ Session cookies omero.web.session_expire_at_browser_close:

— A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

[omero config set omero.web.session_expire_at_browser_close "True" }

— The age of session cookies, in seconds. The default value is 86400:

{omero config set omero.web.session_cookie_age 86400 J

¢ Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

[omero web clearsessions }

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

2.2. Installation 151

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb. log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install https://pypi.org/project/futures:

[/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

[/opt/omero/web/venvS/bin/pip install 'gevent>=0.13'

152 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/

OMERO

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

OMERO.web installation on Debian 10 and IcePy 3.6

Please first read OMERO.server installation on Debian 10.

This is an example walkthrough for installing OMERO.web in a virtual environment using a dedicated system user.
Installing OMERO.web in a virtual environment is the preferred way. For convenience in this walkthrough, we will use
the omero-web system user and define the main OMERO.web configuration options as environment variables. Since
5.6, a new OMERODIR variable is used, you should first unset OMERO_HOME (if set) before beginning the installation
process. By default, Python 3.6 is installed.

The following steps are run as root.

If required, first create a local system user omero-web and create directory:

useradd -m omero-web

mkdir -p /opt/omero/web/omero-web/etc/grid
chown -R omero-web /opt/omero/web/omero-web

Installing prerequisites

The following steps are run as root.

Install dependencies:

apt-get update
apt-get -y install unzip

apt-get -y install python3
apt-get -y install python3-venv

apt-get -y install nginx

Optional: if you wish to use the Redis cache, install Redis:

apt-get -y install redis-server

service redis-server start

2.2. Installation 153

https://docs.gunicorn.org/en/stable/settings.html#worker-connections

OMERO

Creating a virtual environment

The following steps are run as root.

Create the virtual environment. This is the recommended way to install OMERO.web:

[pythonS -mvenv /opt/omero/web/venv3 J

Install ZeroC IcePy 3.6:

/opt/omero/web/venv3/bin/pip install https://github.com/ome/zeroc-ice-debianl®/releases/
—download/0.1.0/zeroc_ice-3.6.5-cp37-cp37m-linux_x86_64.whl

Upgrade pip and install OMERO.web:

/opt/omero/web/venv3/bin/pip install --upgrade pip
/opt/omero/web/venv3/bin/pip install omero-web

Installing OMERO.web apps

A number of apps are available to add functionality to OMERO.web, such as OMERO.figure and OMERO.iviewer.
See the main website for a list of released apps. These apps are optional and can be installed, as the root user, via pip
to your OMERO.web virtual environment and configured as the omero-web system user, at any time.

Configuring OMERO.web

The following steps are run as the omero-web system user.

For convenience the main OMERO.web configuration options have been defined as environment variables. You can
either use your own values, or alternatively use the following ones:

export WEBSESSION=True
export OMERODIR=/opt/omero/web/omero-web

Configure OMERO.web and create the NGINX OMERO configuration file to be included in a system-wide NGINX
configuration by redirecting the output of the command omero web config nginx below into a file. If an attempt
is made to access OMERO.web whilst it is not running, the generated NGINX configuration file will automatically
display a maintenance page:

export PATH=/opt/omero/web/venv3/bin:$PATH

omero web config nginx --http "${WEBPORT}" --servername "${WEBSERVER_NAME}" > /opt/omero/
—.web/omero-web/nginx.conf. tmp

OMERO.web offers a number of configuration options. The configuration changes will not be applied until Gunicorn is
restarted using omero web restart. The Gunicorn workers are managed separately from other OMERO processes.
You can check their status or stop them using omero web status or omero web stop.

» Session engine:

* OMERO.web offers alternative session backends to automatically delete stale data using the cache
session store backend, see Django cached session documentation for more details.

154 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/omero/figure/
https://www.openmicroscopy.org/omero/iviewer/
https://www.openmicroscopy.org/omero/apps/
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions

OMERO

» Redis requires django-redis in order to be used with OMERO.web. We assume that Redis has already
been installed. To configure the cache, run:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.
—cache.
RedisCache", "LOCATION": "redis://127.0.0.1:6379/0"}}'

» After installing all the cache prerequisites set the following:

omero config set omero.web.session_engine django.contrib.sessions.backends. J
—.cache

» Use a prefix:

By default OMERO.web expects to be run from the root URL of the webserver. This can be changed
by setting omero.web.prefix and omero.web.static_url. For example, to make OMERO.web
appear at http://example.org/omero/:

omero config set omero.web.prefix '/omero'
omero config set omero.web.static_url '/omero/static/’

and regenerate your webserver configuration.

All configuration options can be found on various sections of Web developers documentation. For the full
list, refer to Web properties.

The most popular configuration options include:
* Debug mode, see omero.web.debug.

» Customizing OMERO clients e.g. to add your own logo to the login page (omero.web.login_logo)
or use an index page as an alternative landing page for users (omero.web.index_template). See
OMERO.web UI customization for further information.

* Enabling a public user see Publishing data using OMERO.web.

Configuring Gunicorn

The following steps are run as the omero-web system user.

Additional settings can be configured by changing the properties below. Before changing the properties, run export
PATH=/opt/omero/web/venv3/bin: $PATH:

e omero.web.wsgi_workers to (2 x NUM_CORES) + 1

Note: Do not scale the number of workers to the number of clients you expect to have. OMERO.web should
only need 4-12 worker processes to handle many requests per second.

* omero.web.wsgi_args Additional arguments. For more details check Gunicorn Documentation. For example

to enable debugging, run the following command:

omero config set omero.web.wsgi_args -- "--log-level=DEBUG --error-logfile=/opt/
—.omero/web/omero-web/var/log/error.log"

2.2,

Installation 155

https://redis.io/
https://github.com/jazzband/django-redis/
https://docs.gunicorn.org/en/stable/settings.html

OMERO

Setting up CORS

The following steps are run as root.

Cross Origin Resource Sharing allows web applications hosted at other origins to access resources from your
OMERO.web installation. This can be achieved using the django-cors-headers app with additional

configuration of OMEROQO.web. See the django-cors-headers page for more details on the settings.
Since OMERO.web 5.14.0, the package django-cors-headers is installed by default.

The following steps are run as the omero-web system user.

Configure CORS. An index is used to specify the ordering of middleware classes. It is important to add the
CorsMiddleware as the first class and CorsPostCsrfMiddleware as the last. You can specify allowed origins in a
whitelist, or allow all, for example:

omero config append omero.web.middleware '{"index": 0.5, "class": "corsheaders.
—middleware.CorsMiddleware"}"'
omero config append omero.web.middleware '{"index": 10, "class": "corsheaders.middleware.

—CorsPostCsrfMiddleware"}"'

omero config set omero.web.cors_origin_whitelist '["https://hostname.example.com"]"’
or to allow all

omero config set omero.web.cors_origin_allow_all True

Configuring NGINX

The following steps are run as root.

Copy the generated configuration file into the NGINX configuration directory, disable the default configuration and
start NGINX:

sed -i.bak -re 's/(default_server.*)/; #\1/' /etc/nginx/nginx.conf
rm /etc/nginx/sites-enabled/default
cp /opt/omero/web/omero-web/nginx.conf.tmp /etc/nginx/conf.d/omeroweb.conf

service nginx start

For production servers you may need to add additional directives to the configuration file, for example to enable HTTPS.
As an alternative to manually modifying the generated file you can generate a minimal configuration and include this
in your own manually created NGINX file, such as /etc/nginx/conf.d/omero-web.conf:

omero web config nginx-location > /opt/omero/web/omero-web/omero-web-location.
—include

This requires more initial work but in the future you can automatically regenerate your OMERO.web configuration and
your additional configuration settings will still apply.

Note: If you need help configuring your firewall rules, see the Server security and firewalls page.

156 Chapter 2. System Administrator Documentation

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://nginx.org/en/docs/http/configuring_https_servers.html

OMERO

Running OMERO.web

Since OMERO.web 5.16.0, the package whitenoise is installed by default.
Optional: Install Django Redis:

[/opt/omero/web/venv3/bin/pip install 'django-redis==5.0.0"

The following steps are run as the omero-web system user.

Optional: Configure the cache:

omero config set omero.web.caches '{"default": {"BACKEND": "django_redis.cache.RedisCache
", "LOCATION": "redis://127.0.0.1:6379/0"}}"'
omero config set omero.web.session_engine 'django.contrib.sessions.backends.cache'

Configure WhiteNoise and start OMERO.web manually to test the installation:

omero config append -- omero.web.middleware '{"index": ®, "class": "whitenoise.
—middleware.WhiteNoiseMiddleware"}"'

omero web start
Test installation e.g. curl -sL localhost:4080

omero web stop

Automatically running OMERO.web

The following steps are run as root.

Should you wish to run OMERO.web automatically, a init.d file could be created. See below an example file omero-
web-init.d:

#!/bin/bash

#

/etc/init.d/omero-web

Subsystem file for "omero" web

#

BEGIN INIT INFO

Provides: omero-web

Required-Start: $local_fs $remote_fs $network $time omero postgresql
Required-Stop: $local_fs $remote_fs $network $time omero postgresql
Default-Start: 2345

Default-Stop: 016

Short-Description: OMERO.web

END INIT INFO

#

chkconfig: - 98 02
description: init file for OMERO.web
#it#

RETVAL=0
prog=omero-web

(continues on next page)

2.2. Installation 157

https://github.com/jazzband/django-redis

OMERO

(continued from previous page)

Read configuration variable file if it is present
[-r /etc/default/$prog] && . /etc/default/$prog

OMERO_USER=${OMERO_USER: -omero-web}
OMERO=/o0pt/omero/web/venv3/bin/omero
OMERODIR=/opt/omero/web/omero-web
VENVDIR=${VENVDIR: -/opt/omero/web/venv3}

start() {

echo -n $"Starting $prog:"

su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web..
—start" & /dev/null & & echo -n ' OMERO.web'

sleep 5
RETVAL=$?
["$RETVAL" = 0]
echo
}
stop(O {

echo -n $"Stopping $prog:
su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web.,
—stop" & /dev/null && echo -n ' OMERO.web'

RETVAL=$?
["$RETVAL" = 0]
echo
}
status() {

echo -n $"Status $prog:"

su - ${OMERO_USER} -c ". ${VENVDIR}/bin/activate;OMERODIR=${OMERODIR} ${OMERO} web..
—status"

RETVAL=$7?
}

case "$1" in
start)
start
i
stop)
stop
33
restart)
stop
start
3
status)
status

echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

(continues on next page)

158 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)
esac
exit $RETVAL

Copy the init.d file, then configure the service:

cp omero-web-init.d /etc/init.d/omero-web
chmod a+x /etc/init.d/omero-web

update-rc.d -f omero-web remove
update-rc.d -f omero-web defaults 98 02

Start up services:

service redis-server start

service nginx start
service omero-web restart

Maintaining OMERO.web

The following steps are run as the omero-web system user.
You can manage the sessions using the following configuration options and commands:
¢ Session cookies omero.web.session_expire_at_browser_close:

— A boolean that determines whether to expire the session when the user closes their browser. See Django
Browser-length sessions vs. persistent sessions documentation for more details. The default value is True:

[omero config set omero.web.session_expire_at_browser_close "True" }

— The age of session cookies, in seconds. The default value is 86400:

[omero config set omero.web.session_cookie_age 86400 J

¢ Clear session:

Each session for a logged-in user in OMERO.web is kept in the session store. Stale sessions can cause the store
to grow with time. OMERO.web uses by default the OS file system as the session store backend and does not
automatically purge stale sessions, see Django file-based session documentation for more details. It is there-
fore the responsibility of the OMERO administrator to purge the session cache using the provided management
command:

[omero web clearsessions]

It is recommended to call this command on a regular basis, for example as a daily cron job, see Django
clearing the session store documentation for more information.

2.2. Installation 159

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-file-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#clearing-the-session-store

OMERO

Troubleshooting

The following steps are run as the omero-web system user.

In order to identify why OMERO.web is not available run omero web status. Then consult NGINX error.log
and /opt/omero/web/omero-web/var/log/OMEROweb. log.

Configuring Gunicorn advanced options

OMERO.web deployment can be configured with sync and async workers. Sync workers are faster and recommended
for a data repository with Download restrictions. If you wish to offer users the ability to download data then you have
to use async workers. OMERO.web is able to handle multiple clients on a single worker thread switching context as
necessary while streaming binary data from OMERO.server. Depending on the traffic and scale of the repository you
should configure connections and speed limits on your server to avoid blocking resources. We recommend you run
benchmark and performance tests. It is also possible to apply Download restrictions and offer alternative access to
binary data.

Note: Handling streaming request/responses requires proxy buffering to be turned off. For more details
refer to Gunicorn deployment and NGINX configuration.

Note: omero.web.application_server.max_requests should be set to 0

See Gunicorn design for more details.

Experimental: Sync workers

The following steps are run as root.

Install https://pypi.org/project/futures:

[/opt/omero/web/venv3/bin/pip install futures

The following steps are run as the omero-web system user.

To find out more about the number of worker threads for handling requests, see Gunicorn threads. Additional settings
can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class
omero config set omero.web.wsgi_threads $(2-4 x NUM_CORES)

Experimental: Async workers

The following steps are run as root.

Install Gevent >= 0.13:

[/opt/omero/web/venvS/bin/pip install 'gevent>=0.13'

160 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/stable/deploy.html
https://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
https://docs.gunicorn.org/en/stable/design.html
https://pypi.org/project/futures
https://docs.gunicorn.org/en/stable/settings.html#threads
http://www.gevent.org/

OMERO

The following steps are run as the omero-web system user.

To find out more about the maximum number of simultaneous clients, see Gunicorn worker-connections. Additional
settings can be configured by changing the following properties:

omero config set omero.web.wsgi_worker_class gevent
omero config set omero.web.wsgi_worker_connections 1000
omero config set omero.web.application_server.max_requests 0

Note: Support for Apache deployment has been dropped in 5.3.0.

If your organization’s policies only allow Apache to be used as the external-facing web-server you should configure
Apache to proxy connections to an NGINX instance running on your OMERO server i.e. use Apache as a reverse proxy.
For more details see Apache mod_proxy documentation.

2.2.3 OMERO.server binary repository

About

The OMERO.server binary data repository is a fundamental piece of server-side functionality. It provides optimized
and indexed storage of original file, pixel and thumbnail data, attachments and full-text indexes. The repository’s
directories contain various files that, together with your SQL database, constitute the information about your users
and their data that OMERO.server relies upon for normal operation.

Layout

The repository is internally laid out as follows:

/OMERO

/OMERO/Pixels <--- Pixel data and pyramids

/OMERO/Files <--- Original file data

/OMERO/Thumbnails <--- Thumbnail data

/OMERO/FullText <--- Lucene full text search index
/OMERO/ManagedRepository <--- OMERO.fs filesets, with import logs
/OMERO/BioFormatsCache <--- Cached Bio-Formats state for rendering

Your repository is not:
* the “database”
* the directory where your OMERO.server binaries are
¢ the directory where your OMERO.client (OMERO.insight or OMERO.importer) binaries are
* your PostgreSQL data directory

2.2. Installation 161

https://docs.gunicorn.org/en/stable/settings.html#worker-connections
https://httpd.apache.org/docs/current/mod/mod_proxy.html

OMERO

PixelService resolution order for locating binary data for images

When the server is trying to find the binary data for an image, it looks:
e first under /OMERO/Pixels for a $NUMBER_pyramid file
* then under /OMERO/Pixels for a regular $NUMBER file
¢ then under /OMERO/Files for OMERO 4 files
e or under /OMERO/ManagedRepository for OMERO 5 files

Locking and remote shares

The OMERO server requires proper locking semantics on all files in the binary repository. In practice, this means
that remotely mounted shares such as AFS, CIFS, and NFS can cause issues. If you have experience and/or the time
to manage and monitor the locking implementations of your remote filesystem, then using them as for your binary
repository should be fine.

If, however, you are seeing errors such as NullPointerExceptions, “Bad file descriptors” and similar in your server log,
then you will need to use directly connected disks.

Warning: If your binary repository is a remote share and mounting the share fails or is dismounted, OMERO will
continue operating using the mount point instead! To prevent this, make the mount point read-only for the OMERO
user so that no data can be written to the mount point.

Changing your repository location

Note: It is strongly recommended that you make all changes to your OMERO binary repository with the server shut
down. Changing the omero.data.dir configuration does not move the repository for you, you must do this yourself.

Your repository location can be changed from its /OMERO default by modifying your OMERO.server configuration as
follows:

[$ omero config set omero.data.dir /mnt/really_big_disk/OMERO

The suggested procedure is to shut down your OMERO.server instance, move your repository, change your omero.
data.dir and then start the instance back up. For example:

$ omero admin stop

$ mv /OMERO /mnt/really_big_disk

$ omero config set omero.data.dir /mnt/really_big_disk/OMERO
$ omero admin start

The omero.managed. dir property for the OMERO.fs managed repository may be adjusted similarly, even to a direc-
tory outside omero.data.dir.

Note: The managed repository should be located and configured to allow the OMERO server processes fast access to
the uploaded filesets that it contains.

162 Chapter 2. System Administrator Documentation

OMERO

Access permissions

Your repository should be owned by the same user that is starting your OMERO.server instance. This is often ei-
ther yourself (find this out by executing whoami) or a separate omero (or similar) user who is dedicated to running
OMERO:.server. For example:

$ whoami
omero
$ 1s -al /OMERO
total 24
drwxr-xr-x
drwxr-xr-x

omero omero 128 Dec 12 2006 .

root root 160 Nov 5 15:24 ..

drwxr-xr-x omero omero 4096 Dec 20 10:13 BioFormatsCache
drwxr-xr-x omero omero 1656 Dec 18 14:31 Files

drwxr-xr-x 150 omero omero 12288 Dec 20 10:00 ManagedRepository
drwxr-xr-x 25 omero omero 23256 Dec 10 19:06 Pixels

drwxr-xr-x 2 omero omero 48 Dec 8 2006 Thumbnails

N wWw NN v

Repository size
At minimum, the binary repository should be comfortably larger than the images and other files that users may be

uploading to it. It is fine to set omero.data.dir or omero.managed.dir to very large volumes, or to use logical
volume management to conveniently increase space as necessary.

2.2.4 OMERO.server and PostgreSQL

In order to be installed, OMERO.server requires a running PostgreSQL instance that is configured to accept connections
over TCP. This section explains how to ensure that you have the correct PostgreSQL version and that it is installed and
configured correctly.

Ensuring you have a valid PostgreSQL version

For OMERO 5.6, PostgreSQL version 11 or later is recommended. Make sure you are using a supported version.

You can check which version of PostgreSQL you have installed with any of the following commands:

$ createuser -V

createuser (PostgreSQL) 9.4.1
$ psql -V

psql (PostgreSQL) 9.4.1

$ createdb -V

createdb (PostgreSQL) 9.4.1

If your existing PostgreSQL installation is an earlier version, it is recommended that you upgrade to a more up-to-date
version. Before upgrading, stop the OMERO server and then perform a full dump of the database using pg_dump. See
the OMERQO.server backup and restore section for further details.

If using a Linux distribution-provided PostgreSQL server, upgrading to a newer version of the distribution will usually
make a newer version of PostgreSQL available. If the database was not migrated to the new version automatically,
restore your backup after installing, configuring and starting the new version of the database server. If a PostgreSQL
server was not provided by your system, EnterpriseDB provide an installer.

2.2. Installation 163

https://www.postgresql.org/support/versioning/
https://www.enterprisedb.com/

OMERO

Checking PostgreSQL port listening status

You can check if PostgreSQL is listening on the default port (TCP/5432) by running the following command:

$ netstat -an | egrep '5432.*LISTEN'
tcp 0 0 0.0.0.0:5432 0.0.0.0:% LISTEN
tcp 0 0 :::5432 333%w LISTEN

Note: The exact output of this command will vary. The important thing to recognize is whether or not a process is
listening on TCP/5432.

If you cannot find a process listening on TCP/5432 you will need to find your postgresql.conf file and enable
PostgreSQL’s TCP listening mode. The exact location of the postgresql.conf file varies between installations.

It may be helpful to locate it using the package manager (rpm or dpkg) or by utilizing the find command. Usually, the
PostgreSQL data directory (which houses the postgresql. conf file, is located under /var or /usr:

$ sudo find /etc -name 'postgresql.conf’
$ sudo find /usr -name 'postgresql.conf’
$ sudo find /var -name 'postgresql.conf’
/var/lib/postgresql/data/postgresql.conf

Note: The PostgreSQL data directory is usually only readable by the user postgres so you will likely have to be
root in order to find it.

Once you have found the location of the postgresql. conf file on your particular installation, you will need to enable
TCP listening. The area of the configuration file you are concerned about should look similar to this:

#listen_addresses = 'localhost' # what IP address(es) to listen on;
comma-separated list of addresses;
defaults to 'localhost', '*' = all
#port = 5432

max_connections = 100

note: increasing max_connections costs ~400 bytes of shared memory per
connection slot, plus lock space (see max_locks_per_transaction). You
might also need to raise shared_buffers to support more connections.
#superuser_reserved_connections = 2

#unix_socket_directory = *

#unix_socket_group = *

#unix_socket_permissions = 0777 # octal

#bonjour_name = * # defaults to the computer name

164 Chapter 2. System Administrator Documentation

OMERO

PostgreSQL HBA (host based authentication)

OMERO:.server must have permission to connect to the database that has been created in your PostgreSQL instance.
This is configured in the host based authentication file, pg_hba.conf. Check the configuration by examining the
contents of pg_hba.conf. It’s important that at least one line allows connections from the loopback address (127.0.
0.1) as follows:

TYPE DATABASE USER CIDR-ADDRESS METHOD
IPv4 local connections:

host all all 127.0.0.1/32 md5

IPv6 local connections:

host all all ::1/128 md5

Note: The other lines that are in your pg_hba. conf are important either for PostgreSQL internal commands to work
or for existing applications you may have. Do not delete them.

Completing configuration
After making any configuration changes to postgresql.conf or pg_hba.conf, reload the server for the changes to
take effect.
$ sudo service postgresql reload
See also:

PostgreSQL
Interactive documentation for the current release of PostgreSQL.

Connections and Authentication
Section of the PostgreSQL documentation about configuring the server using postgresql.conf.

Client Authentication
Chapter of the PostgreSQL documentation about configuring client authentication with pg_hba.conf.

2.2.5 Installing additional features

OMERO.grid

To unify the various components of OMERO, OMERO.grid was developed to monitor and control processes over nu-
merous remote systems. Based on ZeroC’s IceGrid framework, OMERO.grid provides management access, distributed
background processing, log handling and several other features.

Terminology

Please notice that ZeroC uses a specific naming scheme for IceGrid elements and actors. A server in the context of
this document is not a host computer - it is a process running inside an IceGrid node, servicing incoming requests. A
host is a computer on which IceGrid elements get deployed. For more details, see Terminology.

2.2. Installation 165

https://www.postgresql.org/docs/current/interactive/index.html
https://www.postgresql.org/docs/current/interactive/runtime-config-connection.html
https://www.postgresql.org/docs/current/interactive/client-authentication.html
https://zeroc.com
https://doc.zeroc.com/display/Ice/Terminology

OMERO

Getting started
Requirements

The normal OMERQO installation actually makes use of OMERO.grid internally. If you have followed the instructions
under OMERO.server installation you will have everything you need to start working with OMERO.grid.

The standard install should also be used to install other hosts in the grid, such as a computation-only host. Some
elements can be omitted for a computation-only host such as PostgreSQL, Apache/nginx, etc.

Running OMERO.web and/or starting up the full OMERO.server instance is not required in such a case (only the basic
requirements to run omero node are needed, i.e. ZeroC Ice and Python modules for OMERO scripts).

IceGrid Tools

If you would like to explore your IceGrid configuration, use

[omero admin ice]

It provides full access to the icegridadmin console described in the ZeroC manual. Specific commands can also be
executed:

omero admin ice help

omero admin ice application list

omero admin ice application describe OMERO
omero admin ice server list

Further, by running java -jar ice-gridgui.jar the GUI provided by ZeroC can be used to administer
OMERO.grid. This JAR is provided in the OMERO source code under 1ib/repository.

See also:

icegridadmin Command Line Tool
Chapter of the ZeroC manual about the icegridadmin CLI

IceGrid GUI Tool
Chapter of the ZeroC manual about the IceGrid GUI tool

How it works

IceGrid is a location and activation service, which functions as a central registry to manage all your OMERO server
processes. OMERO.grid provides server components which use the registry to communicate with one another. Other
than a minimal amount of configuration and starting a single daemon on each host machine, OMERO.grid manages
the complexity of all your computing resources.

166 Chapter 2. System Administrator Documentation

https://doc.zeroc.com/display/Ice/icegridadmin+Command+Line+Tool
https://zeroc.com
https://doc.zeroc.com/display/Ice/IceGrid+GUI+Tool
https://zeroc.com
https://doc.zeroc.com/display/Ice/IceGrid

OMERO

Deployment descriptors

All the resources for a single OMERO site are described by one application descriptor. OMERO ships with several
example descriptors under etc/grid. These descriptors describe what processes will be started on what nodes, iden-
tified by simple names. For example the default descriptor, used if no other file is specified, defines the master node.
As you will see, these files are critical both for the correct functioning of your server as well as its security.

The deployment descriptors provided define which server instances are started on which nodes. The default descriptor
configures the master node to start the OMERQ.blitz server, the Glacier2 router for firewalling, as well as a single
processor - Processor®. The master node is also configured via etc/master.cfg to host the registry, though this
process can be started elsewhere.

Deployment commands

The master node must be started first to provide the registry. This is done via the omero admin start command
which uses the default descriptor:

[omero admin start]

The deploy command looks for any changes to the defined descriptor and restarts only those servers which have modi-
fications:

[omero admin deploy]

Both omero admin start and omero admin deploy can optionally take a path to an application descriptor which
must be passed on every invocation:

[omero admin deploy etc/grid/my-site.xml]

Two other nodes, then, each provide a single processor, Processorl and Processor2. These are started via:

To start a node identified by NAME, the following command can be used

[omero node start NAME J

At this point the node will try and connect to the registry to announce its presence. If a node with the same name is
already started, then registration will fail, which is important to prevent unauthorized users.

The configuration of your grid, however, is very much up to you. Based on the example descriptor files (*.xml) and
configuration files (*.cfg), it is possible to develop OMERO.grid installations completely tailored to your computing
resources.

The whole grid can be shutdown by stopping the master node via: omero admin stop. Each individual node can also
be shutdown via: omero node NAME stop on that particular node.

Deployment examples

Two examples will be presented showing the flexibility of OMERO.grid deployment and identifying files whose mod-
ification is critical for the deployment to work.

2.2. Installation 167

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/default.xml

OMERO

Nodes on a single host

The first example will focus on changing the deployed nodes/servers on a single host. It should serve as an introduction
to the concepts. Unless used for very specific requirements, this type of deployment doesn’t yield any performance
gains.

The first change that you will want to make to your application descriptor is to add additional processors. Take a look at
https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/default.xml. There you can define two new
nodes - nodel and node2 by simply adding a new XML element below the master node definition:

<node name="nodel">
<server-instance template="ProcessorTemplate" index="1"/>
</node>

<node name="node2">
<server-instance template="ProcessorTemplate" index="2"/>
</node>

Remember to change the node name and the index number for each subsequent node definition. The node name and
the index number do not need to match. In fact, the index number can be completely ignored, except for the fact that it
must be unique. The node name, however, is important for properly starting your new processor.

You will need both a configuration file under etc/ with the same name, and unless the node name matches the name
of your local host, you will need to specify it on the command line:

[omero node nodel start J

or with the environment variable OMERO_NODE:

[OMERO_NODE:nodel omero node start]

After starting up both nodes, you can verify that you now have three processors running by looking at the output of
omero admin diagnostics.

For more information on using scripts, see the OMERO.scripts advanced topics.

Nodes on multiple hosts

Warning: Before attempting this type of deployment, make sure that the hosts can ping each other and that required
ports are open and not firewalled.

A more complex deployment example is running multiple nodes on networked hosts. Initially, the host’s loopback TP
address (127.0.0.1) is used in the grid configuration files.

For this example, let’s presume we have control over two hosts: omero-master (IP address 192.168.0.1/24) and
omero-slave (IP address 192.168. 0.2/24). The goal is to move the processor server onto another host (omero-slave)
to reduce the load on the host running the master node (omero-master). The configuration changes required to
achieve this are outlined below.

On host omero-master:

e etc/grid/default.xml - remove or comment out from the master node the server-instance using the
ProcessorTemplate. Below the master node add an XML element defining a new node:

168 Chapter 2. System Administrator Documentation

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/default.xml

OMERO

<node name="omero-slave">
<server-instance template="ProcessorTemplate" index="0" dir=""/>
</node>

e etc/internal.cfg - change the value of Ice.Default.Locator from 127.0.0.1 to 192.168.0.1
* etc/master.cfg - change all occurrances of 127.0.0.1 to 192.168.0.1
On host omero-slave:

* copy or rename etc/nodel.cfg to etc/omero-slave.cfg and change all nodel strings to omero-slave in
etc/omero-slave.cfg. Also update the IceGrid.Node.Endpoints value to tcp -h 192.168.0.2

e etc/internal.cfg - change the value of Ice.Default.Locator from 127.0.0.1 to 192.168.0.1

e etc/ice.config - add the line Ice.Default.Router=0MERO.Glacier2/router:tcp -p 4063 -h 192.
168.0.1

To apply the changes, start the OMERO instance on the omero-master node by using omero admin start.
After that, start the omero-slave node by using omero node omero-slave start. Issuing omero admin
diagnostics on the master node should show a running processor instance and the omero-slave node should accept
job requests from the master node.

Securing grid resources

More than just making sure no malicious code enters your grid, it is critical to prevent unauthorized access via the
application descriptors (*.xml) and configuration (*.cfg) as mentioned above.

Firewall

The simplest and most effective way of preventing unauthorized access is to have all OMERO.grid resources behind
a firewall. Only the Glacier2 router has a port visible to machines outside the firewall. If this is possible in your
configuration, then you can leave the internal endpoints unsecured.

SSL (Secure Socket Layer)

Though it is probably unnecessary to use transport encryption within a firewall, encryption from clients to the Glacier2
router will often be necessary. For more information on SSL, see SSL.

Permissions Verifier

The IceSSL plugin can be used both for encrypting the channel as well as authenticating users. SSL-based authentica-
tion, however, can be difficult to configure especially for within the firewall, and so instead you may want to configure
a “permissions verifier” to prevent non-trusted users from accessing a system within your firewall. From master.cfg:

IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsVerifier
#IceGrid.Registry.AdminCryptPasswords=etc/passwd

Here we have defined a “null” permissions verifier which allows anyone to connect to the registry’s administrative
endpoints. One simple way of securing these endpoints is to use the AdminCryptPasswords property, which expects
a passwd-formatted file at the given relative or absolute path:

2.2. Installation 169

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/master.cfg

OMERO

mrmypasswordisomero TN7CjkTVoDnb2
msmypasswordisome jkyZ3t9JXPRRU

where these values come from using openssl:

$ openssl

OpenSSL> passwd
Password:

Verifying - Password:
TN7CjkTVoDnb2
OpenSSL>

Another possibility is to use the OMERO.blitz permissions verifier, so that anyone with a proper OMERO account can
access the server.

See Controlling Access to IceGrid Sessions of the Ice manual for more information.

Unique node nhames

Only a limited number of node names are configured in an application descriptor. For an unauthorized user to fill a
slot, they must know the name (which is discoverable with the right code) and be the first to contact the grid saying “I
am Node029”, for example. A system administrator need only then be certain that all the node slots are taken up by
trusted machines and users.

It is also possible to allow “dynamic registration” in which servers are added to the registry after the fact. In some
situations this may be quite useful, but is disabled by default. Before enabling it, be sure to have secured your endpoints
via one of the methods outlined above.

Absolute paths

The example application descriptors shipped with OMERO all use relative paths to make installation easier. Once
you are comfortable with configuring OMERO.grid, it would most likely be safer to configure absolute paths. For
example, specifying that nodes execute under /usr/lib/omero requires that whoever starts the node have access to
that directory. Therefore, as long as you control the boxes which can attach to your endpoints (see Firewall), then you
can be relatively certain that no tampering can occur with the installed binaries.

Technical information and other tips
Processes

It is important to understand just what processes will be running on your servers. When you run omero admin start,
icegridnode is executed which starts a controlling daemon and deploys the proper descriptor. This configuration is
persisted under var/master and var/registry.

Once the application is loaded, the icegridnode daemon process starts up all the servers which are configured in the
descriptor. If one of the processes fails, it will be restarted. If restart fails, eventually the server will be “disabled”. On
shutdown, the icegridnode process also shutdowns all the server processes.

170 Chapter 2. System Administrator Documentation

https://doc.zeroc.com/ice/3.6/ice-services/icegrid/resource-allocation-using-icegrid-sessions#id-.ResourceAllocationusingIceGridSessionsv3.6-ControllingAccesstoIceGridSessions

OMERO

Targets

In application descriptors, it is possible to surround sections of the description with <target/> elements. For example,
in templates.xml the section which defines the main OMERQO.blitz server includes:

<server id="Blitz-$ exe="$§ activation="always" pwd="$ >
<target name="debug'">

<option>-Xdebug</option>

<option>-Xrunjdwp:server=y, transport=dt_socket,address=8787, suspend=y</option>

</target>

When the application is deployed, if “debug” is added as a target, then the -Xdebug, etc. options will be passed to the
Java runtime. This will allow remote connection to your server over the configured port.

Multiple targets can be enabled at the same time:

[omero admin deploy etc/grid/default.xml debug secure someothertarget J

Ice.MessageSizeMax

Ice imposes an upper limit on all method invocations. This limit, Ice .MessageSizeMax, is configured in your applica-
tion descriptor (e.g. templates.xml) and configuration files (e.g. ice.config). The setting must be applied to all servers
which will be handling the invocation. For example, a call to InteractiveProcessor.execute(omero: :RMap
inputs) which passes the inputs all the way down to processor.py will need to have a sufficiently large Ice.
MessageSizeMax for: the client, the Glacier2 router, the OMERQO.blitz server, and the Processor.

The default is currently set to 65536 kilobytes which is 64MB.

Logging

Currently all output from OMERO.grid is stored in $OMERO_PREFIX/var/log/master.out with error messages
going to $OMERO_PREFIX/var/log/master.err. Individual services may also create their own log files.

Shortcuts

If the omero script is copied or symlinked to another name, then the script will separate the name on hyphens and
execute omero with the second and later parts prepended to the argument list.

For example,

In -s omero omero-admin
omero-admin start

works identically to:

[omero admin start

2.2. Installation 171

https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/templates.xml
https://github.com/ome/openmicroscopy/blob/develop/etc/templates/grid/templates.xml
https://github.com/ome/openmicroscopy/blob/develop/etc/templates/ice.config

OMERO

Symbolic linking

Shortcuts allow the bin/omero script to function as an init.d script when named omero-admin, and need only be
copied to /etc/init.d/ to function properly. It will resolve its installation directory, and execute from there.

For example,

In -s $VENV_SERVER/bin/omero /usr/local/bin/omero
omero-admin start

The same works for putting bin/omero on your path:

[PATH=$VENV_SERVER/bin: $PATH]

This means that OMERO.grid can be unpacked anywhere, and as long as the user invoking the commands has the
proper permissions on the $OMERO_PREFIX directory, it will function normally.

Running as root

One exception to this rule is that starting OMERO.grid as root may actually delegate to another user, if the “user”
attribute is set on the <server/> elements in etc/grid/templates.xml.

See also:

OMERQO sessions

OMERO.mail
The OMERQO server has the ability to send email to any users who have a properly configured email address. OMERO
system administrators can then use the omero admin email command to contact those users.

In order to activate the subsystem, minimally the omero.mail.config property will need to be activated. It is likely
you will need to change the defaults for the following connection properties:

e omero.mail.host

e omero.mail.port

e omero.mail.smtp.auth

e omero.mail.smtp.starttls.enable
e omero.mail.from

All properties can be found under the Mail section of Configuration properties glossary.

Note: A current limitation of the system is that emails are not in a queue and therefore if you log out or otherwise lose
your OMERO session before the server has finished sending, the action will abort without completing.

172 Chapter 2. System Administrator Documentation

OMERO

Example secure SMTP configurations

Replace omero@gmail . com and mypassword with your real credentials.

Send email via GMail using TLS (port 587):

omero.mail.config=true
omero.mail . from=omero@gmail .com
omero.mail.host=smtp.googlemail.com
omero.mail .port=587
omero.mail.smtp.auth=true
omero.mail.username=omero@gmail .com
omero.mail.password=mypassword
omero.mail.smtp.starttls.enable=true

Send email via GMail using SSL (port 465):

omero.mail.config=true

omero.mail.from=omero@gmail .com
omero.mail.host=smtp.googlemail.com

omero.mail.port=465

omero.mail.smtp.auth=true

omero.mail.username=omero@gmail .com
omero.mail.password=mypassword
omero.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

Example minimum configuration

[$ omero config set omero.mail.config true

By default, this will use localhost as the mail server on port 25 and send as the user omero.

To use your actual mail server:

[$ omero config set omero.mail.host smtp.university.example

If authentication is required, then also configure:

$ omero config set omero.mail.username USER
$ omero config set omero.mail.password PASS

Setting email addresses

For any user to receive email, a valid email address must be configured. By default, the root OMERO user will not
have an email address configured. This can be done from one of the Uls or via the omero obj command:

[$ omero obj update Experimenter:® email=root@university.example

Note: Using a mailing list or an alias for the root user can simplify configuration.

2.2. Installation 173

OMERO

Enabling mail notifications

A number of “mail senders” are available for sending notifications of certain events on the server. Those available
include:

* ServerUpMailSender and ServerDownMailSender which mail when the server goes up or down
* FailedLoginMailSender which can be configured to send for particular users if a bad password is used

¢ ObjectMailSender which can be configured to send an email under various conditions. Instances which
are configured include:
— newUserMailSender which sends an email every time a user is created

— newCommentMailSender which sends an email every time a user’s image is commented on by another
user

To activate the senders, the etc/blitz/mail-senders.example can be copied to a file ending with “.xml”.

OMERO.web error reporting

OMERO.web will email the users listed in the omero.web.admins whenever the application identify broken link
(HTTP status code 404) or raises an unhandled exception that results in an internal server error (HTTP status code 500).
This gives the administrators immediate notification of any errors. The omero.web.admins will get a description of
the error, a complete Python traceback, and details about the HTTP request that caused the error.

Note: Reporting errors requires property omero.web.debug set to False and works together with OMERO.web
error handling.

Further configuration

Finally, if the above mail configuration properties do not cover your needs, you can add your own implementation as
described under Extending OMERO.server. The related property is omero.mail.bean:

[$ omero config set omero.mail.bean myMailImplementation J

OMERO.movie

A short decription on how to create movies from OMERO.

Creating a movie from OMERO

OMERO provides a script to make Mpeg or Quicktime movies from any image in the server. These movies are created
by a script called makemovie.py, this script has a number of options: these include: selecting a range of Z,T planes, the
channels to display. The movie can also show information overlayed over the image: z-section, scale bar and timing.

The resulting movie will then be uploaded to the server by the script and become a file attachment to the source image.

174 Chapter 2. System Administrator Documentation

OMERO

Viewing the movie

The make movie script allows you to save the movie in two different formats, a DivX-encoded AVI and QuickTime
movie. To view the AVI you may need to install a DivX codec from DivX. It should be noted that the DivX AVI is
normally 1/3 to 1/10 the size of the QuickTime movie.

Installing the make movie script

The make movie script currently uses the mencoder utility to encode the movies, this command should be in the path
of the computer (icegrid node) running the script.

We have Mac OSX installs for mencoder which were originally provided here. Unzip and put the mencoder in the
PATH available to the server, e.g. /usr/local/bin/. You may need to restart the server for this to take effect.

There are also macports, rpms and debs for mencoder.

Make movie also uses Pillow and numpy.

Make movie command arguments

A detailed list of the commands accepted by the script are:
» imageld: This id of the image to create the movie from
* output: The name of the output file, sans the extension
 zStart: The starting z-section to create the movie from
* zEnd: The final z-section
* tStart: The starting timepoint to create the movie
¢ tEnd: The final timepoint.
e channels: The list of channels to use in the movie (index, from 0)
* splitView: Should we show the split view in the movie (not available yet)
» showTime: Show the average time of the aquisition of the channels in the frame.
 showPlanelnfo: Show the time and z-section of the current frame.
* fps: The number of frames per second of the movie
¢ scalebar: The scalebar size in microns, if <=0 will not show scale bar.
* format: The format of the movie to be created currently supports ‘video/mpeg’, ‘video/quicktime’
* overlayColour: The colour of the overlays, scalebar, time, as int(RGB)

* fileAnnotation: The fileAnnotation id of the uploaded movie. (return value from script)

2.2. Installation 175

https://www.divx.com/
http://www.mplayerhq.hu/design7/dload.html
http://cvs.openmicroscopy.org.uk/snapshots/mencoder/mac/
https://stefpause.com/apple/mac/mplayer-os-x-10rc1-and-mencoder-binaries/
https://pillow.readthedocs.org
https://www.scipy.org/install.html

OMERO

OMERO.scripts

OMERO.scripts are the OME version of plugins, allowing you to extend the functionality of OMERO. Official core
OMERQO.scripts come bundled with every OMERO.server release but you can also add new scripts you have written
yourself or found via the repositories forked from ome/omero-user-scripts.

Prerequisites
Uploading and managing scripts

OMERQO.scripts user guide describes the workflow for developing and uploading scripts as an Admin. Any scripts
you add to the lib/scripts/ directory as a server admin will be considered ‘trusted’ and automatically detected
by OMERO, allowing them to be run on the server from the clients or command line by any of your users.

Once in the directory, scripts cannot be automatically updated and any additional ones will be lost when you upgrade
your server installation. Therefore, we recommend you use a Github repository to manage your scripts. If you are not
familiar with using git, you can use the GitHub app for your OS (available for Mac and Windows but not Linux). The
basic workflow is:

* fork our omero-user-script repository

* clone it in your lib/scripts directory

cd lib/scripts;
git clone git@github.com:YOURGITUSERNAME/omero-user-scripts.git YOUR_SCRIPTS

e save the scripts you want to use into the appropriate sub-directory in your cloned location
lib/scripts/YOUR_SCRIPTS

Then when you upgrade your OMERO.server installation, provided your Github repository is up to date with all your
latest script versions (i.e. all your local changes are committed), you just need to repeat the git clone step. Those
scripts will then be automatically detected by your new server installation and available for use from the clients and
command line as before.

Client Server SSL verification

If you configure OMERO.web behind NGINX with a recognized SSL certificate your users can be sure that they are
connecting to their intended server.

OMERO:.server and clients do not automatically support host verification, so a man-in-the-middle attack is possible.
This may result in users inadvertently transmitting their login credentials to an attacker.

This can be remedied by configuring OMERO.server with a certificate and ensuring all OMERO clients are configured
to verify the server certificate before connecting.

176 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-user-scripts/network/members
https://docs.openmicroscopy.org/contributing/using-git.html
https://docs.github.com/en/get-started/quickstart/set-up-git
https://github.com/ome/omero-user-scripts
https://www.cloudflare.com/learning/security/threats/man-in-the-middle-attack/

OMERO

Server certificate

The easiest solution is to use the omero-certificates plugin to generate self-signed server certificates alongside their
associated configuration. This workflow is described in the particular sections of OMERO.server installation docu-
mentation.

Here we describe an alternative option to the usage of the omero-certificates plugin. This option is re-using the SSL
certificates used to protect OMERO.web. First convert the public certificate server.pem and private key server.key
to the PKCS12 format where secret is the password used to protect the combined output file server.pl2:

openssl pkcsl2 -export -out server.pl2 -in server.pem -inkey server.key -passout.
—,pass:secret

Copy server.pl2 to the OMERO.server host, for instance to /etc/ssl/omero/.

External access to OMERO.server is managed by the Glacier2 component which can be configured as follows:

omero config set omero.glacier2.IceSSL.Ciphers HIGH

Look for certificates in this directory, you can omit and use the full path to files.,
—instead

omero config set omero.glacier2.IceSSL.DefaultDir /etc/ssl/omero/

omero config set omero.glacier2.IceSSL.CertFile server.pl2

omero config set omero.glacier2.IceSSL.Password secret

omero config set omero.glacier2.IceSSL.Protocols tlsl_2

omero config set omero.glacier2.IceSSL.ProtocolVersionMin tlsl_2

omero config set omero.glacier2.IceSSL.ProtocolVersionMax tlsl_2

Restart OMERO.server.

Internal certificate authority

You can also create your own certificates by creating a certificate authority (CA), and using that to create a server
certificate. Set this additional server configuration property to point to the public CA certificate /etc/ssl/omero/
cacert.pem:

[omero config set omero.glacier2.IceSSL.CAs cacert.pem

Zeroc provide the Ice Certificate Utilities package to help create certificates, but if you know what you are doing you
can use openss1 directly.

Client host verification

At present there is no easy way to configure the standard OMERO clients to require host verification.

If you are a developer the following Ice properties can be passed to the omero.client constructor to force host vali-
dation:

e IceSSL.Ciphers=HIGH
e IceSSL.VerifyPeer=1
e IceSSL.VerifyDepthMax=0

IceSSL.UsePlatformCAs=1

e IceSSL.Protocols=tlsl1_2 (if required by the server configuration)

2.2. Installation 177

https://github.com/ome/omero-certificates
https://github.com/ome/omero-certificates
https://pypi.org/project/zeroc-icecertutils/

OMERO

Some platforms or languages do not support the cipher specification HIGH. Instead you can specify a cipher family such
as AES256 or AES_256. See the IceSSL.Ciphers documentation.

If you have your own certificate authority replace IceSSL.UsePlatformCAs with:
e IceSSL.CAs=/path/to/CA/cacert.pem

These properties check that the certificate chain is valid, but they do not verify that the hostname matches that of the
certificate. To verify the hostname either set:

e TceSSL.CheckCertName=1

If your certificate hostname does not match exactly (for example, if you have a wildcard certificate) use the IceSSL.
TrustOnly property instead. Multiple CN can be specified:

e IceSSL.TrustOnly=CN=omero.example.org;CN=*.example.org

Further information

https://doc.zeroc.com/technical-articles/glacier2-articles/teach-yourself-glacier2-in- 10-minutes#
TeachYourselfGlacier2in10Minutes-UsingSSLwithGlacier2

https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/configuring-icessl

https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/setting-up-a-certificate-authority

https://doc.zeroc.com/ice/3.6/property-reference/icessl

OMERO.server Websockets

OMERO 5.5.0 includes experimental support for websocket connections. This allows clients to connect to
OMERQO.server over HTTP/S using the Ice protocol (note: this is not the same as the OMERO.web or JSON APIs).

Configuration

The omero.client.icetransports OMERO.server configuration property must be changed. See the linked docu-
mentation for details.

You can override the default ws (4065) and wss (4066) ports with the properties omero.ports.ws omero.ports.wss.

If you want to proxy OMERO.server websockets via a webserver such as Nginx you must also add a cipher supported
by Nginx to omero.glacier2.IceSSL.Ciphers since the anonymous ciphers that OMERO uses are not supported.

For a full configuration example see https://github.com/ome/docker-example-omero-websockets

Client connection

You can connect to an OMERO websocket by setting the appropriate Ice.Config properties in the client, for example:

[Ice.Default.Router:"OMERO.GlacierZ/router:wss -p 8443 -h example.org -r omero/websocket" }

Some clients also support specifying the Ice transport in the host, e.g. wss://example.org:8443/omero/
websocket.

178 Chapter 2. System Administrator Documentation

https://doc.zeroc.com/ice/3.6/property-reference/icessl#id-.IceSSL.*v3.6-IceSSL.Ciphers
https://doc.zeroc.com/technical-articles/glacier2-articles/teach-yourself-glacier2-in-10-minutes#TeachYourselfGlacier2in10Minutes-UsingSSLwithGlacier2
https://doc.zeroc.com/technical-articles/glacier2-articles/teach-yourself-glacier2-in-10-minutes#TeachYourselfGlacier2in10Minutes-UsingSSLwithGlacier2
https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/configuring-icessl
https://doc.zeroc.com/ice/3.6/ice-plugins/icessl/setting-up-a-certificate-authority
https://doc.zeroc.com/ice/3.6/property-reference/icessl
https://github.com/ome/docker-example-omero-websockets

OMERO

2.3 Upgrading

Starting with OMERO 5.6, OMERO.server and OMERO.web installations are assumed to be separate throughout doc-
umentation, each with its own virtualenv. and installation directory.

2.3.1 Migration to Python 3

Basic steps

1. Choose a platform and a Python version. If your current installation platform does not match one of the recom-
mended platforms, you may want to choose a new platform as your migration target. See Choosing a platform
below.

2. Install OMERO.server and OMERO.web separately. Though not necessary, all instructions like OMERO.server
and OMERO.web below as well as the main server and web installation pages now assume that the two are in
separate installations.

3. Once both have been installed, perform a backup and restore procedure and test your installation against the copy
of your data.

Choosing a platform
The two recommended platforms, CentOS 7 and Ubuntu 18.04, have Python 3.6 as default installation and have there-
fore received the most testing which is why Python 3.6 is the preferred version of Python.

Both Python 3.5 and 3.7 should work and are slated to have support added, but Python 3.6 has been the focus of testing
during the migration.

Similarly, other operating systems are slated for having support added, but help from the community would be very
welcome! Obvious next candidates are CentOS 8 and Ubuntu 20.04.

Debian 9 is still on Python 3.5 and Debian 10 has moved to Ice 3.7. We have nonetheless an installation guide for
Debian 9 with Python 3.5 and Ice 3.6 but an installation guide for Debian 10 with Python 3.7 and Ice 3.6.

Other prerequisites
OMERO’s other prerequisites have not changed substantially but if you would like to take this opportunity to move to
the recommended version for all requirements, the current choices are:

¢ Ice 3.6 (non-optional)

e Java 11

* Nginx 1.14 or higher

* PostgreSQL 11

2.3. Upgrading 179

OMERO

Other options

The installation walkthroughs provided in the documentation try to stick to a minimum installation. The only require-
ments are an understanding of the Unix shell, the standard package manager for your platform, and the regular Python
distribution mechanisms.

However, more advanced installation mechanisms are available if you are interested and have familiarity with the given
mechanism:

* Ansible roles are available for most installation steps. The primary roles, omero-server and omero-web have not
yet been released and will need to be installed from GitHub.

* A conda channel provides pre-built packages needed by OMERO if you prefer to use Anaconda/Miniconda
instead of the Python distribution provided by your platform.

* Docker images are also available. Both the omero-server and omero-web images are considered production
quality.

Please get in touch at https://forum.image.sc/c/data if you have any questions.

OMERO.server

The steps for an OMERO.server installation have not changed substantially.

Download the OMERO.server.zip as you would usually do, and unpack it under your installation directory. We suggest
/opt/omero/server/ and symlink the unpacked directory to OMERQO.server

We highly recommend a virtualenv-based installation for all of the Python dependencies. Follow the standard instal-
lation instructions for your platform. All instructions use a virtual environment.

Once you have your installation in place, you will need to follow the standard upgrade instructions, working from a
copy of your data.

OMERO.web

Although it is possible to also follow the previous installation steps for OMERO.web, installation no longer requires
downloading a package from https://downloads.openmicroscopy.org. If you choose to follow this newly introduced
route, all requirements will be installed directly into the virtualenv for OMERO.web. Instructions are available under
web-deployment.

Note that setting of OMERODIR variable is now required to specify where the OMERO installation lives. This defines
where configuration files and log files will be stored. We suggest /opt/omero/web as the root for your installation.

The upgrade guide can help you to transfer your previous configuration. Moving forward, however, web upgrades
should be much simpler under Python 3. Only a pip install -U of the appropriate libraries should be necessary.

Plugins

Core OMERO.web plugins have been updated for Python 3 and released to PyPI e.g.

[pip install 'omero-iviewer>=0.9.0'

180 Chapter 2. System Administrator Documentation

https://galaxy.ansible.com/ome
https://anaconda.org/ome
https://hub.docker.com/u/openmicroscopy
https://forum.image.sc/c/data
https://downloads.openmicroscopy.org
https://pypi.org

OMERO

2.3.2 OMERO.server upgrade

The OME team is committed to providing frequent, project-wide upgrades both with bug fixes and new functionality.
We try to make the schedule for these releases as public as possible. You may want to take a look at the Trello boards
for exactly what will go into a release. See also OMERO.web upgrade.

See the full details of OMERO 5.6.9 features in the CHANGELOGS.

This guide aims to be as definitive as possible so please do not be put off by the level of detail; upgrading should be a
straightforward process.

Warning: If you are upgrading from a version prior to OMERQO 5.5 then you must also study the upgrade instruc-
tions for those prior versions because they may describe important steps that these instructions assume to already
have been done by OMERO 5.5 users. Before proceeding with these instructions you may first need to read the
instructions for upgrading ro OMERO 5.5 because some extra steps may be required beyond simply running the
SQL upgrade scripts described below.

Upgrade checklist

* Check prerequisites

o File limits

* Password usage

* Memoization files invalidation

* Troubleshooting

* Upgrade check

Check prerequisites

Before starting the upgrade, please ensure that you have reviewed and satisfied all the system requirements with correct
versions for installation. In particular, ensure that you are running a suitable version of PostgreSQL to enable successful
upgrading of the database, otherwise the upgrade script aborts with a message saying that your database server version
is less than the OMERO prerequisite.

File limits

You may wish to review the open file limits. Please consult the Too many open file descriptors section for further
details.

2.3. Upgrading 181

https://trello.com/b/4EXb35xQ/getting-started
https://docs.openmicroscopy.org/latest/omero5.5/sysadmins/server-upgrade.html

OMERO

Password usage

The passwords and logins used here are examples. Please consult the Which user account and password do I use where ?
section for explanation. In particular, be sure to replace the values of db_user and omero_database with the actual
database user and database name for your installation.

Memoization files invalidation

All cached Bio-Formats memoization files created at import time will be invalidated by the server upgrade. This means
the very first loading of each image after upgrade will be slower. After re-initialization, a new memoization file will be
automatically generated and OMERO will be able to load images in a performant manner again.

These files are stored under BioFormatsCache in the OMERO data directory, e.g. /OMERO/BioFormatsCache.
You may see error messages in your log files when an old memoization file is found; to avoid these messages delete
everything under this directory before starting the upgraded server.

It is possible to regenerate the memoization files before the user loads an image for the first time. For more information,
read MemoFileRegenerationReadMe.md.

Troubleshooting

If you encounter errors during an OMERO upgrade, database upgrade, etc., you should retain as much log information
as possible and notify the OMERO.server team via the forum.

Upgrade check

All OMERO products check themselves with the OmeroRegistry for update notifications on startup. If you wish to
disable this functionality you should do so now as outlined on the OMERQO upgrade checks page.

Upgrade steps

For all users, the basic workflow for upgrading your OMERO.server is listed below. Please refer to each section for
additional details.

Check ahead for upgrade issues

Perform a database backup

Copy new binaries

Upgrade your database

* Merge script changes

* Update your environment variables and memory settings
* Dependencies

» Server certificate

* Restart your server

* Restore a database backup

182 Chapter 2. System Administrator Documentation

https://github.com/glencoesoftware/omero-ms-image-region/tree/v0.5.1/src/dist/MemoFileRegenerationReadMe.md
https://www.openmicroscopy.org/forums

OMERO

Check ahead for upgrade issues

There is a precheck SQL script provided that performs various database checks to verify readiness for upgrade. The
precheck script works even with the OMERO server running so it may be used before downtime for the actual upgrade
is scheduled. Issues that the script reports will need to be resolved before the upgrade may proceed. The precheck
script will not make any changes to the database: it merely performs various precautionary checks also done by the
actual upgrade script.

$ cd OMERO.server

$ psql -h localhost -U db_user omero_database < sql/psql/OMERO5.4__0/0MEROS5.3__
—1-precheck.sql

Password for user db_user:

status
+
+
+
YOUR DATABASE IS READY FOR UPGRADE TO VERSION OMEROS5.4__0 +
+
+

(1 row)

Warning: The sql/psql/OMERO5.4__0/0MEROS5.3__1-precheck.sql script referenced by the above psql
command assumes a planned upgrade from OMERO 5.3.4. If you are instead currently running OMERO 5.3.3 or
an earlier 5.3.x version then you perform the precheck by using the above command with sql/psql/OMEROS.
4__0/0MERO5.3__0-precheck.sql. That script verifies that the database contains no trace of https://www.
openmicroscopy.org/security/advisories/2017-SV5-filename-2 having been exploited; this vulnerability was fixed
in OMERO 5.3.4.

Perform a database backup

The first thing to do before any upgrade activity is to backup your database.

$ pg_dump -h localhost -U db_user -Fc -f before_upgrade.db.dump omero_database

Copy new binaries

Before copying the new binaries, stop the existing server:

$ cd OMERO.server
$ omero admin stop

Your OMERO configuration is stored using config.xml in the etc/grid directory under your OMERO.server direc-
tory. Assuming you have not made any file changes within your OMERO.server distribution directory, you are safe to
follow the following upgrade procedure:

$cd ..
$ mv OMERO.server OMERO.server-old
$ unzip OMERO.server-5.6.9-ice36.zip

2.3. Upgrading 183

https://www.openmicroscopy.org/security/advisories/2017-SV5-filename-2
https://www.openmicroscopy.org/security/advisories/2017-SV5-filename-2

OMERO

$ 1n -s OMERO.server-||version_openmicroscopy|-ice36 OMERO.server
$ cp OMERO.server-old/etc/grid/config.xml OMERO.server/etc/grid

Upgrade your database

Warning: This section only concerns users upgrading from a 5.3 or earlier server. If upgrading from a 5.4 or 5.5
server, you do not need to upgrade the database.

Ensure Unicode character encoding

OMERO requires a Unicode-encoded database; without it, the upgrade script aborts with a message warning how the
OMERO database character encoding must be UTF8. From psql:

SELECT datname, pg_encoding_to_char(encoding) FROM pg_database;
datname | pg_encoding_to_char

____________ o

templatel | UTF8

template® | UTF8

postgres | UTF8
omero | UTF8
(4 rows)

Alternatively, simply run psql -1 and check the output. If your OMERO database is not Unicode-encoded with UTF8
then it must be re-encoded.

If you have the pg_upgradecluster command available then its --1ocale option can effect the change in encoding.
Otherwise, create a Unicode-encoded dump of your database: dump it as before but to a different dump file and with
an additional -E UTF8 option. Then, create a Unicode-encoded database for OMERO and restore that dump into it
with pg_restore, similarly to effecting a rollback. If required to achieve this, the -E UTF8 option is accepted by both
initdb and createdb.

Run the upgrade script

You must use the same username and password you have defined during OMERO.server installation. For a large
production system you should plan for the fact that the upgrade script may take several hours to run.

$ cd OMERO.server
$ psql -h localhost -U db_user omero_database < sql/psql/OMERO5.4__0/0MERO5.3__1.sql
Password for user db_user:

status

+
+
+
YOU HAVE SUCCESSFULLY UPGRADED YOUR DATABASE TO VERSION OMERO5.4__0 +
+
+

(1 row)

184 Chapter 2. System Administrator Documentation

OMERO

If you are upgrading from a server earlier than 5.3, then you must run the earlier upgrade scripts in sequence before
the one above. There is no need to download and run the server from an intermediate major release but you must still
study the upgrade instructions for earlier versions in case there are additional steps. For example, any optional SQL
scripts that affect the database probably run only on the specific version before the next upgrade script.

Note: If you perform the database upgrade using SQL shell, make sure you are connected to the database using
db_user before running the script. See this forum thread for more information.

Warning: The sql/psql/OMERO5.4__0/0MEROS5.3__1.sql script referenced by the above psql command
assumes upgrade from OMERO 5.3.4. If you are instead currently running OMERO 5.3.3 or an earlier 5.3.x version
then you upgrade the database directly to OMERO 5.4.0 by using the above command with sql/psql/OMEROS.
4__0/0MERO5.3__0.sql.

Optimize an upgraded database (optional)

After you have run the upgrade script, you may want to optimize your database which can both save disk space and
speed up access times.

$ psql -h localhost -U db_user omero_database -c 'VACUUM FULL VERBOSE ANALYZE;'

Merge script changes

If any new official scripts have been added under 1ib/scripts or if you have modified any of the existing ones, then
you will need to backup your modifications. Doing this, however, is not as simple as copying the directory over since
the core developers will have also improved these scripts.

For further information on managing your scripts, refer to OMERQO.scripts. If you require help, please contact the OME
developers.

Update your environment variables and memory settings
Environment variables

If you changed the directory name where the 5.6.9 server code resides, make sure to update any system environment
variables. Before restarting the server, make sure your PATH system environment variable is pointing to the new location.
Also make sure the OMERODIR environment variable is set to the location of the server.

See Environment variables for more information.

2.3. Upgrading 185

https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=7778

OMERO

JVM memory settings

Your memory settings should be copied along with etc/grid/config.xml, but you can check the current settings by
running omero admin jvmcfg. See Memory configuration for more information.

Dependencies

While upgrading the server you should keep OMERO.py dependencies up to date to ensure that security updates are
applied:

$ # first, activate virtualenv where omero-py is installed. Then upgrade:
$ pip install --upgrade 'omero-py>=5.16.0'

Server certificate

The server should be configured with at least a self-signed certificate to allow clients to establish secure connections.

Since OMERO 5.6.2, the recommended way to ensure that all OMERO server installations have at minimum, a self-
signed certificate is to use the omero-certificates plugin. The plugin will generate or update your self-signed certificates
and configure the OMERO.server. For the configuration to take effect, the server needs to be restarted. If you prefer to
configure the OMERO server certificate manually, check Client Server SSL verification.

If your server has been configured with a version of omero-certificates older than 0.3.0 or manually, the configu-
ration may need to be upgraded in particular to disallow the deprecated TLS 1.0 and 1.1 protocols.

To do so, activate the virtual environment where the server Python dependencies are installed, upgrade
omero-certificates to version 0.3.0 or later, remove the omero.glacier2.IceSSL.Protocols and omero.
glacier2.IceSSL.ProtocolVersionMax configurations and finally re-execute the omero certificates com-
mand:

$ pip install "omero-certificates>=0.3"

$ omero config set omero.glacier2.IceSSL.Protocols

$ omero config set omero.glacier2.IceSSL.ProtocolVersionMax
$ omero certificates

Note: From version 0.3.0, the omero certificates command adds TLS 1.3 to the list of TLS protocols allowed
assuming the OMERO.server enviroment supports the protocol. In order to negotiate this protocol, clients will also
need to be upgraded to depend on omero-blitz 5.7.0 or greater (Java) or omero-py 5.15.0 or greater (Python).

Restart your server

* Following a successful database upgrade, you can start the server.

[$ omero admin start

« If anything goes wrong, please send the output of omero admin diagnostics to the forum.

186 Chapter 2. System Administrator Documentation

https://pypi.org/project/omero-certificates/
https://datatracker.ietf.org/doc/html/rfc8996
https://www.openmicroscopy.org/forums

OMERO

Restore a database backup

If the upgraded database or the new server version do not work for you, or you otherwise need to rollback to a previous
database backup, you may want to restore a database backup. To do so, create a new database,

§ createdb -h localhost -U postgres -E UTF8 -0 db_user omero_from_backup

restore the previous archive into this new database,

[$ pg_restore -Fc -d omero_from_backup before_upgrade.db.dump]

and configure your server to use it.

[$ omero config set omero.db.name omero_from_backup]

2.3.3 OMERO.web upgrade

The OME team is committed to providing frequent, project-wide upgrades with security fixes, bug fixes and new
functionality. We try to make the schedule for these releases as public as possible. You may want to take a look at the
Trello boards for exactly what will go into a release. See also OMERQO.server upgrade.

See the full details of OMERO 5.6.9 features in the CHANGELOGS.

This guide aims to be as definitive as possible so please do not be put off by the level of detail; upgrading should be a
straightforward process.

Upgrade checklist

* Check prerequisites
* Upgrade

* Configuration

Plugin updates

Clear the sessions store (optional)

Restart OMERO.web

Troubleshooting

Maintenance & Scaling

Check prerequisites

Before starting the upgrade, please ensure that you have reviewed and satisfied all the system requirements with correct
versions for installation.

2.3. Upgrading 187

https://trello.com/b/4EXb35xQ/getting-started

OMERO

Upgrade

Make sure you have activated the correct virtual environment then upgrade OMERO.web via pip:
$ pip install --upgrade 'omero-web>=5.22.1"'

If the " omero-web" upgrade requires an upgrade to “omero-py" (e.g. for new features), this will happen automatically
above. However, even when an ~omero-py " upgrade is not required, there may be some benefits to upgrading:

$ pip install --upgrade 'omero-py>=5.16.0"'

Configuration

We now recommend that omero-web is installed in a separate python virtual environment.

If you are migrating to a new virtual environment, where $OMERODIR does not refer to a server with an existing config,
you will need to export and re-import the configuration from your previous installation.

OLD_INSTALLATION/bin/omero config get --show-password > properties.backup

omero-web virtual env
omero config load properties.backup

If you generated configuration stanzas using omero web config which enables OMERO.web via NGINX, you should
regenerate your config files, remembering to merge in any of your own modifications if necessary. You should carry
out this step even for minor version upgrades as there may be fixes which require it.

[omero web config nginx > new.confg

More examples can be found under Configuration.

Plugin updates

OMERO.web plugins are very closely integrated into the webclient. For this reason, it is possible that an update of
OMERO will cause issues with an older version of a plugin. It is best when updating the server to also install any
available plugin updates according to their own documentation.

All official OMERO.web plugins can be installed from PyPI. You should remove all previously installed plugins and
install the latest versions using pip.

Clear the sessions store (optional)

During an upgrade, it might be necessary to clear the sessions store before restarting OMERO.web. This is the case
when either OMERO.web or Django introduced backwards incompatible changes in the way sessions are stored or if
the session serialization format has been modified via omero.web.session_serializer.

Warning: Clearing the sessions store will terminate all OMERO.web sessions and log out all users.

The process for clearing the session store depends on the storage backend:

* OMERO.web sessions are stored on the filesystem if the omero.web.session_engine property is set to either
omeroweb.filesessionstore or django.contrib.sessions.backends.file or if omero.web.session_engine is unset.

188 Chapter 2. System Administrator Documentation

https://pypi.org

OMERO

Sessions are stored under a temporary folder determined by the output of tempfile. gettempdir(), usually /tmp. By
default, each session is stored as a separate file prefixed with sessionid so the following command will delete all
stored sessions:

[$ rm /tmp/sessionid*]

If omero.web.session_cookie_name is set, its value will be used as the prefix of the file sessions and the
command above needs to be modified accordingly.

¢ OMERO.web sessions are stored using the Redis store if the omero.web.session_engine property is set to
django.contrib.sessions.backends.cache and Redis is configured via the omero.web.caches property by set-
ting the BACKEND to django.core.cache.backends.redis.RedisCache and LOCATION to the URL of the Redis
instance.

Sessions are stored as key/value pairs in the Redis store with the name of the key including
django.contrib.sessions.cache and can be managed using the redis-cl1i utility. Assuming a default local Redis
store, the following command can be used to delete all the Redis keys associated with OMERO.web sessions:

[$ redis-cli keys '*django.contrib.sessions.cache*' | xargs redis-cli del]

If Redis URL points to a different hostname, port or database number, the command above needs to be adjusted
accordingly.

Restart OMERO.web

Finally, restart OMERO.web with the following command:

[$ omero web restart J

Troubleshooting

If you encounter errors during an OMERO.web upgrade, etc., you should retain as much log information as possible,
including the output of omero web diagnostics to the OMERO team via the mailing lists available on the support

page.
Maintenance & Scaling

If you have not already done so, there are a number of additional steps that can be performed on your OMERO.web
installation to improve its functioning. For example, you may need to set up a regular task to clear out any stale
OMERO.web session files. More information can be found in the various walkthroughs available from OMERO.web
installation and maintenance.

Additionally, it is recommended to use a WSGI-capable server such as NGINX. Information can be found under
OMERO.web installation and maintenance.

2.3. Upgrading 189

https://redis.io/
https://www.openmicroscopy.org/support/

OMERO

2.4 Maintenance
This section contains instructions for administering, troubleshooting, and backing-up your installation.

2.4.1 Troubleshooting OMERO

Which user account and password do | use where?

Accounts table, including the example usernames and passwords used in the installation guides:

Account type Function Username Password
System Administrator/Root

System (Database) service account postgres

System (OMERO) service account omero_user

Database Database administrator postgres

Database Database user db_user db_password
OMERO OMERO administrator root root_password
OMERO OMERQO users

Note: These example usernames and passwords are provided to help you follow the installation guide examples. Do
not use root_password or db_password; substitute your own passwords.

There are a total of three types of user accounts: system, database and OMERO accounts.

System accounts

These are accounts on your machine or directory server (e.g. LDAP, Active Directory). One account is used for
running the OMERO server (either your own or one you created specially for running OMERO, referred to here as
“omero_user”). There is also a user called the “root-level user” on the installation page. A separate “postgres” user is
used for running the database server. The “omero_user” account runs the OMERO server, and owns the files uploaded
to OMERO. This account must have permission to write to the /OMERQ/ binary repository. Some operations in the
install scripts require the root-level/administrator-level privileges in order to use another account to perform particular
actions e.g. the “postgres” user to create a database. However the OMERO.server should never be run as the
root-level/administrator-level user or as the system-level “postgres” user.

Database accounts

The PostgreSQL database system contains user and administrative accounts; these are completely separate from the
system accounts, above, existing only inside the database. The database administrative user (“postgres”) is the owner
of all the database resources, and can create new users internal to the database. A single database account is used at
run time by OMERO to talk to your database. Therefore, you must configure the database values during installation:

$ omero config set omero.db.user db_user
$ omero config set omero.db.pass db_password

Note: Do not use db_user or db_password here; substitute your own username and password.

190 Chapter 2. System Administrator Documentation

OMERO

A database user may have the same name as an account on your machine, in which case a password might not be
necessary.

OMERO accounts

These accounts only exist inside the OMERO system, and are completely separate from both the system and database
accounts, above. The first user which you will need to configure is the “root” OMERO user (different from any root-level
Unix account). This is done by setting the password in the database script, see Database tools.

Other OMERO users can be created via the OMERO.web admin tool. None of the passwords have to be the same, in
fact they should be different unless you are using the LDAP plugin.

Server fails to start

1. Check that you are able to successfully connect to your PostgreSQL installation as outlined on the PostgreSOL
page).

2. Check the permissions on your omero.data.dir (/OMERO by default) as outlined on the OMERO.server instal-
lation page.

3. Are you on a laptop? If you see an error message mentioning “node master couldn’t be reached”, you may be
suffering from a network address swap. Ice does not like to have its network changed as can happen if the server
is running on a laptop on wireless. If you lose connectivity to icegridnode, you may have to kill it manually via
kill PIDor killall icegridnode (under Unix).

4. If you see an error message mentioning “Freeze::DatabaseException” or ‘“could not lock file:
var/registry/__Freeze/lock”, your icegrid registry may have become corrupted. This is not a problem, but
it will be necessary to stop OMERO and delete the var/master directory (e.g. rm -rf var/master). When
restarting OMERO, the registry will be automatically re-created.

5. If you see an error message mentioning “Protocol family unavailable”, you will need to set the Ice.IPv6 property
with omero config set Ice.IPv6 0.

6. If you upgraded from a 5.0.2 server or older and copied the entire content of the etc/grid directory from the
old server to the new server, you will need to revert the changes made to templates.xml to generate the new
memory settings.

7. If OMERO starts up, but fails to respond to connection requests, check netstat -a for port 4064. If nothing is
listening on 4064, you may need to specify which network interface to use. omero config set Ice.Default.
Host 127.0.0. 1, for example, would force OMERO to only listen on localhost. See Proxy and Endpoint Syntax
for more information.

Remote clients cannot connect to OMERO installation

OMERO.web connects but not OMERO.insight

The Admin section of OMERO.web appears to work properly and you may or may not have created some users, but no
matter what you do remote clients will not speak to OMERO. OMERO.insight gives you an error message similar to
the following despite giving the correct username and password:

This is often due to firewall misconfiguration on the machine that runs your OMERO server, affecting the ability of
remote clients to locate it. A common issue is when port TCP/4064 and/or TCP/4063 is not opened, run telnet
server-name 4064 (resp. 4063) to check if this is the case. The output of the command should be:

2.4. Maintenance 191

https://trac.openmicroscopy.org/ome/ticket/7325
https://trac.openmicroscopy.org/ome/ticket/5576
https://trac.openmicroscopy.org/ome/ticket/7325
https://trac.openmicroscopy.org/ome/ticket/7325
https://trac.openmicroscopy.org/ome/ticket/12527
https://trac.openmicroscopy.org/ome/ticket/12527
https://doc.zeroc.com/ice/3.6/client-side-features/proxies/proxy-and-endpoint-syntax

OMERO

re 06 Login Failure

Failed to log onto OMERO.
@ Please check your user name

and/or password or try again later.

o

Trying server-name. ..
Connected to server-name.
Escape character is 'A]'

Please see the Server security and firewalls page for more information.

SSL connection issues

e javax.net.ssl.SSLHandshakeException: DH ServerKeyExchange does not comply to
algorithm constraints

* javax.net.ssl.SSLHandshakeException: The server selected protocol version TLS10 is
not accepted by client preferences [TLS12]

e SSL handshake failure: The parameter is incorrect.

e reason = SSL error occurred for new outgoing connection: remote address = XXX.XXX.
XXX.XXX:4064 dh key too small

These errors indicate the client is unable to establish a secure connection with the server. Deployment platforms show
a trend of making the transport layer security policy tighter by default.

The recommended way to overcome SSL connection issues for OMERO clients connecting to the server is to use the
omero-certificates plugin available from PyPI.

Follow the instructions from Server certificate to create and configure self-signed certificates as necessary on the
OMERO:.server and restart it as normal for the changes to take effect.

Server crashes with...

¢ X11 connection rejected because of wrong authentication
e X connection to localhost:10.0 broken (explicit kill or server shutdown).

OMERO uses image scaling and processing techniques that may be interfered with when used with SSH (Secure Shell)
X11-forwarding. You should disable SSH X11-forwarding in your SSH session by using the -x flag as follows before
you restart the OMERO.server:

[ssh -X my_server.examples.com

192 Chapter 2. System Administrator Documentation

https://pypi.org/project/omero-certificates/
https://pypi.org

OMERO

OutOfMemoryError / PermGen space errors in OMERO.server logs

Out of memory or permanent generation (PermGen) errors can be caused by many things. You may be asking too much
of the server. Or you may require an increase in the maximum Java heap or the permanent generation space. This can
be done by modifying the configuration for your OMERO.server. See Memory configuration.

Similarly, if you are finding out of memory errors in one of the other process logs (e.g. Indexer-0.log or
PixelData-0.1log), you might try optimizing the JVM memory settings.

Furthermore, under certain conditions access of images greater than 4GB can be problematic on 32-bit platforms due
to certain bugs within the Java Virtual Machine including Bug ID: 4724038. A 64-bit platform for your OMERO.server
is HIGHLY recommended.

Too many open files

This is most often seen as an error during importing and is caused by the number of opened files exceeding the limit
imposed by your operating system. It might be due to OMERO leaking file descriptors; if you are not using the latest
version, please upgrade, since a number of bugs which could cause this behavior have been fixed. It is also possible
for buggy scripts which do not properly release resources to cause this error.

To view the current per-process limit, run

[ulimit “Hn]

which will show the hard limit for the maximum number of file descriptors (-Sn will show the soft limit). This limit
may be increased. On Linux, see /etc/security/limits.conf (global PAM per-user limits configuration); it is
also possible to increase the limit in the shell with

[ulimit “n newlimit J

providing that you are uid O (other users can only increase the soft limit up to the hard limit). To view the system limit,
run

[cat /proc/sys/fs/file-max }

We recommend 8K as a minimum number of files limit for production systems, with 16K being reasonable for
bigger machines.

On Mac OS X, the standard ulimit will not work properly. There are several different ways of setting the ulimit,
depending upon the version of OS X you are using, but the most common are to edit sysctl.conf or launchd. conf
to raise the limit. However, note that both of these methods change the defaults for every process on the system, not
just for a single user or service.

Increasing the number of available filehandles via ‘ulimit -n’

ValueError: filedescriptor out of range in select() - this is a known issue in Python versions prior to 2.7.0. See #6201
and Python Issue #3392 for more details.

2.4. Maintenance 193

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=4724038
https://trac.openmicroscopy.org/ome/ticket/6201
https://bugs.python.org/issue3392

OMERO

Directory exists but is not registered

Import errors of type Directory exists but is not registered: CheckedPath(username_id) suggest a
server-side issue under the ManagedRepository.

For production servers, this can be caused by a server crash during import or an issue at the file system level (permis-
sions, renaming). If the ManagedRepository/username_id folder is empty, you should try removing it before trying
another import.

For development servers, this may be caused by the binary directory not being cleaned after the database has been
wiped.

See also:
Upload problem: Directory exists but is not registered.
import: Directory exists but is not registered: CheckedPath(

[ome-devel] Directory exists but is not registered: CheckedPath(username_id)

Not enough heap space

[java.lang.OutOfMemoryError: Java heap space

)

If you get an out of memory error, you can try increasing the maximum Java heap space, by setting the JAVA_OPTS
variable before running the import command. For example to set a maximum heap space of 3GB:

$ export JAVA_OPTS=-Xmx3G
$ omero import ...

Another change that may be required is to adjust the OMERO.server configuration. Run the following command:

[$ omero config set omero.jvmcfg.percent 22 # 15 is the default

Then restart the OMERO.server.

DropBox fails to start: failed to get session

If the main server starts but DropBox fails with the following entry in var/log/DropBox.log,

2011-06-07 03:42:56,775 ERROR [fsclient.DropBox] (MainThread) Failed to get.
—Session:

then it may be that the server is taking a relatively long time to start.

A solution to this is to increase the number of retries and/or the period (seconds) between retries in etc/grid/
templates.xml

<property name="omero.fs.maxRetries" value="5"/>
<property name="omero.fs.retryInterval" value="3"/>

194 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=7537
https://www.openmicroscopy.org/community/viewtopic.php?f=6&t=7722&p=15264&hilit=CheckedPath#p15264
http://lists.openmicroscopy.org.uk/pipermail/ome-devel/2014-October/003020.html

OMERO

Search does not return expected results
If searching for a specific term does not return the expected results (e.g. searching for the name of a tag does not return

the full list of a user’s images annotated with that tag), there are a few things that may have gone wrong. See Missing
search results for more details.

OMERO.web issues
OMERO.web running but status says not started

If you upgraded OMERO but forgot to stop OMERO.web, processes will still be running. In order to kill stale processes
by hand, run:

[$ ps aux | grep django.pid]

Note: As Gunicorn is based on the pre-fork worker model it is enough to kill the master process, the one with the
lowest PID.

OMERO.web not available HTTP 404

Consult nginx error.log for more details.

The most common problem appears when the default configuration for location / is loaded prior to omeroweb.conf

"

" 1is not found (2: No such file or directory), client: 1.2.3.4, server

2016/01/01 00:00:00 [error] 1234#0: *5 "/usr/share/nginx/html/webclient/login/index.html ’

OMERO.web not responding/timeout issues

[[CRITICAL] WORKER TIMEOUT (pid:1234)]

OMERO.web deployed with Gunicorn relies on the operating system to provide all of the load balancing while handling
requests. Adjust the timeout using omero.web.wsgi_timeout and scale the number of omero.web.wsgi_workers
starting with (2 x NUM_CORES) + 1 workers. For more details refer to Configuration.

Issues with downloading data from OMERO.web

An Configuration is available for testing with nginx if you are encountering problems with downloads failing. You can
also configure OMERO.web to limit downloads - refer to the OMERO.web installation and maintenance documentation
and Download restrictions for further details.

2.4. Maintenance 195

OMERO

OMERO.web piecharts

‘Drive space’ does not generate pie chart or ‘My account’ does not show markup picture and crop the picture options.

Error message says: ‘Piechart could not be displayed. Please check log file to solve the problem’. Please check var/
log/OMEROweb . 1og for more details. There are a few known possibilities:

* ‘TclError: no display name and no $DISPLAY environment variable’. Turn off the compilation of TCL support
in Matplotlib.

e ‘ImportError: No module named Image’. Install Pillow (packages should be available for your distribution).
Also double check if all of the prerequisites were installed from OMERO.web deployment.

OMERO.web fails to start

If OMERO.web fails to start either with an error or type binascii.Error: Incorrect padding or json.
decoder. JSONDecodeError, your existing sessions are likely incompatible and you will need to follow the steps
indicated at Clear the sessions store (optional) to clear the sessions store.

Troubleshooting performance issues with the clients

If you are having issues with slowdown and timeouts in the clients, there are three things to check:
* your network connection
« if you are running out of memory (processing large datasets can cause problems)
* whether your server’s HOME directory is on a network share

In the final case, two issues arise. Firstly, when performing some operations, the clients make use of temporary file
storage and log directories, as described in the Client configuration section of System requirements. If your home
directory is stored on a network, possibly NFS mounted (or similar), then these temporary files are being written and
read over the network which can slow access down. Secondly, the OMERO.server also accesses the temporary and log
folders of the user the server process is running as. As the server makes heavier use of these folders than the clients, if
the OMERO.server user directory is stored on a network drive then slow performance can occur.

To resolve this, define the OMERO_TMPDIR environment variable to point at a temporary directory located on the local
file system (e.g. /tmp/omero).

Other issues
Connection problems and TCP window scaling on Linux systems

Later versions of the 2.6 Linux kernel, specifically 2.6.17, have TCP window scaling enabled by default. If you are
having initial logins never timeout or problems with connectivity in general you can try turning the feature off as follows:

[# echo 0 > /proc/sys/net/ipv4/tcp_window_scaling]

196 Chapter 2. System Administrator Documentation

https://matplotlib.org/
https://pillow.readthedocs.org

OMERO

Server or clients print “WARNING: Prefs file removed in background...”

Nov 12, 2008 3:02:50 PM java.util.prefs.FileSystemPreferences$7 run

WARNING: Prefs file removed in background /root/.java/.userPrefs/prefs.xml

Nov 12, 2008 3:02:50 PM java.util.prefs.FileSystemPreferences$7 run

WARNING: Prefs file removed in background /usr/lib/jvm/java-1.7.0-icedtea-1.7.0.0/jre/.
—.systemPrefs/prefs.xml

These warnings (also sometimes listed as ERRORS) can be safely ignored, and are solely related to how Java is installed
on your system. See Bug ID: 4751177 or this ome-users thread on our mailing list for more information.

Data corruption

If you are dealing with a data corruption issue, you may find the information on PixelService resolution order for
locating binary data for images useful.

PyTables version

Version 3.3 of PyTables contains a bug preventing its usage, see issue #598 . PyTables on Debian 9 should be installed
directly from PyPI instead of using python-tables. To install, run:

$ pip install 'tables<3.6'

2.4.2 OMERO.cli as an OMERO admin tool

When first beginning to work with the OMERO server, the omero db, omero config, and omero admin commands
will be the first you will need. For other important uses of Command Line see the links in “See Also” box.

Database tools

Rather than try to provide the functionality of a RDBM tool like psql, the omero db script command helps to
generate SQL scripts for building your database. You can then use those scripts from whatever tool is most comfortable
for you:

[$ omero db script --password secretpassword

Using OMERO5.4 for version

Using 0 for patch

Using password from commandline
Saving to /home/omero/OMERO5.4__0.sql

If you do not specify the OMERO root password on the command line you will be prompted to enter it.

2.4. Maintenance 197

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=4751177
http://lists.openmicroscopy.org.uk/pipermail/ome-users/2009-March/001465.html
https://github.com/PyTables/PyTables/issues/598#issuecomment-274154131
https://pypi.org

OMERO

Server configuration

The omero config command is responsible for reading/writing user-specific profiles stored under $OMERODIR/etc/
grid/config.xml. To get the current profile, use the omero config def command:

$ omero config def
default

You can then examine the current profile keys using omero config get and set key-value pairs using omero config
set:

$ omero config get
$ omero config set example "my first value"

$ omero config get
example=my first value

You can use the OMERO_CONFIG environment variable to point at a different profile, e.g.:

$ OMERO_CONFIG=another omero config def
another

$ OMERO_CONFIG=another omero config get
$ OMERO_CONFIG=another omero config set example "my second value"

$ OMERO_CONFIG=another omero config get
example=my second value

The values set via omero config set override those compiled into the server jars. The default values which are
set can be seen in Configuration properties glossary. To add several values to a configuration, you can pipe them via
standard in using omero config load. To grep for the example LDAP configuration from omero-server.properties

$ grep omero.ldap src/main/resources/omero-server.properties | OMERO_CONFIG=ldap omero..
—config load

$ OMERO_CONFIG=ldap omero config get
omero.ldap.attributes=objectClass
omero.ldap.base=ou=example,o=com
omero.ldap.config=false
omero.ldap.groups=
omero.ldap.keyStore=
omero.ldap.keyStorePassword=
omero.ldap.new_user_group=default
omero.ldap.password=
omero.ldap.protocol=
omero.ldap.trustStore=
omero.ldap.trustStorePassword=
omero.ldap.urls=ldap://localhost:389
omero.ldap.username=
omero.ldap.values=person

Each of these values can then be modified to suit your local setup. To remove one of the key-value pairs, pass no second
argument:

198 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-server/blob/v5.6.9/src/main/resources/omero-server.properties

OMERO

omero

omero

omero

omero

omero.
.1ldap.
omero.

omero.

ldap

.1ldap
ldap

ldap
.ldap
ldap

ldap.
.1ldap.
omero.
omero.

$ OMERO_CONFIG=ldap omero
$ OMERO_CONFIG=ldap omero
$ OMERO_CONFIG=ldap omero
$ OMERO_CONFIG=1dap omero

$ OMERO_CONFIG=ldap omero
omero.

config set
config set
config set
config set

config get

attributes=objectClass
base=ou=example, o=com

.config=false
ldap.
.new_user_group=
.password=

groups=

protocol=

default

.urls=1ldap://localhost:389
.username=
.values=person

omero

omero

omero

omero

.ldap.trustStore
.ldap.trustStorePassword
.ldap.keyStore

.ldap.keyStorePassword

If you will be using a particular profile more frequently you can set it as your default using the omero config def
command:

[$ omero config def ldap

)

And finally, if you would like to remove a profile, for example to wipe a given password off of a system, use omero
config drop:

[$ omero config drop

Server administration

Server start

Once your database has been properly configured and your config profile is set to use that database, you are ready to
start your server using the omero admin start command:

[$ omero admin start

This command performs the following operations in order:

1. rewrites the configuration files if omero admin start --force-rewrite is passed or the server has never
been started

AN L AW

. starts the server

. waits until the server is up

. aborts the command if a server is running

. checks the server status, i.e. pings the master node using the IceGrid administration tool

. rewrites the configuration files if it has not been done at step 1

2.4. Maintenance

199

OMERO

Most configuration files under etc/grid are generated using the templates under etc/grid/templates and the
server configuration stored in etc/grid/config.xml. The rewriting step updates the JVM memory settings (see
Memory configuration) and the server ports (see Ports) based on the server configuration.

-h, --help
Display the help for this subcommand.

--foreground

This option is particularly useful for debugging and maintenance and allows for starting the server up in the
foreground, that is without creating a daemon on UNIX-like systems. During the lifetime of the server, the
prompt from which it was launched will be blocked.

--force-rewrite

This option forces the server configuration files under etc/grid to be rewritten before the status of the server
is checked.

Server stop

To stop a running server, you can invoke the omero admin stop subcommand:

[$ omero admin stop

This command does the following operations in order:
1. rewrites the server configuration files if omero admin stop --force-rewrite is passed
2. checks the server status, i.e. pings the master node using the IceGrid administration tool
3. aborts the command if no server is running
4. stops the server
5. waits until the server is down
-h, --help
Display the help for this subcommand.

--force-rewrite

This option forces the configuration files to be rewritten before the server status is checked.

Server restart

To stop and start the server in a single command, you can use the omero admin restart command:

[$ omero admin restart

The restart subcommand supports the same options as omero admin start.

200 Chapter 2. System Administrator Documentation

OMERO

Server diagnostics

To debug a server or inspect the configuration, you can use the omero admin diagnostics command:

[$ omero admin diagnostics]

The output of this command will report information about:
* the server prerequisites (psql, java)
* the server environment variables
* the server memory settings and ports

* the status of the binary repository

User/group management

The omero user and omero group commands provide functionalities to add and manage users and groups on your
database.
See also:

* Moving objects between groups

* Changing ownership of objects

User creation

New users can be added to the database using the omero user add command:

[$ omero user add -h]

During the addition of the new user, you will need to specify the first and last name of the new user and their username
as well as the groups the user belongs to. To add John Smith identified as jsmith as a member of the group named
test-group, enter:

[$ omero user add jsmith John Smith --group-name test-group]

Additional parameters such as the email address, institution, middle name etc. can be passed as optional arguments to
the omero user add command.

For managing the permissions of restricted administrators, OMERO.cli does provide means but that functionality is not
yet offered in a friendly manner by the omero user command. The OMERO.web Admin interface is recommended
for this task instead.

If you are using ldap as an authentication backend, you can create an OMERO user account for jsmith using the omero
ldap create command, which allows the administrator to add jsmith to an OMERO group, before they have ever
logged in to OMERO:

[$ omero ldap create jsmith }

2.4. Maintenance 201

https://help.openmicroscopy.org/facility-manager#lightadmin

OMERO

Converting non-LDAP users to LDAP authentication

If you want to take an existing (non-LDAP) user and ‘upgrade’ them to using LDAP you can do so using the omero
ldap setdn command

[$ omero ldap setdn -h

The process is also reversible so that the OMERO password for a user rather than the LDAP password will be used.
See the caveat in the setdn help output below:

usage: omero ldap setdn [-h] [--user-id USER_ID]
[--user-name USER_NAME]
[--group-id GROUP_ID]
[--group-name GROUP_NAME] [-C]
[-s SERVER] [-p PORT] [-g GROUP]
[-u USER] [-w PASSWORD] [-k KEY]
[--sudo ADMINUSER] [-q]
choice

Enable or disable LDAP login for user (admins only)

Once LDAP login is enabled for a user, the password set via OMERO is
ignored, and any attempt to change it will result in an error. When

you disable LDAP login, the previous password will be in effect, but if the
user never had a password, one will need to be set!

Positional Arguments:
choice Enable/disable LDAP login (true/false)

Optional Arguments:
In addition to any higher level options

-h, --help show this help message and exit
--user-id USER_ID ID of the user.

--user-name USER_NAME Name of the user.

--group-id GROUP_ID ID of the group.

--group-name GROUP_NAME Name of the group.

Login arguments:
Environment variables:

OMERO_USERDIR Set the base directory containing the user's files.
Default: $HOME/omero

OMERO_SESSIONDIR Set the base directory containing local sessions.
Default: $OMERO_USERDIR/sessions

OMERO_TMPDIR Set the base directory containing temporary files.
Default: $OMERO_USERDIR/tmp
OMERO_PASSWORD Set the user's password for creating new sessions.

Ignored if -w or --password is used.

Optional session arguments:

(continues on next page)

202 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

-C, --create Create a new session regardless of existing ones

-s SERVER, --server SERVER OMERO server hostname

-p PORT, --port PORT OMERO server port

-g GROUP, --group GROUP OMERO server default group

-u USER, --user USER OMERO username

-w PASSWORD, --password PASSWORD OMERO password

-k KEY, --key KEY OMERO session key (UUID of an active session)

--sudo ADMINUSER Create session as this admin. Changes meaning of.
—.password!

-q, --quiet Quiet mode. Causes most warning and diagnostic.
—.messages to be suppressed.

User deactivation

To deactivate a user, remove him/her from the system group user. Use the command omero user leavegroup and
specify the user group as the target:

Remove jsmith from group user
$ omero user leavegroup user --name=jsmith

To reactivate the user, add him/her back to the system group user i.e.:

[$ omero user joingroup user --name=jsmith]

User editing

Updating the details of a user e.g. the email address can be achieved using the omero obj update command:

Determine the ID of jsmith

$ omero user info --user-name jsmith

Change the email address of jsmith. Replace 123 by the ID of jsmith
$ omero obj update Experimenter:123 email=jsmith@new_address.com

Group creation

New groups can be added to the database using the omero group add command:

[$ omero group add -h]

During the addition of the new group, you need to specify the name of the new group:

[$ omero group add newgroup J

The permissions of the group are set to private by default. Alternatively you can specify the permissions using --perms
or --type optional arguments:

$ omero group add read-only-1 --perms='rwr---'
$ omero group add read-annotate-1 --type=read-annotate

See also:

2.4. Maintenance 203

OMERO

Groups and permissions system
Description of the group permissions levels.

Lists of users/groups on the OMERO server can be queried using the omero user list and omero group list
commands:

$ omero user list
$ omero group list

Group membership

Users can be added to existing groups using the omero user joingroup or omero group adduser commands.
Similarly, users can be removed from existing groups using the omero user leavegroup or omero group
removeuser commands:

Add jsmith to group read-annotate-1

omero group adduser jsmith --name=read-annotate-1
Remove jsmith from group read-annotate-1

omero group removeuser jsmith --name=read-annotate-1
Add jsmith to group read-only-1

omero user joingroup read-only-1 --name=jsmith
Remove jsmith from group read-only-1

omero user leavegroup read-only-1 --name=jsmith

A H A H A H e H

By passing the --as-owner option, these commands can also be used to manage group owners

Add jsmith to the owner list of group read-annotate-1

$ omero group adduser jsmith --name=read-annotate-1 --as-owner
Remove jsmith from the owner list of group read-annotate-1

$ omero user leavegroup read-annotate-1 --name=jsmith --as-owner

Group copy

To create a copy of a group, you must first create a new group using the omero group add command:

[$ omero group add read-only-2 --perms='rwr---' }

Then you can use the omero group copyusers command to copy all group members from one group to another:

[$ omero group copyusers read-only-1 read-only-2 J

To copy the group owners, use the same command with the --as-owner optional argument:

[$ omero group copyusers read-only-1 read-only-2 --as-owner]

204 Chapter 2. System Administrator Documentation

OMERO

Group modification

To change the permissions of a group, for example to make the group read-annotate-1 a read-write group, run:

[$ omero group perms --perms='rwrw--' --name='read-annotate-1'

If you want to change its name to read-write-1 afterwards, run:

[$ omero obj update ExperimenterGroup:123 name='read-write-1']

Adjusting administrator restrictions

OMERO 5.4 introduced the concept of a restricted administrator. The meaning and representation of the server’s
underlying permissions restrictions is described in developer documentation. OMERO.web offers easy management
of restrictions and is recommended for setting up restricted administrators via its Admin tab.

OMERO.cli does not offer easy management of restrictions because support is yet to be added. In the meantime it can
already manipulate administrator restrictions in the awkward manner described hereunder.

Warning: OMERO.web provides a simplified view of the available restrictions: the permissions mapping is
such that checking one box in the web interface may lift multiple underlying restrictions from an administrator.
The recommended OMERO.web management interface may thus prove confusing if OMERO.cli has been used
to set a combination of restrictions that does not correspond to those bundles of related restrictions available in
OMERO.web.

View an administrator’s restrictions

For an administrator with user ID 123,

$ omero hgl "SELECT ap.name FROM Experimenter user JOIN user.config AS ap WHERE user.id.
<= 123 AND ap.name LIKE 'AdminPrivilege:%' AND LOWER(ap.value) <> 'true' ORDER BY ap.
—name"

lists their applicable restrictions such that the administrator may not exercise privileges for that operation.

Set a restriction on an administrator

For an administrator with user ID 123,

[$ omero obj map-set Experimenter:123 config AdminPrivilege:SomePrivilege false

restricts them so that they may no longer exercise SomePrivilege.

2.4. Maintenance 205

https://help.openmicroscopy.org/facility-manager#lightadmin

OMERO

Clear a restriction from an administrator

For an administrator with user ID 123,

[$ omero obj map-set Experimenter:123 config AdminPrivilege:SomePrivilege true]

removes a restriction so that they may exercise SomePrivilege.

Note: You may not clear a restriction from an administrator if you have that same restriction applying to yourself.

Warning: Never clear AdminPrivilege:ReadSession from a restricted administrator unless clearing all their re-
strictions to make them into a full administrator. No restricted administrator should be able to read all OMERO
sessions.

Repository management

Since 5.0.3 it is possible to list images, filesets and the repositories that contain them. At an administrator-only level it
is also possible to move filesets. This functionality is provided by the omero fs command. See

[$ omero fs -h

Listing repositories

The omero fs repos subcommand lists the repositories used by OMERO. For example

omero fs repos

| Id | UUID | Type | Path

e T T ettt fommm - e
O | 1 | 83bf5c68-8236-47ff-ae3e-728674eb0103 | Managed | /OMERO/ManagedRepository
1| 2 | ad899754-bff0-4605-a234-acd4dal78£f3b | Public | /OMERO
2 | 3 | ScriptRepo | Script | /dist/lib/scripts

The options available to this subcommand are:
-h, --help

Display the help for this subcommand.
--style {plain,csv,json,sql}

This option determines the output style, tabular sql being the default as in the previous example. The csv style
is comma-separated values with an initial header row, plain is the same as csv but without the header row. json
returns an array of JSON objects that can be piped to other tools.

--managed

This option lists only Managed repositories.

For example

206 Chapter 2. System Administrator Documentation

OMERO

omero fs repos --managed --style=csv

#,1d,UUID, Type,Path
0,1,83bf5c68-8236-47ff-ae3e-728674eb0103,Managed, /OMERO/ManagedRepository

Listing filesets

The omero fs sets subcommand lists filesets by various criteria. Filesets are bundles of original data imported into
OMERO 5 and above, which represent one or more images. For example

omero fs sets

| Id | Prefix | Images | Files | Transfer
——— - et et e e +-—— - +-—— - to—mm -
® | 79853 | user-3_9/2014-07/22/16-41-04.244/ | 1 | 1

1 | 79852 | user-3_9/2014-07/22/10-44-11.235/ | 1 | 1 |

2 | 79851 | user-3_9/2014-07/22/10-44-07.300/ | 1 | 1

3 | 79813 | user-3_9/2014-07/21/14-13-02.353/ | 1 | 1

4 | 79812 | user-3_9/2014-07/21/14-13-00.182/ | 1 | 1

5 | 79811 | user-3_9/2014-07/21/14-12-59.212/ | 1 | 1

6 | 79810 | user-3_9/2014-07/21/14-12-57.896/ | 1 | 1 |

7 | 79809 | user-3_9/2014-07/21/14-10-22.436/ | 3 | 600 |

24 | 79772 | user-4_5/2014-07/18/17-14-43.631/ | 1 | 1 |

(25 rows, starting at ©® of approx. 50173)

The options available to this subcommand are:
-h, --help

Display the help for this subcommand.
--style {plain,csv, json,sql}

See omero fs repos --style.
--limit LIMIT

This option specifies the maximum number of return values, the default is 25.
--offset OFFSET

This option specifies the number of entries to skip before starting the listing, the default, 0, is to skip no entries.
--order {newest,oldest,prefix}

This option determines the order of the rows returned, newest is the default.
--without-images

This option lists only those filesets without images, these may be corrupted filesets.

--with-transfer WITH_TRANSFER [WITH_TRANSFER ...]
This option lists only those filesets imported using the given in-place import methods.

--check

This option checks each fileset for validity by recalculating each file’s checksum and comparing it with the
checksum recorded upon import. This may be slow. This option is available to administrators only.

2.4. Maintenance 207

OMERO

--extended

With this option more details are provided for each returned value. This may be slow.

For example

omero fs sets --order oldest --limit 3 --offset 5 --check

| Id | Prefix | Images | Files | Transfer | Check
e et e R R T R
® | 54 | user-3_9/2014-06/09/09-24-28.037/ | 1 | 1 | | OK

1 | 55 | user-3_9/2014-06/09/09-24-31.354/ | 1 | 1 | | OK

2 | 57 | user-5_4/2014-06/09/11-01-00.557/ | 1 | 1 [| OK

(3 rows, starting at 5 of approx. 78415)

Listing images

The omero fs images subcommand lists imported images by various criteria. This subcommand is useful for show-
ing pre-FS (i.e. OMERO 4.4 and before) images which have their original data archived with them. For example

omero fs images

| Image | Name | FS | # Files | Size
——— - o t-—————- tommm - tmmmm -
O | 102803 | kidney_TF1_1.bmp.ome.tiff | 79853 | 1 | 435.1 KB

1 | 102802 | 4kx4k.jpg | 79852 | 1 | 1.7 MB
2 | 102801 | 2kx2k.jpg | 79851 | 1 | 486.3 KB
3 | 102773 | multi-channel.ome.tif | 79813 | 1 | 220.3 KB
4 | 102772 | multi-channel-z-series.ome.tif | 79812 | 1 | 1.1 MB
5 | 102771 | multi-channel-time-series.ome.tif | 79811 | 1 | 1.5 MB
6 | 102770 | multi-channel-4D-series.ome.tif | 79810 | 1 | 7.4 MB
7 | 102769 | 001_001_000_000.tif [Well B6] | 79809 | 600 | 1.1 GB
24 | 102732 | 00027841.png | 79774 | 1 | 235 B

(25 rows, starting at O of approx. 117393)

The options available to this subcommand are:
-h, --help

Display the help for this subcommand.
--style {plain,csv, json,sql}

See omero fs repos --style.
--limit LIMIT

See omero fs sets --limit.
--offset OFFSET

See omero fs sets --offset.
--order {newest,oldest,prefix}

See omero fs sets --order.

--archived

With this option the subcommand lists only images with archived data.

208 Chapter 2. System Administrator Documentation

OMERO

--extended

With this option more details are provided for each returned value. This may be slow.

For example

omero fs images --archived --offset 16 --limit 3

| Image | Name | FS | # Files | Size
———t— o Fom e fom -
® | 15481 | UMDOO1_ORO.svs [Series 1] | | 1 | 12.7 MB
1 | 15478 | biosamplefullframetif.tif | | 1 | 32.0 MB
2 | 10018 | 050118.1lei [07-13-a] | | 4 | 4.8 MB

(3 rows, starting at 16 of approx. 833)

Renaming filesets

The omero fs rename subcommand moves an existing fileset, specified by its ID, to a new location. This subcom-
mand is available to administrators only.

It may be useful to rename an existing fileset after the import template (omero. fs.repo.path) has been changed to
match the new template. By default the files in the fileset and the accompanying import log are moved. For example,
after adding the group name and group ID to template and changing the date format

$ omero fs rename 9

Renaming Fileset:9 to pg-0_3/user-0_2/2014-07-23/16-48-20.786/

Moving user-0_2/2014-07/23/16-31-51.070/ to pg-0_3/user-0_2/2014-07-23/16-48-20.786/
Moving user-0_2/2014-07/23/16-31-51.070.1og to pg-0_3/user-0_2/2014-07-23/16-48-20.786.
—log

The ID can be given as a number or in the form Fileset:ID.
The options available to this subcommand are:
-h, --help

Display the help for this subcommand.

--no-move

With this option the files will be left in place to be moved later. Advice will be given as to which files need to be
moved to complete the renaming process. Note that if the files are not moved then the renamed filesets will not
be accessible until the files have been moved into the new positions.

For example

$ omero fs rename Fileset:8 --no-move

Renaming Fileset:8 to pg-0_3/user-0_2/2014-07-23/16-49-23.543/

Done. You will now need to move these files manually:

mv /OMERO/ManagedRepository/user-0_2/2014-07/23/16-29-14.809/ /OMERO/ManagedRepository/
—pg-0_3/user-0_2/2014-07-23/16-49-23.543/

mv /OMERO/ManagedRepository/user-0_2/2014-07/23/16-29-14.809.1og /OMERO/
—ManagedRepository/pg-0_3/user-0_2/2014-07-23/16-49-23.543.10g

2.4. Maintenance 209

OMERO

Note: The omero fs rename subcommand is currently disabled pending a bug-fix.

Detailing disk usage

The omero fs usage subcommand provides details of the underlying disk usage for various types of objects. This
subcommand takes optional positional arguments of object types with ids and returns the total disk usage of the specified
objects.

For example

omero fs usage Image:30001,30051 Plate:1051 --report

Total disk usage: 1064320138 bytes in 436 files

component | size (bytes) | files
______________ eyl __
Thumbnail | 582030 | 256
Job | 1772525 | 2
Pixels | 49545216 | 12
FilesetEntry | 1011947729 | 124
Annotation | 472638 | 42

(5 rows)

If no positional argument is given then the total usage for the current user across all of that user’s groups is returned.

For example

omero fs usage --report

Total disk usage: 4526436430274 bytes in 26078 files

component | size (bytes) | files
______________ g __
Pixels | 14654902013 | 2961
FilesetEntry | 4510839804505 | 8820
Thumbnail | 17337131 | 8110
Job | 265665153 | 2792
OriginalFile | 1757277 | 109
Annotation | 13167582976 | 3910
(6 rows)

If multiple objects are given and those objects contain common data then that usage will not be counted twice. For
example, if two datasets contain the same image then the fileset for that image will not be double-counted in the total
disk usage.

The options available to this subcommand are:
-h, --help

Display the help for this subcommand.
--style {plain,csv, json,sql}

See omero fs repos --style.

--wait WAIT

Number of seconds to wait for the processing to complete. To wait indefinitely use < 0, for no wait use 0. The
default is to wait indefinitely.

210 Chapter 2. System Administrator Documentation

OMERO

--size_only
Print total bytes used, in bytes, with no extra text, this is useful for automated scripting.
--report
Print detailed breakdown of disk usage by types of files. This option is ignored if —size_only is used.
--units {K,M,G,T,P}
Units to use for disk usage for the total size using base-2. The default is bytes.
--groups

Print size for all of the current user’s groups, this includes the user’s own data and the data of other group members
visible to the user. This option only applies if no positional arguments are given.

For example

omero fs usage --groups --size_only -C -u user-1

4576108188820

omero fs usage Project:1,2 Dataset:5 --units M --report

Total disk usage: 1432 MiB in 121 files

component | size (bytes) | files
____________ gyl
Thumbnail | 73710 | 34
Pixels | 1499341282 | 34
Annotation | 3000028 | 53

(3 rows)

Creating directories

For directory creation in a Managed repository use omero fs mkdir: this creates both the directory on the underlying
filesystem and the corresponding entry in the OMERO server’s database. The new directory will be owned by the root
user and in the user group. The options available to this subcommand are:

-h, --help
Display the help for this subcommand.

--parents

Ensure that the whole given path exists in the Managed repository. Analogous to the common mkdir’s
--parents option, originally simply -p in IEEE Std 1003.1-2008.

See also:

Command Line Interface as an OMERQO client
User documentation for the Command Line Interface

Command Line Interface as an OMERQO development tool
Developer Documentation for the Command Line Interface

Help for any specific CLI command can be displayed using the -h argument. See Command line help for more infor-
mation.

2.4. Maintenance 211

OMERO

2.4.3 OMERO.server backup and restore

Cleaning up your binary repository

As detailed in Binary data, it is possible that some files may be left behind when a delete action is performed. This was
mostly an issue on Windows, which is no longer supported for OMERO server, but is still possible on Posix systems. If
you think files have been left behind e.g. after a hard-reboot, a script to clean these up is included in the OMERO.server
distribution 1ib/python/omero/util/cleanse.py, which can be used so:

[$ omero admin cleanse /OMERO]

Note that only items not listed in the relational database (i.e. previously failed deletes) and empty directories will be
cleaned up by this script.

Note: If you are cleaning a large repository and the process runs for a long time but does not appear to succeed,
you may find that running $ omero sessions keepalive in one shell and then running the cleanse command from
another shell allows the process to finish without timing out.

Managing OMERO.server log files

Your OMERO:.server will produce log files that are rotated when they reach 512MB. These directories will look like:

omero_dist $ 1s var/log
Blitz-0.log FileServer.log MonitorServer.log Processor-0.log master.out
DropBox.log Indexer-0.log OMEROweb. log master.err

Any files with a . 1, .2, .3 etc. suffix may be compressed or deleted.

OMERO.server log file location

The log file directory may also be relocated to different storage by modifying the etc/grid/default.xml file:

<variable name="OMERO_LOGS" value="var/log/" />

Backing up OMERO

Understanding backup sources

OMERO:.server has three main backup sources:
1. PostgreSQL database (assumed to be omero_database)
2. OMERGO.server binary data store (assumed to be /OMERO)
3. OMERO.server configuration

Warning: You must back up (/) and (2) frequently.

212 Chapter 2. System Administrator Documentation

OMERO

Frequent backups taken while the server is still running are usually sufficient but you should be aware that they may
not be consistent snapshots. The safest course of action is to perform backups during server downtime when possible,
especially if you think you may need the backup.

You need to back up (3) only before you make changes. You can copy it into /OMERO/backup to ensure it is kept safe:

[$ omero config get > /OMERO/backup/omero.config J

Other backup sources

If you have edited etc/grid/(win)default.xml directly for any reason then you will also need to copy that file to
somewhere safe, such as /OMERO/backup.

The 1ib/scripts directory should also be backed up, but restoring it may pose issues if any of your users have added
their own “official scripts”. A github repository is available at https://github.com/ome/scripts which provides help for
merging your scripts directories.

Backing up your PostgreSQL database

Database backups can be achieved using the PostgreSQL pg_dump command. Here is an example backup script that
can be placed in /etc/cron.daily to perform daily database backups:

#!/bin/bash

DATE="date '+%Y-%m-%d_%H:%M:%S-%Z"'"
OUTPUT_DIRECTORY=/0MERO/backup/database
DATABASE="omero_database"
DATABASE_ADMIN="postgres"

mkdir -p $OUTPUT_DIRECTORY
chown -R $DATABASE_ADMIN $OUTPUT_DIRECTORY
su $DATABASE_ADMIN -c "pg_dump -Fc -f $OUTPUT_DIRECTORY/$DATABASE.S$DATE.pg_dump $DATABASE

"
—

Other database backup configurations are outside the scope of this document but can be researched on the PostgreSQL
website (Chapter 25. Backup and Restore).

Note: Frequent backups of your PostgreSQL database are crucial; you do not want to be in the position of trying to
restore your server without one.

Note: Consider OMERO database dumps to be sensitive and be accordingly cautious in allowing access to them. For
example, the session.uuid column contains UUIDs with which OMERO clients can attach to existing sessions.

2.4. Maintenance 213

https://github.com/ome/scripts
https://www.postgresql.org/docs/10/backup.html
https://www.postgresql.org/docs/10/backup.html

OMERO

Backing up your binary data store

To simplify backup locations we have, in this document, located all database and configuration backups under /OMERO,
your binary data store. The entire contents of /OMERO should be backed up frequently as this will, especially if this
document’s conventions are followed, contain all the relevant data to restore your OMERO.server installation in the
unlikely event of a system failure, botched upgrade or user malice.

File system backup is often a very personal and controversial topic amongst systems administrators and as such the
OMERO project does not make any explicit recommendations about backup software. In the interest of providing
a working example we will use open source rdiff-backup project and like Backing up your PostgreSQL database
above, provide a backup script which can be placed in /etc/cron.daily to perform daily /OMERO backups:

#!sh
#!/bin/bash

FROM=/0MERO
TO=/mnt/backup_server

rdiff-backup $FROM $TO

rdiff-backup can also be used to backup /OMERO to a remote machine:

#!sh
#!/bin/bash

FROM=/0MERO
TO=backup_server.example.com: : /backup/omero

rdiff-backup $FROM $TO

More advanced rdiff-backup configurations are beyond the scope of this document. If you want to know more you
are encouraged to read the documentation available on the rdiff-backup website.

Restoring OMERO

There are three main steps to OMERO.server restoration in the event of a system failure:
1. OMERO.server etc configuration
2. PostgreSQL database (assumed to be omero)

3. OMERO.server binary data store (assumed to be /OMERO)

Note: It is important that restoration steps are done in this order unless you are absolutely sure what you are doing.

214 Chapter 2. System Administrator Documentation

https://www.nongnu.org/rdiff-backup/docs.html

OMERO

Restoring your configuration

Once you have retrieved an OMERO.server package from the downloads page that matches the version you originally
had installed, all that is required is to restore your backup preferences by running:

[$ omero config load /OMERO/backup/omero.config]

You should then follow the Reconfiguration steps of install.

Restoring your PostgreSQL database

If you have had a PostgreSQL crash and database users are missing from your configuration, you should follow
the first two (Create a non-superuser database user and Create a database for OMERQO data to reside in) steps of
OMERQO.server installation. Once you have ensured that the database user and empty database exist, you can restore
the pg_dump file as follows:

[$ sudo -u postgres pg_restore -Fc -d omero_database omero.2010—06—05_16:27:29—GMT.pg_dump]

Restoring your OMERO.server binary data store

All that remains once you have restored your Java preferences and PostgreSQL database is to restore your /OMERO
binary data store backup.

See also:

List of backup software
Wikipedia page listing the backup softwares.

PostgreSQL 10 Interactive Manual
Chapter 25: Backup and Restore

rdiff-backup documentation
Online documentation of rdiff-backup project

2.4.4 OMERO upgrade checks

On each startup the OMERO server checks for available upgrades via the UpgradeCheck class. An HTTP GET call is
made to the URL configured in omero-common.properties as omero.upgrades.url, currently http://upgrade.
openmicroscopy.org.uk by default (note that viewing that link in your browser will redirect you to this page).

Note: If you have been redirected here by clicking on a link to http://upgrade.openmicroscopy.org.uk in an
error message or log while trying to run one of the Bio-Formats command line tools, please see the Bio-Formats
command line tools documentation for assistance.

2.4. Maintenance 215

https://downloads.openmicroscopy.org/latest/omero5.5/
https://en.wikipedia.org/wiki/List_of_backup_software
https://www.postgresql.org/docs/10/backup.html
https://www.nongnu.org/rdiff-backup/docs.html
https://github.com/ome/omero-common/blob/v5.6.3/src/main/java/ome/system/UpgradeCheck.java
https://github.com/ome/omero-common/blob/v5.6.3/src/main/resources/omero-common.properties
https://docs.openmicroscopy.org/bio-formats/7.0.0/users/comlinetools/index.html#version-checker
https://docs.openmicroscopy.org/bio-formats/7.0.0/users/comlinetools/index.html#version-checker

OMERO

Actions

Currently the only action taken when an upgrade is necessary is a log statement at WARN level.

2017-09-01 12:21:32,070 WARN [ome.system.UpgradeCheck] (main).
—UPGRADE AVAILABLE:Please upgrade to 5.6.9 See https://downloads.openmicroscopy.org/
latest/omero for the latest version

Future versions may also send emails and/or IMs to administrators. In the case of critical upgrades, the server may
refuse to start.

Privacy

Currently, the only information which is being transmitted to the server is:
* Java virtual machine version
* operating system details (architecture, version and name)
* current server version
* poll frequency (for determining statistics)

¢ your IP address (standard HTTP header information)

Note: Currently the “poll” property is unused.

If this is a problem for your site, please see Disabling below.

Disabling

If you would prefer to have no checks made, the check can be disabled by setting the omero.upgrades.url property to
an empty string:

[omero .upgrades.url=

Developers

To use the UpgradeCheck class from your own code, it is necessary to have omero-common-x.y.z.jar on your
classpath. Then,

String version = "yourAppVersion" // e.g. 5.5.0;
ResourceBundle bundle = ResourceBundle.getBundle("omero-common™);
String url = bundle.getString("omero.upgrades.url");
ome.system.UpgradeCheck check = new UpgradeCheck(
url, version, "insight"); // Or "importer", etc.
check.run(Q);
check.isUpgradeNeeded() ;
// optionally
check.isExceptionThrown();

will connect to the server and check your current version against the latest release.

See also:

216 Chapter 2. System Administrator Documentation

https://downloads.openmicroscopy.org/latest/omero
https://downloads.openmicroscopy.org/latest/omero

OMERO

OMEROQO.server installation
Instructions for installing OMERO.server on UNIX and UNIX-like platforms

OMERQO.server upgrade
Instructions for upgrading OMERO.server

Server security and firewalls
Description of OMERO security practices

2.4.5 Moving the data repository

It may be necessary to move either the whole OMERO data directory or only the Managed Repository to a new location
on the file system. This should be done with care following the steps below.

Warning: Before moving OMERO data it is wise to ensure that both the data and the database are fully backed
up. See OMERO.server backup and restore.

The current location of the data repositories can be found using the £s repos command:

$ omero fs repos

| Id | UUID | Type | Path
e e T et T e Fommm oo e

® | 1 | 309ea513-a23c-48d1-abd2-9ceedlb3ffa4 | Managed | /Users/omero/var/omero/
—.ManagedRepository

1| 2 | ScriptRepo | Script | /Users/omero/dist/lib/scripts
2 | 3 | 3ec8c878-c776-48a3-b57e-2a11b0c97045 | Public | /Users/omero/var/omero

(3 rows)

Note: This command can be slow, omero config get can also be used to determine if omero.data.dir or omero.
managed.dir have non-default values.

Moving the OMERO data directory

If the Managed Repository is within the OMERO data directory and the whole data directory is to be moved then the
following steps should be used:

omero admin stop

omero config set omero.data.dir NEW
mv OLD NEW

omero admin start

Warning: The use of omero config set is absolutely necessary here. The steps: omero admin stop, mv,
omero admin start without omero config set could lead to an unstable situation.

For example, moving the OMERO data directory from /Users/omero/var/omero to /Volumes/omero:

2.4. Maintenance 217

OMERO

$ omero admin stop

$ omero config set omero.data.dir /Volumes/omero
$ mv /Users/omero/var/omero /Volumes/omero
$ omero admin start

$ omero fs repos

| Id | UUID | Type | Path

® | 1 | 309ea513-a23c-48d1-abd2-9ceedlb3ffa4 | Managed | /Volumes/omero/
—.ManagedRepository

1| 2 | ScriptRepo | Script | /Users/omero/dist/lib/scripts
2 | 3 | 3ec8c878-c776-48a3-b57e-2a11b0c97045 | Public | /Volumes/omero

(3 rows)

Moving the Managed Repository

If the Managed Repository is in a separate location from the OMERO data directory or only the Managed Repository
is to be moved then the following steps should be used:

omero admin stop

omero config set omero.managed.dir NEW
mv OLD NEW

omero admin start

Warning: The use of omero config set is absolutely necessary here. The steps: omero admin stop, mv,
omero admin start without omero config set could lead to an unstable situation.

For example, moving the Managed Repository from /Users/omero/var/omero/ManagedRepository to /
Volumes/imports/ManagedRepository:

$ omero admin stop

$ omero config set omero.managed.dir /Volumes/imports/ManagedRepository
$ mv /Users/omero/var/omero/ManagedRepository /Volumes/imports/ManagedRepository
$ omero admin start

$ omero fs repos

| Id | UUID | Type | Path

e et T Tt e T T e e
® | 1 | 309ea513-a23c-48d1-abd2-9ceedlb3ffa4 | Managed | /Volumes/imports/
—ManagedRepository

1| 2 | ScriptRepo | Script | /Users/omero/dist/lib/scripts
2 | 3 | 3ec8c878-c776-48a3-b57e-2a11b0c97045 | Public | /Users/omero/var/omero

(3 rows)

218 Chapter 2. System Administrator Documentation

OMERO

Note: If omero.managed.dir is not set then the location of the Managed Repository will be determined by omero.
data.dir and the OMERO directory should only be moved as a whole.

If the Managed Repository needs to be moved to a location other than that set by omero.data.dir, to a location
outside of the OMERO data directory, for example, then omero.managed.dir must be set.

If omero.managed.dir is set then the Managed Repository and the OMERO data directory should be treated inde-
pendently and thus be moved separately if necessary.

Extending the Managed Repository

It is possible to leave the Managed Repository in place yet have newly imported image files stored on a different
underlying storage volume. For example, if your omero.managed.dir is set to /mnt/omero/ManagedRepository
then, as that volume fills, it would become better for new imports to be stored elsewhere. An OMERO administrator
may use the omero fs mkdir subcommand to properly set up a subdirectory for that new volume in the existing
Managed Repository:

[omero fs mkdir volume-B J

This is the correct way to create /mnt/omero/ManagedRepository/volume-B ready for new imports. The new
storage volume may then be mounted at that mount point. Alternatively, if the volume is already mounted elsewhere,
such as /mnt/omero/large-volume-B/, then while the OMERO server is shut down you may create a corresponding
symbolic link at /mnt/omero/ManagedRepository/volume-B:

rmdir /mnt/omero/ManagedRepository/volume-B
In -s /mnt/omero/large-volume-B /mnt/omero/ManagedRepository/volume-B

In either case the omero. fs.repo.path must be updated in the server configuration. An example of adjusting its
usual default value is:

omero config set omero.fs.repo.path 'volume-B/%user%_%userld%//%year month%/%day%/ ’
< %timed%'

After the OMERO server is started then new imports should upload onto the new storage volume. At a later date further
storage volumes may be added by using this same workflow.

2.5 Optimizing Server Configuration

This section discusses the options for configuring OMERO.server for optimum performance and security.

2.5.1 Server security and firewalls

General
OMERO has been built with security in mind. Various standard security practices have been adhered to during the
development of the server and client including:

* Encryption of all passwords between client and server via SSL

* Full encryption of all data when requested via SSL

» User and group based access control

2.5. Optimizing Server Configuration 219

OMERO

* Authentication via LDAP
» Limited visible TCP ports to ease firewalling

* Use of a higher level language (Java or Python) to limit buffer overflows and other security issues associated with
native code

* Escaping and bind variable use in all SQL interactions performed via Hibernate

Note: The OMERO team treats the security of all components with care and attention. If you have a security issue to
report, please do not hesitate to contact us using our private, secure mailing list as described on the Security page.

Firewall configuration

Securing your OMERO system with so called firewalling or packet filtering can be done quite easily. By default,
OMERO clients only need to connect to two TCP ports for communication with your OMERO.server: 4063 (unsecured)
and 4064 (SSL). These are the IANA assigned ports for the Glacier2 router from ZeroC. Both of these values, however,
are completely up to you, see SSL below.

Important OMERO ports:
* TCP/4063
* TCP/4064

If you are using OMERO.web, then you will also need to make your HTTP and HTTPS ports available. These are
usually 80 and 443.

Important OMERO.web ports:
* TCP/80
* TCP/443

Example OpenBSD firewall rules

block in log on $ext_if from any to <omero_server_ip>

pass in on $ext_if proto tcp from any to <omero_server_ip> port 4063
pass in on $ext_if proto tcp from any to <omero_server_ip> port 4064
pass in on $ext_if proto tcp from any to <omero_server_ip> port 443
pass in on $ext_if proto tcp from any to <omero_server_ip> port 80

Example Linux firewall rules

iptables -P INPUT drop

iptables -A INPUT -p tcp --dport 4063 -j ACCEPT
iptables -A INPUT -p tcp --dport 4064 -j ACCEPT
iptables -A INPUT -p tcp --dport 443 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT

220 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/security/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
https://zeroc.com

OMERO

Passwords
The passwords stored in the password table are salted and hashed, so it is impossible to recover a lost one, instead a
new one must be set by an admin.

If the password for the root user is lost, the only way to reset it (in the absence of other admin accounts) is to manually
update the password table. The omero command can generate the required SQL statement for you:

$ omero db password

Please enter password for OMERO root user:

Please re-enter password for OMERO root user:

UPDATE password SET hash = 'PJueOtwuTPHB8Nq/1rFVxg==' WHERE experimenter_id = 0;

Current hashed password:

$ psql mydatabase -c " select * from password"
experimenter_id | hash
_________________ +__________________________

0 | Xr4il0zQ4PCOq3aQ0@gbuaQ==
(1 row)

Change the password using the generated SQL statement:

$ psql mydatabase -c "UPDATE password SET hash = 'PJueOtwuTPHB8Nq/1rFVxg==' WHERE.
—,experimenter_id = 0;"
UPDATE 1

Stored data

The server’s binary repository and database contain information that may be confidential. Afford access only on a
limited and necessary basis. For example, the ReadSession warning is for naught if the restricted administrator can
read the contents of the session table.

Java key- and truststores

If your server is connecting to another server over SSL, you may need to configure a truststore and/or a keystore for
the Java process. This happens, for example, when your LDAP server uses SSL. See the LDAP plugin for information
on how to configure the LDAP URLs. As with all configuration properties, you will need to restart your server after
changing them.

To do this, you will need to configure several server properties, similar to the properties you configured during instal-
lation.

e truststore path

g
omero config set omero.security.trustStore /home/user/.keystore

A truststore is a database of trusted entities and their
associated X.509 certificate chains authenticating the
corresponding public keys. The truststore contains the
Certificate Authority (CA) certificates and the certificate(s) of
the other party to which this entity intends to send encrypted
(confidential) data. This file must contain the public key
certificates of the CA and the client's public key certificate.

2.5. Optimizing Server Configuration 221

OMERO

If you don’t have one you can create it using the following:

openssl s_client -connect {{host}}:{{port}} -prexit < /dev/null | openssl x509 -
—outform PEM | keytool -import -alias ldap -storepass {{password}} -keystore {

—{truststore}} -noprompt

* truststore password

[omero config set omero.security.trustStorePassword secret

* keystore path

g
omero config set omero.security.keyStore /home/user/.mystore

A keystore is a database of private keys and their associated
X.509 certificate chains authenticating the corresponding public
keys.

A keystore is mostly needed if you are doing client-side certificates
for authentication against your LDAP server.

L

* keystore password

[omero config set omero.security.keyStorePassword secret

SSL

Especially if you are going to use LDAP authentication to your server, it is important to encrypt the transport channel
between clients and the Glacier2 router to keep your passwords safe.

By default, all logins to OMERO occur over SSL using an anonymous handshake. After the initial connection, com-
munication is un-encrypted to speed up image loading. Clients can still request to have all communications encrypted
by clicking on the lock symbol. An unlocked symbol means that non-password related activities (i.e. anything other
than login and changing your password) will be unencrypted, and the only critical data which is passed in the clear is
your session id.

Administrators can configure OMERO such that unencrypted connections are not allowed, and the user’s choice will
be silently ignored. The SSL and non-SSL ports are configured in the etc/grid/default.xml file and, as described
above, default to 4064 and 4063 respectively and can be modified using the Ports configuration properties. For instance,
to prefix all ports with 1, use omero.ports.prefix:

[$ omero config set omero.ports.prefix 1

J

You can disable unencrypted connections by redirecting clients to the SSL port using the server property omero.
router.insecure:

$ omero config set omero.router.insecure "OMERO.Glacier2/router:ssl -p 4064 -h @omero.
—host@"

If you want to force host verification see Client Server SSL verification.

See also:

LDAP authentication

222

Chapter 2. System Administrator Documentation

OMERO

2.5.2 LDAP authentication

LDAP is an open standard for querying and modifying directory services that is commonly used for authentication,
authorization and accounting (AAA). OMERO.server supports the use of an LDAP server to query (but not modify)
AAA information for the purposes of automatic user creation.

This allows OMERO users to be automatically created and placed in groups according to your existing institution
policies. This can significantly simplify your user administration burden. Note that OMERO has its own concept of
“groups” that is quite distinct from LDAP groups.

The OMERO.server LDAP implementation can handle a number of use cases. For example:
* Allow every “inetOrgPerson” under omero.ldap.base to login

* but restrict access based upon an arbitrary LDAP filter, e.g.

[omero .ldap.user_filter=(member0Of=cn=someGoup, ou=Lab,o0=College)

¢ and add that user to some number of groups, e.g.

[omero .ldap.new_user_group=:query: (member=0@{dn})]

How it works

On login, the username provided is searched for in OMERO. If the name does not exist, then the LDAP plugin is queried
for a username matching the system-wide user filter. If such an LDAP entry exists and the password matches, a new
user with the given username is created, and the user is added to any groups which match the new_user_group setting.

On subsequent logins, the user filter and the password are again checked against the LDAP server, and if there is no
longer a match, login is refused. If you would prefer to only have the user_£filter applied during user creation and
not on every login, see Legacy password providers.

You can take existing non-LDAP users and ‘upgrade’ them to using LDAP with the OMERO command line tool, see
Converting non-LDAP users to LDAP authentication. You can also use omero ldap create to add an ldap user to
OMERO groups without requiring them to log in first, see User/group management for details.

LDAP properties

The LDAP plugin is configured via several configuration properties, all starting with omero.ldap (see LDAP).

Some of the property values are passed directly to the underlying LDAP library (Spring LDAP), which in turn makes
use of the Java API. OMERO does not modify the error messages thrown by the library or by Java, so please consult
the appropriate documentation to diagnose any low-level problems.

Note: Please remember that once a change has been made, a server restart will be needed.

2.5. Optimizing Server Configuration 223

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://spring.io/projects/spring-ldap/

OMERO

Minimum configuration

The following properties are the minimum requirements for logging in to OMERO using LDAP.

omero.ldap.config=true
omero.ldap.urls=1ldap://localhost:389
omero.ldap.username=
omero.ldap.password=
omero.ldap.base=ou=example,o=com

After having configured your connection, you can turn LDAP on and off between restarts by setting omero.1ldap.
config to false. The base property determines where in the LDAP tree searches will begin. No users or groups will
be found if they are not under the base provided.

User lookup

Two user properties are used to look up users by login name and, if necessary, create new users based on the information
in LDAP.

omero.ldap.user_filter=(objectClass=person)
omero.ldap.user_mapping=omeName=cn, firstName=givenName,lastName=sn,email=mail,
—institution=department,middleName=middleName

omero.ldap.user_filter will be AND’ed to the username query, and can contain any valid LDAP filter string. The
username query is taken from the LDAP attribute which gets mapped to “omeName” by omero.ldap.user_mapping.
Here, the “cn” is mapped to “omeName”, so the username query is (cn=[login name]). The final query is
(&(objectClass=person) (cn=[login name])), which must return a single result to be considered valid.

Group lookup

Three group properties are all concerned with what groups a user will be placed in on creation.

omero.ldap.group_filter=(objectClass=groupOfNames)
omero.ldap.group_mapping=name=cn
omero.ldap.new_user_group=default

The group filter and group mapping work just as the user filter and mapping do, in that the group
name query will be AND’d with the group_filter. In this case, the final query would be
(&(objectClass=groupOfNames) (cn=[group name])). However, these properties may not be used depending
on the value of new_user_group, which can have several different values:

* If not prefixed at all, then the value is simply the name of a group which all users from LDAP should be added
to.

* If prefixed with :ou:, then a user’s last organizational unit (OU) will be used as his or her group. For example, the
user with the DN “cn=frank,ou=TheLab,ou=LifeSciences,o=TheCollege” will be placed in the group “TheLab”.

o If prefixed with :attribute:, then the rest of the string is taken to be an attribute all of whose values will
be taken as group names. For example, omero.ldap.new_user_group=:attribute:member0Of would add a
user to all the groups named by memberOf. You can prefix this value with filtered_ to have the group_filter
applied to the attribute values, i.e. : filtered_attribute:memberOf will mean that only the values of mem-
berOf which match group_£filter will be considered. An example value of the memberOf attribute would be:
CN=mygroup,0U=My Group,OU=LabUsers, DC=openmicroscopy,DC=org

224 Chapter 2. System Administrator Documentation

OMERO

o If prefixed with :dn_attribute:, then the rest of the string is taken to be an attribute all
of whose values will be taken as group distinguished names. For example, omero.ldap.
new_user_group=:dn_attribute:memberO0f would add a user to all the groups named by memberOf,
where the name of the group is mapped via group_mapping. You can prefix this value with filtered_ to
have the group_filter applied to the attribute values, i.e. : filtered_dn_attribute:memberOf will mean
that only the values of memberOf which match group_filter will be considered. An example value of the
memberOQf attribute would be: CN=mygroup,0U=My Group,OU=LabUsers, DC=openmicroscopy,DC=org

Note that if an attribute specified in omero.ldap.group_mapping does not constitute a part of the Distin-
guished Name (DN) as determined by your LDAP server then it can only be found by using :attribute: or
:filtered_attribute: instead. Typical attributes that comprise the DN are: DC, CN, OU, O, STREET, L,
ST, C and UID.

* If prefixed with :query:, then the rest of the value is taken as a query to be AND’ed to the group filter. In the
query, values from the user such as “@{cn}”, “@{email}”, or “@{dn}” can be used as place holders.

o If prefixed with :bean:, then the rest of the string is the name of a Spring bean which implements the NewUser-
GroupBean interface. See the developer documentation LDAP plugin design for more info.

Compound Filters

Note: OMERO uses standard RFC 2254 LDAP filters, so they must conform to that syntax and are only able to do what
those filters can do. You can test the filters via ldapsearch on your OMERO server (assuming you have the OpenLDAP
binaries installed).

If you are using OpenLDAP make sure your directory has the memberOf attribute correctly configured. Some versions
of ApacheDS do not support memberOf at all.

Both the user_filter and the group_filter can contain any valid LDAP filter string. These must be a valid filter
in themselves. e.g.

[omero.ldap.user_filter:(| (ou=Queensland Brain Institute) (ou=Ageing Dementia Research)) }

The “|” operator (read: “OR”) above allows members of two organizational units to login to OMERO. Expanding the
list allows concentric “rings” of more and more OU’s granular access to OMERO.

[omero .1ldap.group_filter=(&(objectClass=groupOfNames) (mail=omero.flag)) J

The “&” operator (read: “AND”) produces a filter that will only match groups that have the mail at-
tribute set to the value omero.flag. When combined with the group_mapping, the final query would be
(&(&(objectClass=groupOfNames) (mail=omero.flag)) (cn=[group name]))

This is the same as the query (&(objectClass=groupOfNames) (mail=omero.flag) (cn=[group name])) but
setting group_filter to (objectClass=groupOfNames) (mail=omero.flag) is not valid as that is not a valid
filter on its own.

To restrict the list of groups to just the ones returned by the above query, the following setting is also required to remove
unmatched groups:

[omero .ldap.new_user_group=:filtered_dn_attribute:memberOf J

2.5. Optimizing Server Configuration 225

http://www.faqs.org/rfcs/rfc2254.html

OMERO

Case sensitivity

By default, the LDAP plugin is case-sensitive i.e. it will treat the usernames JSmith and jsmith as two different users.
You can remove case sensitivity using:

[omero config set omero.security.ignore_case true]

Warning: Enabling this option will affect all, even non-LDAP, usernames in your OMERO system. It is the system
administrator’s responsibility to handle any username clashes which may result. Making non-LDAP usernames
lowercase is required. Non-LDAP users with uppercase characters in their username will not be able to log in and
will not appear in some administrative tools.

UPDATE experimenter SET omename = lower (omename) ; can be used on your database to make this change
to all users if desired. This operation is irreversible.

LDAP over SSL

If you are connecting to your server over SSL, that is, if your URL is of the form 1daps://ldap.example.com: 636
you may need to configure a key and trust store for Java. See the Server security and firewalls page for more information.

Synchronizing LDAP on user login

This feature allows for LDAP to be considered the authority on user/group membership. With the following setting
enabled, each time a user logs in to OMERO their LDAP groups will be read from the LDAP server and reflected in
OMERO:

[omero config set omero.ldap.sync_on_login true]

Admin actions carried out in the clients may not survive this synchronization e.g. if an admin has removed an LDAP user
from an LDAP group in the UI, the user will be re-added to the group when logging in again after the synchronization.

Note: This applies to groups created by LDAP in OMERO 5.1.x. Groups created in older versions of OMERO will
not be registered as LDAP groups if you have manually altered their membership, even if the membership now matches
the LDAP group.

omero ldap setdn true --group-name $NAME can be used to make these previous OMERO groups into LDAP
groups.

Legacy password providers

The primary component of the LDAP plugin is the LdapPasswordProvider, which is responsible for creating users,
checking their passwords, and adding them to or removing them from groups. The default password provider is the
chainedPasswordProvider which first checks LDAP if LDAP is enabled, and then checks JDBC. This can explicitly
be enabled by executing the system admin command:

[omero config set omero.security.password_provider chainedPasswordProvider J

When the LDAP password provider implementation changes, previous versions can be configured as necessary.

226 Chapter 2. System Administrator Documentation

OMERO

¢ chainedPasswordProviderNoSalt

The chainedPasswordProviderNoSalt uses the version of the JDBC password provider without password
salting support as available in the OMERO 4.4.x series. To enable it, use:

[omero config set omero.security.password_provider chainedPasswordProviderNoSalt

¢ chainedPasswordProvider431

With the 431 password provider, the user filter is only checked on first login and not kept on subsequent logins.
This allows for an OMERO admin to change the username of a user in omero to be different than the one kept in
LDAP. To enable it, use:

[omero config set omero.security.password_provider chainedPasswordProvider431

See also:

OMERO.server installation
Installation guide for OMERO.server under UNIX-based platforms

Server security and firewalls
Security pages for OMERO.server

LDAP plugin design
Developer documentation on extending the LDAP plugin yourself.

What are your LDAP requirements?
Forum discussion if you have LDAP requirements that are not covered by the above configuration

JNDI referrals documentation
https://docs.oracle.com/javase/jndi/tutorial/ldap/referral/jndi.html

Active Directory

Active Directory (AD) supports a form of LDAP and can be used by OMERO like most other directory services.

In AD, the Domain Services (DS) ‘forest’ is a complete instance of an Active Directory which contains one or more
domains. Querying a particular Domain Service will yield results which are local to that domain only. In an environ-
ment with just one domain it is possible to use the default configuration instructions for OMERO LDAP. If there are
multiple domains in the forest then it is necessary to query the Global Catalogue to enable querying across all of them.

Global Catalogue

In an AD DS forest, a Global Catalogue provides a central repository of all the domain information from all of the
domains. This can be queried in the same way as a specific Domain Service using LDAP, but it runs on different ports;
3268 and 3269 (SSL).

* LDAP AD Global Catalogue server URL string

[omero config set omero.ldap.urls ldap://ldap.example.com:3268

Note: A SSL URL above should look like this: 1daps://ldap.example.com:3269

2.5. Optimizing Server Configuration 227

https://www.openmicroscopy.org/community/viewtopic.php?f=5&t=14
https://docs.oracle.com/javase/jndi/tutorial/ldap/referral/jndi.html
https://en.wikipedia.org/wiki/Active_Directory
https://msdn.microsoft.com/en-us/library/aa362244(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/cc728188(v=ws.10).aspx

OMERO

2.5.3 Performance and monitoring

Once you have your OMERO server running and secured, a second critical step will be tuning various configuration
parameters in order to get optimal performance. Assorted timeouts can be found under Performance but the more
critical properties are outlined below.

Database configuration

The configuration properties starting with omero.db control how OMERO manages JDBC connections to your database.
For a production system, omero.db.poolsize is the most important property to modify. By default, a limited number
of simultaneous connections (e.g. 10) are allowed. You should plan for allowing a few connections per concurrent user.

[$ omero config set omero.db.poolsize 100]

Memory configuration

OMERO should automatically configure itself to take advantage of the physical memory installed on a system whilst
leaving room for other services. You may wish to override the defaults on a production server, for instance if your
machine is solely dedicated to running OMERO you can increase the amount of memory that OMERO will use. You
may also need to modify your settings if you are seeing out-of-memory errors when dealing with certain types of
images.

A number of configuration properties starting with omero.jvmcfg control the calculation of how much memory to
allocate to various OMERO services on startup, most importantly:

¢ blitz
e indexer

* pixeldata

Configuration properties

Configuration properties can either be applied to all three service types at the same time by omitting the service type
(e.g. omero. jvmcfg.strategy) or to each individually by including it (e.g. omero.jvmcfg.strategy.blitz).

For example, the default, PercentStrategy, is equivalent to making the call:

[$ omero config set omero.jvmcfg.strategy percent]

This could be changed to use the ManualStrategy for all servers:

[$ omero config set omero.jvmcfg.strategy manual J

228 Chapter 2. System Administrator Documentation

OMERO

Strategies

A couple of strategies are available for calculating the effective JVM settings from the provided configuration properties.

PercentStrategy
Default. Reads the percent configuration property which can also be set globally or on a service-type basis.
This percentage (0-100) of the system memory is used for the process, subject to minimum and maximum limits
which can be changed. omero. jvmcfg.system_memory, omero. jvmcfg.min_system_memory, and omero.
jvmcfg.max_system_memory are all used for defining the system memory seen. The default percentages are:
blitz and pixeldata 15%, indexer 10%. If omero. jvmcfg.perm_gen or omero. jvmcfg.heap_size are explic-
itly set, they will be used directly as with the ManualStrategy.

ManualStrategy
Simply provides the values given as the JVM settings. If no value is set for a particular configuration property,

then the default is used: heap_size=512m and perm_gen=128m These values are equivalent to the defaults in
OMERO 5.0.2 and earlier.

Examples

[$ omero config set omero.jvmcfg.percent.blitz 50 J

would raise the blitz heap size to 50% of the system memory seen.

[$ omero config set omero.jvmcfg.system_memory 24000 J

would set the system memory seen to 24GB regardless of the actual amount of memory present in the system. The
PercentageStrategy would use this as the basis for setting the Java heap sizes for all services.

[$ omero config set omero.jvmcfg.max_system memory 64000 J

would raise the maximum system memory seen by an OMERO installation to 64000MB of system memory. Assuming
there was at least 64000MB of memory installed blitz would default to using 9600MB.

$ omero config set omero.jvmcfg.strategy.indexer manual
$ omero config set omero.jvmcfg.heap_size.indexer 2000

would set the indexer heap size to 2000MB without modifying the settings for the other services.

Tips

View the memory settings that will apply to a newly started server.

[$ omero admin jvmcfg]

After modifying any memory settings, be sure to restart your server.

[$ omero admin restart]

See also:

https://www.openmicroscopy.org/community/viewtopic.php?f=4&t=7400
Forum thread on PixelData JVM (Java Virtual Machine) memory settings

Grid configuration
Section of the advanced server configuration documentation describing etc/grid/templates.xml.

2.5. Optimizing Server Configuration 229

https://www.openmicroscopy.org/community/viewtopic.php?f=4&t=7400

OMERO

Monitoring

In addition to watching the OMERO log files, the JVM itself provides a number of tools that you can use to determine
the health of your server. JVisual VM, for example, can be used to visualize the memory use of each JVM:

& ome.services.blitz Entry (pid 21133) X

overview [| Monitor B | Sampler 3 | Profiler (%) | wisual cc]
C ome.services.blitz.Entry (pid 21133)

Monitor

& cru [wemory [Classes [Threads

Uptime: 2 hrs 37 min 19 sec

Heap Dump

x Heap | PermGen X

Size: 1,076,363,264 8
Max:3,967,811,584 B

Used: 448,724,168 B

1,000 M8
750 MB

500 MB

250 MB

12:27:40 PM 12:27:50 PM 12:2800 PM 122810 PM 122820

[Heap size W Used heap

Classes x| | Threads x
Total loaded: 10,028 Shared loaded: 0 Liwve: 23 Daemon: &
Total unloaded: 4 Shared unloaded: 0 Live peak: 32

Total started: 220
10,000

8,000
6,000

4,000

2,000

12:27:40 P 12:27:50 P 12:2800 P 12:28 10 PM 122820 12:27:40 P

12:27:50 P 122800 P 122810 P
otal loaded classes Shared loaded classes
@ Total loaded cla I Shared loaded cla

122820
[Live threads B Daemon threads

You will need to have the PID (process ID) for the service you want to monitor, which will usually be the main Blitz

process. You can find the PID either via omero admin diagnostics or alternatively via the jps command found in
the JDK.

Another tool, JConsole, also provides access to the memory statistics for your JVM, but also lists the IMX (Java Man-
agement Extensions) management beans which provide extensive information about the running process. Information
includes the number of queries that have been run, the number of open file handles, the system properties that were set
on startup, and much more. Further, the ome.system.metrics package makes use of JMX to expose further properties.

With further configuration, JIMX properties can also be accessed remotely which can be very useful for monitoring
your server with Checkmk, Nagios, Zenoss, or similar. However, care must be taken to protect the exposed ports.

Note: The commands above require the Java JDK (Java Development Kit) as opposed to the JRE (Java Runtime
Environment).
230

Chapter 2. System Administrator Documentation

https://visualvm.github.io/
https://openjdk.java.net/tools/svc/jconsole/
https://checkmk.com/
https://www.nagios.org/
https://www.zenoss.com/

OMERO

Java Monitoring & Management Console
Connection Window Help

Flpid: 31778

v

Jidimplementation
bikranix.km
bitranix.tm.resource jdbe
com.sun.management
java.lang

P (@ ClassLoading

@@ Compilation
GarbageCallector
@ Memory
IMemarylanager
MemoryPool

@ OperatingSystem
B Attributes

¥ @ Runtime

4vVVvVY

4 v VvVVYw"Yw

¥ @ Threading
¥ Atkributes
ThreadillocatediemoryEnabled
ThreadallocatediMemorySupported
ThreadCount
TatalStartedThreadCount
AllThreadlds
ThreadContentionMonitoringEnabled
CurrentThreadCpuTime
CurrentThreadUserTime
ThreadCpuTimeSupported
ThreadCpuTimeEnabled
ThreadContentionhonitoringSupported
CurrentThreadCpuTime Supported
ObjectMonitorUsageSupparted
SynchronizerUsageSupported
PealThreadCount
DaemanThreadCounk
OhbjectMame
P Operations
B java.nio
» jawva.util.logging
¥ metrics
B @ ch.qos.loghack core Appenderall
¥ @ ch.qos.logback core.Appender.debug
B Atkributes

blitz jar ome Fulltext --1ce.Config=foptfomes/dist fvar/master/servers/Indexer-0/configfconfig

Overview | Memary | Threads | Classes | VM Summary | MBeans

Attribute values

Mame Walue

BaokClassPath Juseflibfjum fiava-7-openjdl--amdadfire/lib. ..
BootClassPathSupported true

ClassPath lib/server/blitz jar

» Attributes

Input&rguments liava.lang.String[6]
LibraryPath fusrfjava/packages/libjamdad:fusrflib/=a6. .
ManagementSpecversion 1.2
Mame 31778@blue
ObjectMame java.lang:type=Runtime
Spechame Java Virtual Machine Specification
Specyendar Qracle Corporation
Speciersion 1.7
StarkTime 1406100482471
SystemProperties liavax.management.openmbean.TabularD...
Uptime 13298106
Wmkame OpendDE 64-Bit Server Wi
Wmyendor Qracle Corporation
Wmersion 24.51-b03
Refrash

| |ﬁ| pid: 31778 blitz jar ome.fulltext --lce.Config=Joptfomed/dist var/... |

2.5. Optimizing Server Configuration

231

OMERO

Metrics

Building on top of Coda Hale’s Metrics library, OMERO provides the ome.system.metrics package which measures a
number of internal events and makes them available both via JMX as described under Monitoring but also prints them
to the log files.

By default, these values are printed to each of the JVM-based log files (e.g. var/log/Blitz-0.log, var/log/
Indexer-0.1log, etc) once per hour. This value can be configured via omero.metrics.slf4j_minutes. A typical
value might look like:

11:28:18,923 INFO [ome.system.metrics] (r-thread-1) type=TIMER,.
—.name=ome.services.fulltext.FullTextIndexer.batch ...

Values include basic statistics (count, min, max, mean, etc.) as well as 75th, 90th, 95th, etc percentiles. Further, the
rate over the last minute, the last 5 minutes, and the last 15 minutes is provided (ml, m5, m15). For example:

* count=3601

* min=0.41...

* max=7.85...

* mean=0.94. ..

* stddev=0.31...

* median=0.96...

e p75=1.08...

* p95=1.25...

* p98=1.35...

e p99=1.43...

e p999=7.69...

e mean_rate=0.50...

e ml=0.49...

e m5=0.499...

e mi5=0.49...

* rate_unit=events/second

e duration_unit=milliseconds
Useful metrics include:

ch.qos.logback.core.Appender.error
The number and rate of errors that have been logged. (All services)

jvm.fileDescriptorCountRatio
The ratio of used to available file descriptors. (All services)

ome.services.eventlogs.EventLogQueue.priorityCount
The number of items in the queue. (Indexer-only)

ome.jo.nio.PixelsService.minmaxTimes
Time taken to generate min/max values per plane. (PixelData-only)

ome.io.nio.PixelsService.tileTimes
Time taken to generate tiled-pyramids for a big image. (PixelData-only)

232 Chapter 2. System Administrator Documentation

https://metrics.dropwizard.io/

OMERO

2.5.4 Search and indexing configuration

How Indexing works

Indexing is not driven by the user, but happens automatically in the background and can be controlled by a number of
settings listed under Search. The indexer runs periodically as defined by omero.search.cron and parses the latest
batch of new or modified objects in the database.

Upon successful completion, the persistent count in the configuration table will be incremented.

omero=# select value from configuration where name = 'PersistentEventLogLoader.v2.current_
—id';
value

Note: Presence of more than one PersistentEventLogLoader.* value in your database indicates that you have
run indexing with multiple versions of the server. This is fine. To allow a new server version to force an up-
date, the configuration key may be changed. For example, PersistentEventLoglLoader.current_id became
PersistentEventLogLoader.v2.current_id in https://github.com/ome/openmicroscopy/commit/aScb64a.

Missing search results
If you are having any difficult with search results not appearing timely, first you should start by checking the health of
the Indexer-0 process:

* Check the server’s log directory for a file named Indexer-0.1log and monitor its progress (e.g. using tail or
similar). If messages of the format:

INFO [ome.services.fulltext.FullTextIndexer] (3-thread-2) INDEXED 2 objects in.,
—1 batch(es) [2483 ms.]

are periodically being appended to the log file, then your indexer process may be running behind. You can either
wait for it to catch up, or try increasing the search batch size in order to speed processing. See the section on the
omero.search.batch setting for more information.

« If there are no updates to the Indexer-0. log file even when new images, tags, files, etc. are added to the server,
then it is possible that the Indexer process has become stuck. It is possible to force a restart of the indexer using
the IceGrid Tools like so:

r> omero admin ice

Ice 3.6.3 Copyright (c) 2003-2016 ZeroC, Inc.
>>> server list

Blitz-0

DropBox

FileServer

Indexer-0

>>> server stop Indexer-0

.

You do not need to manually re-start the Indexer, as IceGrid will handle the creation of a new Indexer process
automatically.

2.5. Optimizing Server Configuration 233

https://github.com/ome/openmicroscopy/commit/a5cb64a

OMERO

In case neither of the above seems to be the case, then your indexer is running normally and more likely your index has
been corrupted. You will need to re-index OMERO. Reasons why this might have occurred include:

* Missing search terms are part of a very large text file. If the indexer’s maximum file size limit is reached, a file
may not be indexed. See the section on the omero.search.max_file_size setting for more information on
increasing this limit.

* A bug in Lucene prior to OMERO 5.0.1 caused some documents to be “sealed” in that old search terms would
return the document, but newer terms would not.

Re-indexing

Background re-indexing

Under most circumstances, you should be able to re-index the database while the server is still running. If you need to
make any adjustments to the server configuration or the process heap size, first shut the server down and make these
changes before restarting the server. Use the following steps to initiate a re-indexing.

* Disable the search indexer process and stop any currently running indexer processes:

[$ omero admin reindex --prepare]

* Remove the existing search Indexes by deleting the contents of the Ful1Text subdirectory of your omero.data.
dir:

{$ omero admin reindex --wipe]

* Reset the indexer’s progress counter in the database:

[$ omero admin reindex --reset 0]

* Re-enable/restart the indexer process:

[$ omero admin reindex --finish J

Depending on the size of your database, it may take the indexer some time to finish re-indexing. During this time, your
OMERO server will remain available for use, however the search functionality will be degraded until the re-indexing
is finished. See Monitoring re-indexing for information on how long this should take.

Note: Once you wipe your full-text directory, searches will return fewer or no results until re-indexing is complete.

Monitoring re-indexing

During re-indexing, it is possible to estimate the percent indexed using the following SQL command:

omero=> select 'At ' || current_timestamp(®) || ', Percent indexed: | | trunc(((select..,
—count(*) from eventlog el, configuration c where el.id < cast(c.value as int) and (c.
—name like 'PersistentEventLogLoader%')) * 1.0) / (select count(*) from eventlog) * 100,
—~ 2) |l "%";

At 2014-06-14 07:54:37+00, Percent indexed: 70.90%
(1 row)

234 Chapter 2. System Administrator Documentation

OMERO

This value is also logged periodically when re-indexing in the background and is available via JMX. See Metrics for
more information.

See also:

OMERO search
Section of the developer documentation describing how to perform search queries against the server.

2.5.5 FS configuration options

Background

Users import their image files to the OMERO.fs server. The contents of these files are kept intact by the server and the
import process preserves the files’ path and name (at least within the rules of omero. fs.repo.path_rules below),
so that OMERO.fs can become a trusted repository for the master copy of users’ data. While the default server con-
figuration from Configuration properties glossary should typically suffice, omero config set may be used to adjust
settings related to file uploads. These settings are explained below.

Repository location

Several properties determine where FS-imported files are stored:

e omero.data.dir - singleton property (i.e. once globally) which points to the legacy repository location for
OMERO. For OMERO to run on multiple systems, the contents of this directory must be on a shared volume.

* omero.managed.dir - singleton property which points to the default ManagedRepository. In an OMERO
install in which there is only one Blitz server, this will be the only repository. This need not be located under
omero.data.dir but is by default.

* omero.repo.dir (experimental) - value passed to all non-legacy, standalone repositories. This is not actively
used, but would allow hosting repositories on multiple physical systems without the need for a shared volume.
For example, after running omero admin start on the main machine, it would be possible to launch nodes on
various machines via omero node start fs-B, omero node start fs-C, etc. Each of these would pass a
different omero.repo.dir value to its process.

Template path

When files are uploaded to the managed repository, a parent directory is created to receive the upload. A multi-file
image has all its files stored in the same parent directory, though they may be in different subdirectories of that parent
to mirror the original directory structure before upload. The omero. fs.repo.path setting defines the creation of that
parent directory. It is this value which makes the ManagedRepository “managed”.

Path naming constraints

There is some flexibility in how this parent directory is named. The constraints are:
* The path components (individual directories in the path) must be separated by / characters.

* A path component separator may be written as // only if followed by at least one more path component. In this
case:

— The server ensures that the path components preceding the // are owned by the root user.
— Any newly created path components following the // are owned by the user who owns the images.

» Ifno // is present then all newly created path components are owned by the user who owns the images.

2.5. Optimizing Server Configuration 235

OMERO

* The path must be unique for each import. It is for this reason that the %time% term expands to a time with
millisecond resolution.

* To avoid confusion with the expansion terms enumerated below, avoid other uses of the % character in path
components.

In the above, ownership of path components is in the context of OMERO users accessing the OMERO managed repos-
itory through its APIL. It does not relate to operating system users’ permissions for the underlying filesystem.

Expansion terms

Special terms may be used within path components: these are replaced with text that depends on the import.

For any directory in the template path

%userId¥%
expands to the user’s numerical ID

%useri
expands to the user’s name

%institution%
expands to the user’s institution name; this path component is wholly omitted if the user has no institution set

%institution:default%
expands to the user’s institution name, or to the supplied “default” if the user has no institution set; for instance,
%institution:State College of Florida, Manatee-Sarasota% is permitted

%groupId¥%
expands to the OMERO group’s numerical ID

%group¥%
expands to the OMERO group’s name

%perms%
expands to the group’s six-character permissions string, for example rw---- for a private group

%year¥%
expands to the current year number, for example 2014

%month%
expands to the current month number, zero-padded, for example 08

%monthname%%
expands to the current month name, for example August

%day%
expands to the current day number in the month, zero-padded, for example 04

%sessionld¥%
expands to the session’s numerical ID

%session%
expands to the session key (UUID) of the session, for example 6c2dae43-cfad-48ce-af6f-025569f9e6df

%thread¥%
expands to the name of the server thread that is performing the import

236 Chapter 2. System Administrator Documentation

OMERO

For user-owned directories only

These expansion terms may not precede // in the template path.

%time%
expands to the current time, in hours, minutes, seconds, milliseconds, for example 13-49-07.727

%hash%
expands to an eight-digit hexadecimal hash code that is constant for the set of files being imported, for example
0554E3A1

%hash:digits¥
expands as %hash%, where digits is a comma-separated list of how many digits of the hash to use in different
subdirectories; for example, hash-%hash: 3, 3, 2% expands to a form like hash-123/456/78

%increment%
expands to an integer that increases consecutively so as to create the next new directory, for example using
inc-%increment% with preexisting directories up to inc-24 would expand to inc-25

%increment:digits¥%
expands as %increment% where digits specifies a minimum length to which to zero-pad the integer, for ex-
ample using inc-%increment : 3% with preexisting directories up to inc-024 would expand to inc-025

%subdirs%
expands to nothing until the preceding directory has more than one thousand entries, in which case it expands
to an integer that increases consecutively to similarly limit the entry count in subdirectories; applies recursively
to extend the number of path components as needed, so, using example/below-%subdirs% in the path, with
example/below-000 to example/below-999 all “full”, three-digit subdirectories below those are created,
such as example/below-123/456

%subdirs:digits%
expands as %subdirs% where digits specifies to how many digits %subdirs% may expand for each path com-
ponent: for example, example/%subdirs:4%-below allows ten thousand directory entries in example before
creating example/1234-below and, much later, example/1234-below/5678

No more than one of %time%, %subdirs% or %increment% may be used in any one path component, although they
may each be used many times in the whole path. If %subdirs% expands to nothing then its entire path component is
omitted: no other expansion terms in that component are used.

Legal file names

Although OMERO.fs attempts to preserve file naming, the server’s operating system or file system is likely to somehow
constrain what file names may be stored by OMERO.fs. This is of particular concern when a user may upload from a
more permissive system to a server on a less permissive system, or when it is anticipated that the server itself may be
migrated to a less permissive system. The server never accepts Unicode control characters in file names.

The omero. fs.repo.path_rules setting defines the combination of restrictions that the server must apply in accept-
ing file uploads. The restrictions are grouped into named sets:

Windows required
prohibits names with the characters ", *, /, :, <, >, 7, \, |, names beginning with $, the names AUX, CLOCKS,
CON, NUL, PRN, COM1 to COM9, LPT1 to LPT9, and anything beginning with one of those names followed by .

Windows optional
prohibits names ending with . or a space

UNIX required
prohibits names with the character /

2.5. Optimizing Server Configuration 237

OMERO

UNIX optional
prohibits names beginning with . or -

These rules are applied to each separate path component of the file name on the client’s system. So, for instance,
an upload of a file /tmp/myfile.tif from a Linux system would satisfy the UNIX required restrictions because
neither of the path components tmp and myfile. tif contains a / character.

Applying the “optional” restrictions does not assist OMERO.fs at all; those restrictions are designed to ease man-
ual maintenance of the directory specified by the omero.managed.dir setting, being where the server stores users’
uploaded files.

Checksum algorithm

As the client uploads each file to the server, it calculates a checksum for the file. After the upload is complete the client
reports that checksum to the server. The server then calculates the checksum for the corresponding file from its local
filesystem and checks that it matches what the client reported. File integrity is thus assured because corruption during
transmission or writing would be revealed by a checksum mismatch.

There are various algorithms by which checksums may be calculated. The list of available algorithms is given by
omero.checksum. supported. To calculate comparable checksums the client and server use the same algorithm.
The server API permits clients to specify the algorithm, but it is expected that they will typically accept the server
default.

The number that suffixes each of the checksum algorithm names specifies the bit width of the resulting checksum. A
larger bit width makes it less likely that different files will have the same checksum by coincidence, but lengthens the
checksum hex strings that are reported to the user and stored in the hash column of the originalfile table in the
database.

2.5.6 Grid configuration

In some cases, the configuration properties will not suffice to fully configure your server. In that case, it may be
necessary to make use of IceGrid’s XML configuration files. Like the config.xml file mentioned above, these are
stored under etc/grid: etc/grid/default.xml is used on Unix systems and there is also etc/grid/templates.
xml.

The default OMERO application descriptor deploys multiple server instances (Blitz-0, FileServer, Indexer-0, PixelData-
0, ...) on a single node. Each server instance is defined by a server-template element in etc/grid/templates.
xml with its own parameters.

Modifying the application descriptors

When you run omero admin start without any other arguments, it looks up the default application descriptor for
your platform:

$ omero admin start
No descriptor given. Using etc/grid/default.xml
Waiting on startup. Use CTRL-C to exit

The “start” and “deploy” command, however, take several other parameters:

$ omero admin start --help
usage: omero admin start [-h] [-u USER] [file] [targets [targets ...]]

Start icegridnode daemon and waits for required components to come up,
(continues on next page)

238 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

i.e. status ==

If the first argument can be found as a file, it will be deployed as the
application descriptor rather than etc/grid/default.xml. All other
arguments will be used as targets to enable optional sections of the
descriptor

Positional Arguments:

file Application descriptor. If not provided, a default will be used
targets Targets within the application descriptor which should be.
—,activated.

If a file is passed in as the first argument, then that application descriptor as opposed to etc/grid/default.xml
will be used. You can also modify the default application descriptors in place.

Note: The largest issue with using your own application descriptors or modifying the existing ones is that they tend to
change between versions, and there is no facility for automatically merging your local changes. You should be prepared
to re-make whatever changes you perform directly on the new files.

Targets

Targets are elements within the application descriptors which can optionally turn on configuration. The target is only
applicable until the next invocation of omero admin start or omero admin deploy

Note: You must remember to always apply the targets on each omero admin command. If not, the target will not be
removed. Therefore, they are often better used for debugging purposes; however, as opposed to alternative application
descriptors, using the pre-existing targets should not require any special effort during upgrades.

Debugging

<properties id="PythonServer'>
<property name="Ice.ImplicitContext" value="Shared"/>
<!-- Default logging settings for Python servers. -->
<property name="omero.logging.timedlog" value="False"/>
<property name="omero.logging.logsize" value="5000000"/>
<property name="omero.logging.lognum" value="9"/>
<property name="omero.logging.level" value="20"/>
<target name="debug">

<property name="omero.logging.level" value="10"/>

</target>

Here, the “debug” target allows increasing the logging output of the Python servers without modifying any files.

2.5. Optimizing Server Configuration 239

OMERO

JMX configuration

<server-template id="BlitzTemplate">
<parameter name="index"/>
<parameter name="config" default="default"/>
<parameter name="jmxhost" default=""/>
<parameter name="jmxport" default="3001"/>

<target name="jmx'>
<!-- Be sure to understand the consequences of enabling JMX.

It allows calling remote methods on your JVM -->
<option>-Dcom.sun.management . jmxremote=${jmxhost}</option>
<option>-Dcom.sun.management . jmxremote.port=${jmxport}</option>
<option>-Dcom.sun.management. jmxremote.authenticate=false</option>
<option>-Dcom.sun.management. jmxremote.ssl=false</option>

</target>

The JMX target enables remote connections for external monitoring of the Blitz server. If you need to modify the
“jmxport” or “jmxhost” variables, you will need to do so directly in the application descriptor XML.

Changing ports / multiple servers on a single host
By modifying the default OMERO ports, it is possible to run multiple OMERO servers on the same physical machine.
All port numbers can be adjusted using the relevant configuration properties.

To run multiple servers on a single host, the easiest approach is to prefix all ports (SSL, TCP, registry) using omero.
ports.prefix:

First server
export OMERODIR=~/OMERO.server-1
omero admin start

Second server

export OMERODIR=~/OMERO.server-2
omero config set omero.ports.prefix 1
omero admin start

Third server

export OMERODIR=~/OMERO.server-3
omero config set omero.ports.prefix 2
omero admin start

Clients will need to use the appropriate port (4064, 14064 or 24064) to connect to OMERO.
See also:

SSL
Section of the Server security and firewalls page.

240 Chapter 2. System Administrator Documentation

OMERO

Extending OMERO

Finally, if configuration does not suffice, there are also options for extending OMERO with your own code. These are
described on the development site under Extending OMERO.server.

2.5.7 Configuration properties glossary

Introduction

Mandatory properties
* Binary repository
* Client

* Database

* Glacier2

* Grid

e Jce

s JVM

* LDAP

* Mail

* Metrics

* Name

* Performance
* Pixeldata

* Policy

* Ports

e Qu

* Query

* Scripts

» Search

» Security

e Server

e Web

2.5. Optimizing Server Configuration 241

OMERO

Introduction

The primary form of configuration is via the use of key/value properties, stored in etc/grid/config.xml and read
on server startup. Backing up and copying these properties is as easy as copying this file to a new server version.

The https://github.com/ome/openmicroscopy/blob/develop/etc/omero.properties file of your distribution defines all the
default configuration properties used by the server. Changes made to the file are not recognized by the server. Instead,
configuration options can be set using the omero config set command:

[$ omero config set <parameter> <value> }

When supplying a value with spaces or multiple elements, use single quotes. The quotes will not be saved as part of
the value (see below).

To remove a configuration option (to return to default values where mentioned), simply omit the value:

[$ omero config set <parameter>]

These options will be stored in a file: etc/grid/config.xml which you can read for reference. DO NOT edit this
file directly.

You can also review all your settings by using:

[$ omero config get J

which should return values without quotation marks.

A final useful option of omero config edit is:

[$ omero config edit J

which will allow for editing the configuration in a system-default text editor.

Note: Please use the escape sequence \" for nesting double quotes (e.g. "[\"foo\", \"bar\"]") or wrap with '
(e.g. v [llfooll , "bar"] |).

Examples of doing this are on the server installation page, as well as the LDAP installation page.

Mandatory properties
The following properties need to be correctly set for all installations of the OMERO.server. Depending on your set-up,
default values may be sufficient.

* omero.data.dir

* omero.db.host

e omero.db.name

e omero.db.pass

242 Chapter 2. System Administrator Documentation

https://github.com/ome/openmicroscopy/blob/develop/etc/omero.properties

OMERO

Binary repository

property omero.checksum.supported

omero.checksum.supported

Checksum algorithms supported by the server for new file uploads, being any comma-separated non-empty subset of:
e Adler-32
e CRC-32
e MD5-128
e Murmur3-32
* Murmur3-128
e SHAI1-160
* File-Size-64
In negotiation with clients, this list is interpreted as being in descending order of preference.
Default: SHAI-160, MDS5-128, Murmur3-128, Murmur3-32, CRC-32, Adler-32, File-Size-64

property omero.data.dir

omero.data.dir

Default: /OMERO/

property omero.fs.repo.path

omero.fs.repo.path

Value dynamically set during the build Template for FS managed repository paths. Allowable elements are:

%users bob

%userld’% 4

%group bobLab

%grouplds% 3

%year 2011

%month% 01

%monthname% January

%day?% 01

%time% 15-13-54.014

%institution% University of Dundee

%hash% 0OD2D8DB7

%increment% 14

%subdirs% 023/613

%session% c3fdd5d8-831a-40ff-80f2-0ba5baef448a
%sessionId% 592

%perms rw----

%thread% Blitz-0-Ice.ThreadPool.Server-3

(continues on next page)

2.5. Optimizing Server Configuration 243

OMERO

(continued from previous page)

/ path separator
// end of root-owned directories

These are described further at F'S configuration options
The path must be unique per fileset to prevent upload conflicts, which is why %time% includes milliseconds.

A // may be used as a path separator: the directories preceding it are created with root ownership, the remainder are
the user’s. At least one user-owned directory must be included in the path.

The template path is created below omero.managed.dir, e.g. /OMERO/ManagedRepository/$omero. fs.repo.
path/

Default: Youser%_%userld%//%year%o-Fomonth%/Yeday Yo/ Yotime %

property omero.fs.repo.path_rules

omero.fs.repo.path_rules

Rules to apply to judge the acceptability of FS paths for writing into omero.managed. dir, being any comma-separated
non-empty subset of:

¢ Windows required
* Windows optional
* UNIX required

* UNIX optional

* local required

* local optional

Minimally, the “required” appropriate for the server is recommended. Also applying “optional” rules may make sysad-
min tasks easier, but may be more burdensome for users who name their files oddly. “local” means “Windows” or
“UNIX” depending on the local platform, the latter being applied for Linux and Mac OS X.

Default: Windows required, UNIX required

property omero.managed.dir

omero.managed.dir

Default: ${omero.data.dir}/ManagedRepository

Client

property omero.client.browser.thumb_default_size

244 Chapter 2. System Administrator Documentation

OMERO

omero.client.browser.thumb_default_size

The default thumbnail size
Default: 96

property omero.client.download_as.max_size

omero.client.download_as.max_size

Clients disable download as jpg/png/tiff above max pixel count.
Default: 144000000

property omero.client.icetransports

omero.client.icetransports

Comma separated list of Ice transports available to clients. The default value (“ssl,tcp”) instructs Ice to open the ports
specified by the omero.ports.ssl and omero.ports.tcp properties. Restricting to “ssl” will prevent all non-encrypted
connections to the OMERO server.

Additionally, there are two experimental values for using websockets: “ws” and “wss” for unencrypted and encrypted,
respectively. The ports that are opened are controlled by the omero.ports.ws and omero.ports.wss properties. To enable
all possible protocols use: “ssl,tcp,wss,ws”.

Note: When using websockets behind a web server like nginx, additional configuration may be needed.
Default: ssi, tcp

property omero.client.scripts_to_ignore

omero.client.scripts_to_ignore

Server-side scripts used in IScript service Clients shouldn’t display.

Default: /omeroffigure_scripts/Movie_Figure.py, /omeroffigure_scripts/Split_View_Figure.py,
Jomeroffigure_scripts/Thumbnail_Figure.py, Jomeroffigure_scripts/ROI_Split_Figure.py,
/omero/export_scripts/Make_Movie.py, /omero/import_scripts/Populate_ROI.py

property omero.client.ui.menu.dropdown.colleagues.enabled

omero.client.ui.menu.dropdown.colleagues.enabled

Flag to show/hide colleagues
Default: true

property omero.client.ui.menu.dropdown.colleagues.label

2.5. Optimizing Server Configuration 245

OMERO

omero.client.ui.menu.dropdown.colleagues.label

Client dropdown menu colleagues label.
Default: Members

property omero.client.ui.menu.dropdown.everyone.enabled

omero.client.ui.menu.dropdown.everyone.enabled

Flag to show/hide all users.
Default: true

property omero.client.ui.menu.dropdown.everyone.label

omero.client.ui.menu.dropdown.everyone.label

Client dropdown menu all users label.
Default: All Members

property omero.client.ui.menu.dropdown.leaders.enabled

omero.client.ui.menu.dropdown.leaders.enabled

Flag to show/hide leader.
Default: true

property omero.client.ui.menu.dropdown.leaders.label

omero.client.ui.menu.dropdown.leaders.label

Client dropdown menu leader label.
Default: Owners

property omero.client.ui.tree.orphans.description

omero.client.ui.tree.orphans.description

Description of the “Orphaned images” container.

Default: This is a virtual container with orphaned images. These images are not linked anywhere. Just drag them to
the selected container.

property omero.client.ui.tree.orphans.enabled

246 Chapter 2. System Administrator Documentation

OMERO

omero.client.ui.tree.orphans.enabled

Flag to show/hide “Orphaned images” container. Only accept “true” or “false”
Default: true

property omero.client.ui.tree.orphans.name

omero.client.ui.tree.orphans.name

Name of the “Orphaned images” container located in client tree data manager.
Default: Orphaned Images

property omero.client.ui.tree.type_order

omero.client.ui.tree.type_order

Client tree type order rank list first type is ranked 1 (the highest), last is the lowest if set to ‘false’ empty list allows
mixing all types and sorting them by default client ordering strategy

Default: ragset, tag, project, dataset, screen, plate, acquisition, image

property omero.client.viewer.initial_zoom_level

omero.client.viewer.initial_zoom_level

Initial client image viewer zoom level for big images
Default: 0

property omero.client.viewer.interpolate_pixels

omero.client.viewer.interpolate_pixels

Client viewers interpolate pixels by default.
Default: true

property omero.client.viewer.roi_limit

omero.client.viewer.roi_limit

Client viewers roi limit.
Default: 2000

property omero.client.web.host

2.5. Optimizing Server Configuration 247

OMERO

omero.client.web.host

Absolute omeroweb host http(s)://your_domain/prefix/

Default: [empty]

Database

property omero.db.authority

omero.db.authority

The string that will be used as the base for LSIDs in all exported OME objects including OME-XML and OME-TIFF.
It’s usually not necessary to modify this value since the database UUID (stored in the database) is sufficient to uniquely
identify the source.

Default: export.openmicroscopy.org

property omero.db.dialect

omero.db.dialect

Implementation of the org.hibernate.dialect.Dialect interface which will be used to convert HQL queries and save
operations into SQL SELECTs and DML statements.

(PostgreSQL default)
Default: ome.util. PostgresqlDialect

property omero.db.driver

omero.db.driver

JDBC driver used to access the database. Other drivers can be configured which wrap this driver to provide logging,
monitoring, etc.

(PostgreSQL default)
Default: org.postgresql.Driver

property omero.db.host

omero.db.host

The host name of the machine on which the database server is running. A TCP port must be accessible from the server
on which OMERQO is running.

Default: localhost

property omero.db.name

248 Chapter 2. System Administrator Documentation

OMERO

omero.db.name

The name of the database instance to which OMERO will connect.
Default: omero

property omero.db.pass

omero.db.pass

The password to use to connect to the database server
Default: omero

property omero.db.patch

omero.db.patch

The patch version of the database which is in use. This value need not match the patch version of the server that is is
being used with. Any changes by developers to the database schema will result in a bump to this value.

Default: 0

property omero.db.poolsize

omero.db.poolsize

Sets the number of database server connections which will be used by OMERO.

A sizeable increase in this value, e.g. to 100, will significantly increase the performance of your server, but your
database installation will need to be configured to accept at least as many, preferably more, connections as this value.

The related values omero.threads.max_threads and omero.threads.background_threads do not need to be increased by
the same amount. A system will be more stable if background_threads is less than max_threads and max_threads is
less than poolsize.

Default: 710

property omero.db.port

omero.db.port

TCP port on which the database server is listening for connections. Used by the JDBC driver to access the database.
Use of a local UNIX socket is not supported.

(PostgreSQL default)
Default: 5432

property omero.db.prepared_statement_cache_size

2.5. Optimizing Server Configuration 249

OMERO

omero.db.prepared_statement_cache_size

Default: 10

property omero.db.profile

omero.db.profile

Default values for the current profile will be hard-coded into the hibernate.properties file in the model-*.jar. By using

a different jar, you can modify the defaults.

Note: some other properties are defined in the file etc/profiles/$omero.db. profile Especially of importance is

omero.db.port Set during the build
Default: psql

property omero.db.properties

omero.db.properties

Properties to set on OMERO.server’s JDBC connection to the database.
use/#connecting-to-the-database

Default: [empty]

property omero.db.sql_action_class

omero.db.sql_action_class

See https://jdbc.postgresql.org/documentation/

Implementation of the ome.util.SqlAction interface which will be used to perform all direct SQL actions, i.e. without

Hibernate.
(PostgreSQL default)
Default: ome.util.actions. PostgresSqlAction

property omero.db.statistics

omero.db.statistics

Whether JIMX statistics are collected for DB usage (by Hibernate, etc)
Default: true

property omero.db.url

250 Chapter 2

. System Administrator Documentation

https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database
https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database

OMERO

omero.db.url

The URL specifying how the Java driver connects to the database system.

Default: jdbc:postgresql://${omero.db.host}:${omero.db.port}/${omero.db.name} ?ApplicationName=OMERO. ${omero.name} & ${ ome

property omero.db.user

omero.db.user

The username to use to connect to the database server
Default: omero

property omero.db.version

omero.db.version

Version of the database which is in use. This value typically matches the major.minor version of the server that it is
being used with. Typically, only developers will change this version to bump to a new major version.

Default: OMEROS.4
Glacier2

property omero.glacier2.IceSSL

omero.glacier2.lceSSL

Glacier2Template IceSSL defaults and overrides, see https://doc.zeroc.com/ice/3.6/property-reference/icessl. Any
property beginning omero.glacier2.IceSSL. will be used to update the corresponding IceSSL. property.

Default: [empty]

property omero.glacier2.IceSSL.Ciphers

omero.glacier2.lceSSL.Ciphers

Glacier2Template SSL allowed cipher suites
Default: ADH:!LOW:!MD5:!EXP:!3DES: @ STRENGTH

property omero.glacier2.IceSSL.ProtocolVersionMax

2.5. Optimizing Server Configuration 251

https://doc.zeroc.com/ice/3.6/property-reference/icessl

OMERO

omero.glacier2.IceSSL.ProtocolVersionMax

Glacier2Template SSL maximum allowed protocol (mac bug)
Default: tls]_1

property omero.glacier2.IceSSL.Protocols

omero.glacier2.lceSSL.Protocols

Glacier2Template SSL allowed protocols
Default: #ls]

property omero.glacier2.IceSSL.VerifyPeer

omero.glacier2.lceSSL.VerifyPeer

Glacier2Template SSL verification requirements

Default: 0

Grid

property omero.cluster.read_only

omero.cluster.read_only

Deprecated. If true, will override both the db and repo properties to be true.

Default: false

property omero.cluster.read_only.db

omero.cluster.read_only.db

If access to the database is read-only: no writes should be attempted.

omero.cluster.read_only above.
Default: false

property omero.cluster.read_only.repo

A “false” may be overridden by

252 Chapter 2. System Administrator Documentation

OMERO

omero.cluster.read_only.repo

If access to the binary repo is read-only: no writes should be attempted. A “false” may be overridden by
omero.cluster.read_only above.

Default: false

property omero.cluster.redirector

omero.cluster.redirector

Default: nullRedirector

property omero.grid.registry_timeout

omero.grid.registry_timeout

registry_timeout is the milliseconds which the registry and other services will wait on remote services to respond.
Default: 5000
Ice

property Ice.IPv6

Ice.lPv6

Disable IPv6 by setting to 0. Only needed in certain situations.

Default: /

JVM

property omero.jvmcfg.append

omero.jvmcfg.append

Contains other parameters which should be passed to the JVM. The value of “append” is treated as if it were on the
command line so will be separated on whitespace. For example, ‘-XX:-PrintGC -XX:+UseCompressedOops’ would
results in two new arguments. Note that when using config set from the command line one may need to give a prior —
option to prevent a value starting with - from already being parsed as an option, and values may need quoting to prevent
whitespace or other significant characters from being interpreted prematurely.

Default: [empty]

property omero.jvmcfg.heap_dump

2.5. Optimizing Server Configuration 253

OMERO

omero.jvmcfg.heap_dump

Toggles on or off heap dumps on OOMs. Default is “off”’. The special value “tmp” will create the heap dumps in your
temp directory.

Default: [empty]

property omero.jvmcfg.heap_size

omero.jvmcfg.heap_size

Explicit value for the -Xmx argument, e.g. “1g”
Default: [empty]

property omero.jvmcfg.max_system_memory

omero.jvmcfg.max_system_memory

Suggestion for strategies as to the maximum memory that they will use for calculating JVM settings (MB).
Default: 48000

property omero.jvmcfg.min_system_memory

omero.jvmecfg.min_system_memory

Suggestion for strategies as to the minimum memory that they will use for calculating JVM settings (MB).
Default: 34714

property omero.jvmcfg.percent

omero.jvmcfg.percent

Used only by the percent strategy. An integer between 0 and 100 which is the percent of active memory that will be
used by the service.

Default: [empty]

property omero.jvmcfg.perm_gen

omero.jvmcfg.perm_gen

Explicit value for the MaxPermSize argument to the JVM, e.g. “500M”. Ignored for Java8+
Default: [empty]

property omero.jvmcfg.strategy

254 Chapter 2. System Administrator Documentation

OMERO

omero.jvmcfg.strategy

Memory strategy which will be used by default. Options include: percent, manual
Default: percent

property omero.jvmcfg.system_memory

omero.jvmcfg.system_memory

Manual override of the total system memory that OMERO will think is present on the local OS (MB). If unset, an
attempt will be made to detect the actual amount: first by using the Python library psutil and if that is not installed, by
running a Java tool. If neither works, 4.0GB is assumed.

Default: [empty]

LDAP

property omero.ldap.base

omero.ldap.base

LDAP server base search DN, i.e. the filter that is applied to all users. (can be empty in which case any LDAP user is
valid)

Default: ou=example, o=com

property omero.ldap.config

omero.ldap.config

Enable or disable LDAP (true or false).
Default: false

property omero.ldap.connect_timeout

omero.ldap.connect_timeout

Sets com. sun. jndi.ldap.connect.timeout on the Spring LDAP default security context source environment. The
context source is responsible for interacting with INDI/LDAP.

This timeout is specified in milliseconds and controls the amount of time JNDI/LDAP will wait for a connection to be
established.

A timeout less than or equal to zero means that no timeout will be observed and that the OMERO server will wait
indefinitely for LDAP connections to be established. Such a timeout should be used with extreme caution as connectivity
issues may then cause your server to no longer be able to create new sessions.

For more information on what this INDI/LDAP property does, see https://docs.oracle.com/javase/jndi/tutorial/ldap/
connect/create.html

Default: 5000

2.5. Optimizing Server Configuration 255

https://docs.oracle.com/javase/jndi/tutorial/ldap/connect/create.html
https://docs.oracle.com/javase/jndi/tutorial/ldap/connect/create.html

OMERO

property omero.ldap.group_filter

omero.ldap.group_filter

Default: (objectClass=groupOfNames)

property omero.ldap.group_mapping

omero.ldap.group_mapping

Default: name=cn

property omero.ldap.new_user_group

omero.ldap.new_user_group

Without a prefix the “new_user_group” property specifies the name of a single group which all new users will be added
to. Other new_user_group strings are prefixed with :x: and specify various lookups which should take place to find
one or more target groups for the new user.

:ou: uses the final organizational unit of a user’s dn as the single OMERO group e.g. omero.ldap.
new_user_group=:ou:

:attribute: uses all the values of the specified attribute as the name of multiple OMERO groups. e.g. omero.
ldap.new_user_group=:attribute:memberOf

Like :attribute:, :filtered_attribute: wuses all the values of the specified attribute as the name of
multiple OMERO groups but the attribute must pass the same filter as :query: does. e.g. omero.ldap.
new_user_group=:filtered_attribute:memberOf

Similarto :attribute:, :dn_attribute: uses all the values of the specified attribute as the DN of multiple OMERO
groups. e.g. omero.ldap.new_user_group=:dn_attribute:memberOf

A combination of filtered_attribute and dn_attribute, : filtered_dn_attribute: uses all of the values of the spec-
ified attribute as the DN of multiple OMERO groups but the attribute must pass the same filter as :query: e.g.
omero.ldap.new_user_group=:filtered_dn_attribute:memberOf

:query: performs a query for groups. The “name” property will be taken as defined by omero.ldap.group_mapping
and the resulting filter will be AND’ed with the value group_filter (above) e.g. omero.ldap.
new_user_group=:query: (member=@{dn})

:bean: looks in the server’s context for a bean with the given name which implements ome.security.auth.
NewUserGroupBean e.g. omero.ldap.new_user_group=:bean:myNewUserGroupMapperBean

Default: default

property omero.ldap.new_user_group_owner

256 Chapter 2. System Administrator Documentation

OMERO

omero.ldap.new_user_group_owner

A query element to check if user who is being created via the new_user_group setting should be made a “manager”, i.e.
owner, of the queried group. E.g. omero.ldap.new_user_group_owner=(owner=@{dn}) will use the ‘manager’
attribute to set the ‘owner’ flag in the database. This query element is appended to any query used by new_user_group
with an AND.

This property is not used by new_user_group type ‘default’ and only potentially by :bean:.
Default: [empty]

property omero.ldap.password

omero.ldap.password

LDAP server bind password (if required; can be empty)
Default: [empty]

property omero.ldap.read_timeout

omero.ldap.read_timeout

Sets com.sun. jndi.ldap.read.timeout on the Spring LDAP default security context source environment. The
context source is responsible for interacting with INDI/LDAP.

This timeout is specified in milliseconds and controls the amount of time INDI/LDAP will wait for a response from
the LDAP server. When connecting to a server using SSL this timeout also applies to the SSL handshake process.

A timeout less than or equal to zero means that no timeout will be observed and that the OMERO server will wait
indefinitely for LDAP replies. Such a timeout should be used with extreme caution, especially when using SSL and/or
without a connection pool, as connectivity issues may then cause your server to no longer be able to create new sessions.

For more information on what this JNDI/LDAP property does, see https://docs.oracle.com/javase/tutorial/jndi/
newstuft/readtimeout.html

Default: 5000

property omero.ldap.referral

omero.ldap.referral

Auvailable referral options are: “ignore”, “follow”, or “throw” as per the JNDI referral documentation.
Default: ignore

property omero.ldap.sync_on_login

2.5. Optimizing Server Configuration 257

https://docs.oracle.com/javase/tutorial/jndi/newstuff/readtimeout.html
https://docs.oracle.com/javase/tutorial/jndi/newstuff/readtimeout.html

OMERO

omero.ldap.sync_on_login

Whether or not values from LDAP will be synchronized to OMERO on each login. This includes not just the username,
email, etc, but also the groups that the user is a member of.

Note: Admin actions carried out in the clients may not survive this synchronization e.g. LDAP users removed from
an LDAP group in the UI will be re-added to the group when logging in again after the synchronization.

Default: false

property omero.ldap.urls

omero.ldap.urls

Set the URL of the LDAP server. A SSL URL for this property would be of the form: 1daps://ldap.example.com:636
Default: Idap://localhost:389

property omero.ldap.user_filter

omero.ldap.user_filter

Default: (objectClass=person)

property omero.ldap.user_mapping

omero.ldap.user_mapping

Default: omeName=cn, firstName=givenName, lastName=sn, email=mail, institution=department, middle-
Name=middleName

property omero.ldap.username

omero.ldap.username

LDAP server bind DN (if required; can be empty)
Default: [empty]

Mail

property omero.mail.bean

258 Chapter 2. System Administrator Documentation

OMERO

omero.mail.bean

Mail sender properties
Default: defaultMailSender

property omero.mail.config

omero.mail.config

Enable or disable mail sender (true or false).
Default: false

property omero.mail.from

omero.mail.from

the email address used for the “from” field
Default: omero@ ${omero.mail.host}

property omero.mail.host

omero.mail.host

the hostname of smtp server
Default: localhost

property omero.mail.password

omero.mail.password

the password to connect to the smtp server (if required; can be empty)
Default: [empty]

property omero.mail.port

omero.mail.port

the port of smtp server
Default: 25

property omero.mail.smtp.auth

2.5. Optimizing Server Configuration 259

OMERO

omero.mail.smtp.auth

see javax.mail.Session properties
Default: false

property omero.mail.smtp.connectiontimeout

omero.mail.smtp.connectiontimeout

Default: 60000

property omero.mail.smtp.debug

omero.mail.smtp.debug

Default: false

property omero.mail.smtp.socketFactory.class

omero.mail.smtp.socketFactory.class

Default: javax.net.SocketFactory

property omero.mail.smtp.socketFactory.fallback

omero.mail.smtp.socketFactory.fallback

Default: false

property omero.mail.smtp.socketFactory.port

omero.mail.smtp.socketFactory.port

Default: ${omero.mail.port}

property omero.mail.smtp.starttls.enable

omero.mail.smtp.starttls.enable

Default: false

property omero.mail.smtp.timeout

260 Chapter 2

. System Administrator Documentation

OMERO

omero.mail.smtp.timeout

Default: 60000

property omero.mail.transport.protocol

omero.mail.transport.protocol

other smtp parameters; see org.springframework.mail.javamail.JavaMailSenderImpl
Default: smtp

property omero.mail.username

omero.mail.username

the username to connect to the smtp server (if required; can be empty)

Default: [empty]

Metrics

property omero.metrics.bean

omero.metrics.bean

Which bean to use: nullMetrics does nothing defaultMetrics uses the properties defined below
Default: defaultMetrics

property omero.metrics.graphite

omero.metrics.graphite

Address for Metrics to send server data
Default: [empty]

property omero.metrics.slf4j_minutes

omero.metrics.slf4j_minutes

Number of minutes to periodically print to slf4j O or lower disables the printout.

Default: 60

2.5. Optimizing Server Configuration

261

OMERO

Name

property omero.name

omero.name

Name of the OMERO component that is running in this process.

Default: Server

Performance

property omero.sessions.max_user_time_to_idle

omero.sessions.max_user_time_to_idle

Sets the maximum duration in milliseconds a user can request before a login is required due to inactivity.

Default: 6000000

property omero.sessions.max_user_time_to_live

omero.sessions.max_user_time_to_live

Sets the maximum duration in milliseconds a user can request before a login is required (0 signifies never).

Default: 0

property omero.sessions.maximum

omero.sessions.maximum

Sets the default duration before a login is required; O signifies never.
Default: 0

property omero.sessions.sync_force

omero.sessions.sync_force

Default: 1800000

property omero.sessions.sync_interval

262 Chapter 2

. System Administrator Documentation

OMERO

omero.sessions.sync_interval

Default: 720000

property omero.sessions.timeout

omero.sessions.timeout

Sets the default duration of inactivity in milliseconds after which a login is required.
Default: 600000

property omero.threads.background_threads

omero.threads.background_threads

Number of threads from the min_threads pool that can be used at any given time for background tasks like import.
Note that if this value is less than min_threads, min_threads will limit the number of background tasks which can run
simultaneously.

Default: 10

property omero.threads.background_timeout

omero.threads.background_timeout

Number of milliseconds to wait for a slot in the background queue before a rejection error will be raised.
Default: 3600000

property omero.threads.cancel_timeout

omero.threads.cancel_timeout

Default: 5000

property omero.threads.idle_timeout

omero.threads.idle_timeout

This setting does nothing. See https://github.com/ome/omero-server/issues/154 And https://github.com/ome/
omero-server/pull/155

Default: 5000

property omero.threads.max_threads

2.5. Optimizing Server Configuration 263

https://github.com/ome/omero-server/issues/154
https://github.com/ome/omero-server/pull/155
https://github.com/ome/omero-server/pull/155

OMERO

omero.threads.max_threads

This setting does nothing. See https://github.com/ome/omero-server/issues/154 And https://github.com/ome/
omero-server/pull/155

Default: 50

property omero.threads.min_threads

omero.threads.min_threads

Maximum and minimum number of threads that can simultaneously run at the “USER” and “BACKGROUND” priority
level. Internal system threads may still run. Note when setting this that these threads do not time out.

Default: 5

property omero.throttling.method_time.error

omero.throttling.method_time.error

Time in milliseconds after which a single method invocation will print a ERROR statement to the server log. If ERRORs
are frequently being printed to your logs, you may want to increase this value after checking that no actual problem
exists. Values of more than 60000 (1 minute) are not advised.

Default: 20000

property omero.throttling.method_time.error.indexer

omero.throttling.method_time.error.indexer

Value for the indexer is extended to 1 day
Default: 86400000

property omero.throttling.method_time.warn

omero.throttling.method_time.warn

Time in milliseconds after which a single method invocation will print a WARN statement to the server log.
Default: 5000

property omero.throttling.method_time.warn.indexer

264 Chapter 2. System Administrator Documentation

https://github.com/ome/omero-server/issues/154
https://github.com/ome/omero-server/pull/155
https://github.com/ome/omero-server/pull/155

OMERO

omero.throttling.method_time.warn.indexer

Value for the indexer is extended to 1 hour
Default: 3600000

property omero.throttling.objects_read_interval

omero.throttling.objects_read_interval

Default: 1000

property omero.throttling.objects_written_interval

omero.throttling.objects_written_interval

Default: 1000

property omero.throttling.servants_per_session

omero.throttling.servants_per_session

Default: 10000

Pixeldata

property omero.pixeldata.backoff

omero.pixeldata.backoff

Name of the spring bean which will be used to calculate the backoff (in ms) that users should wait for an image to be

ready to view.
Default: ome.io.nio.SimpleBackOff

property omero.pixeldata.backoff.default

omero.pixeldata.backoff.default

A default value for the backoff time.
Default: 1000

property omero.pixeldata.backoff.maxpixels

2.5. Optimizing Server Configuration

265

OMERO

omero.pixeldata.backoff.maxpixels

The maximum number of pixels (in any dimension), if exceeded the default value will be used.
Default: 1000000

property omero.pixeldata.batch

omero.pixeldata.batch

Number of instances indexed per indexing. (Ignored by pixelDataEventLogQueue)
Default: 50

property omero.pixeldata.cron

omero.pixeldata.cron

Polling frequency of the pixeldata processing. Set empty to disable pixeldata processing.

Cron Format: seconds minutes hours day-of-month month day-of-week year (optional). For example, “0,30 * * * * 77 ig
equivalent to running every 30 seconds. See https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.
html

Default: */4 * * * * ?

property omero.pixeldata.dispose

omero.pixeldata.dispose

Whether the PixelData.dispose() method should try to clean up ByteBuffer instances which may lead to memory ex-
ceptions. See ticket #11675 for more information. Note: the property is set globally for the JVM.

Default: true

property omero.pixeldata.event_log_loader

omero.pixeldata.event_log_loader

EventLoglLoader that will be used for loading EventLogs for the action “PIXELDATA”. Choices include: pixel-
DataEventLogQueue and the older pixelDataPersistentEventLogLoader

Default: pixelDataEventLogQueue

property omero.pixeldata.max_plane_float_override

266 Chapter 2. System Administrator Documentation

https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html

OMERO

omero.pixeldata.max_plane_float_override

If true, server will not require pyramids for floating point pixel types. Note that pyramids are never generated for
floating point pixel types.

Default: true

property omero.pixeldata.max_plane_height

omero.pixeldata.max_plane_height

With omero.pixeldata.max_plane_width, specifies the plane size cutoff above which a pixel pyramid will be
generated by the pixeldata service unless subresolutions can be read from the file format. These values will be ignored
for floating or double pixel data types unlesss :property: omero.pixeldata.max_plane_float_override is set to false. Note
pyramids are never generated for floating point pixel types.

Default: 37192

property omero.pixeldata.max_plane_width

omero.pixeldata.max_plane_width

With omero.pixeldata.max_plane_height, specifies the plane size cutoff above which a pixel pyramid will be
generated by the pixeldata service unless subresolutions can be read from the file format. These values will be ignored
for floating or double pixel data types unlesss :property: omero.pixeldata.max_plane_float_override is set to false. Note
pyramids are never generated for floating point pixel types.

Default: 3192

property omero.pixeldata.max_projection_bytes

omero.pixeldata.max_projection_bytes

Specifies the maximum number of bytes the server will allow to be projected in real time with the rendering engine.
Default: 268435456

property omero.pixeldata.memoizer.dir

omero.pixeldata.memoizer.dir

The directory in which Bio-Formats may create memo files for images from the managed repository.
Default: ${omero.data.dir}/BioFormatsCache

property omero.pixeldata.memoizer.dir.local

2.5. Optimizing Server Configuration 267

OMERO

omero.pixeldata.memoizer.dir.local

For read-only servers set this to a local read-write directory so that memo files can be created and used. Activates only
if the binary repository is read-only.

Default: [empty]

property omero.pixeldata.memoizer_wait

omero.pixeldata.memoizer_wait

Maximum time in milliseconds that file parsing can take without the parsed metadata being cached to
omero.pixeldata.memoizer.dir.

Default: 0

property omero.pixeldata.repetitions

omero.pixeldata.repetitions

Instead, it is possible to tell the server to run more pixeldata repetitions, each of which gets completely committed
before the next. This will only occur when there is a substantial backlog of pixels to process.

(Ignored by pixelDataEventLogQueue; uses threads instead)

Default: /

property omero.pixeldata.threads

omero.pixeldata.threads

How many pixel pyramids will be generated at a single time. The value should typically not be set to higher than the
number of cores on the server machine.

Default: 2

property omero.pixeldata.tile_height

omero.pixeldata.tile_height

Default: 256

property omero.pixeldata.tile_sizes_bean

268 Chapter 2. System Administrator Documentation

OMERO

omero.pixeldata.tile_sizes bean

Default sizes for tiles are provided by a ome.io.nio.TileSizes implementation. By default the bean (“configuredTile-
Sizes”) uses the properties provided here.

Default: configuredTileSizes

property omero.pixeldata.tile_width

omero.pixeldata.tile_width

Default: 256

Policy

property omero.policy.bean

omero.policy.bean

Instance of the PolicyService interface which will be responsible for checking certain server actions made by a user.
Default: defaultPolicyService

property omero.policy.binary_access

omero.policy.binary_access

Configuration for the policy of whether users can access binary files from disk. Binary access includes all attempts to
download a file from the UL

The individual components of the string include:

 write - whether or not users who have WRITE access to the objects can access the binary. This includes group
and system administrators.

* read - whether or not users who have READ access to the objects can access the binary.
» image - whether or not images are to be considered accessible as a rule.

* plate - whether or not plates and contained HCS objects are to be considered accessible as a rule. This includes
wells, well samples, and plate runs.

Though the order of the components of the property are not important, the order that they are listed above roughly
corresponds to their priority. E.g. a -write value will override +plate.

Example 1: “-read,+write,+image,-plate” only owners of an image and admins can download it.
Example 2: “-read,-write,-image,-plate” no downloading is possible.

Configuration properties of the same name can be applied to individual groups as well. E.g. adding,
omero.policy.binary_access=-read to a group’s config property, you can prevent group-members from
downloading original files, as at https://docs.openmicroscopy.org/latest/omero/sysadmins/customization.html#
download-restrictions

Configuration is pessimistic: if there is a negative either on the group or at the server-level, the restriction will be
applied. A missing value at the server restricts the setting but allows the server to override.

2.5. Optimizing Server Configuration 269

https://docs.openmicroscopy.org/latest/omero/sysadmins/customization.html#download-restrictions
https://docs.openmicroscopy.org/latest/omero/sysadmins/customization.html#download-restrictions

OMERO

Default: +read, +write, +image

Ports

property omero.ports.prefix

omero.ports.prefix

The prefix to apply to all port numbers (SSL, TCP, registry) used by the server

Default: [empty]

property omero.ports.registry

omero.ports.registry

The IceGrid registry port number to use
Default: 4061

property omero.ports.ssl

omero.ports.ssl

The Glacier2 SSL port number to use
Default: 4064

property omero.ports.tcp

omero.ports.tcp

The Glacier2 TCP port number to use (unencrypted)
Default: 4063

property omero.ports.ws

omero.ports.ws

The Glacier2 WS port number to use (unencrypted)
Default: 4065

property omero.ports.wWss

270 Chapter 2

. System Administrator Documentation

OMERO

omero.ports.wss

The Glacier2 WSS port number to use
Default: 4066

Qa

property omero.qa.feedback

omero.qa.feedback

Base URL to use when sending feedback (errors, comments)
Default: http://qa.openmicroscopy.org.uk
Query

property omero.query.timeout

omero.query.timeout

For the query service how many seconds before a query times out.
Default: 1000

property omero.query.timeout.admin

omero.query.timeout.admin

How many seconds before a query times out for administrative users.

Default: ${omero.query.timeout}

Scripts

property omero.launcher. jython

omero.launcher.jython

k)

Executable on the PATH which will be used for scripts with the mimetype ‘text/x-jython’.
Default: jython

property omero.launcher.matlab

2.5. Optimizing Server Configuration 271

OMERO

omero.launcher.matlab

Executable on the PATH which will be used for scripts with the mimetype ‘text/x-matlab’.
Default: matlab

property omero.launcher.python

omero.launcher.python

Executable on the PATH which will be used for scripts with the mimetype ‘text/x-python’.
No value implies use sys.executable
Default: [empty]

property omero.process.jython

omero.process.jython

Server implementation which will be used for scripts with the mimetype ‘text/x-jython’. Changing this value requires
that the appropriate class has been installed on the server.

Default: omero.processor.Processl

property omero.process.matlab

omero.process.matlab

Server implementation which will be used for scripts with the mimetype ‘text/x-matlab’. Changing this value requires
that the appropriate class has been installed on the server.

Default: omero.processor. MATLABProcessl

property omero.process.python

omero.process.python

Server implementation which will be used for scripts with the mimetype ‘text/x-python’. Changing this value requires
that the appropriate class has been installed on the server.

Default: omero.processor.Processl

property omero.scripts.cache.cron

272 Chapter 2. System Administrator Documentation

OMERO

omero.scripts.cache.cron

Frequency to reload script params. By default, once a day at midnight.

Cron Format: seconds minutes hours day-of-month month day-of-week year (optional). For example, “0,30 * * * * 77 ig
equivalent to running every 30 seconds. See https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.
html

Default: 000 * * ?

property omero.scripts.cache.spec

omero.scripts.cache.spec

Guava LoadingCache spec for configuring how many script JobParams will be kept in memory for how long.

For more information, see https://google.github.io/guava/releases/27.1-jre/api/docs/com/google/common/cache/
CacheBuilderSpec.html

Default: maximumSize=1000

property omero.scripts.timeout

omero.scripts.timeout

Default: 3600000

Search

property omero.search.analyzer

omero.search.analyzer

Analyzer used both index and to parse queries
Default: ome.services.fulltext. FullTextAnalyzer

property omero.search.batch

omero.search.batch

Size of the batches to process events per indexing. Larger batches can speed up indexing, but at the cost of memory.
Default: 5000

property omero.search.bridges

2.5. Optimizing Server Configuration 273

https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://google.github.io/guava/releases/27.1-jre/api/docs/com/google/common/cache/CacheBuilderSpec.html
https://google.github.io/guava/releases/27.1-jre/api/docs/com/google/common/cache/CacheBuilderSpec.html

OMERO

omero.search.bridges

Extra bridge classes, comma-separated, to be invoked on each indexing. Bridges are used to parse more information
out of the data.

Default: [empty]

property omero.search.cron

omero.search.cron

Polling frequency of the indexing. Set empty to disable search indexing.

Cron Format: seconds minutes hours day-of-month month day-of-week year (optional). For example, “0,30 * * * * 77 ig
equivalent to running every 30 seconds. See https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.
html

Default: */2 * * * * ?

property omero.search.event_log_loader

omero.search.event_log_loader

Default: eventLogQueue

property omero.search.excludes

omero.search.excludes

Indexing takes place on all EventLogs as they occur in the database. The types listed here will be skipped if they appear
in the “entityType” field of the EventLog table.

Default: ome.model.annotations. ChannelAnnotationLink, ome.model.core.Channel,
ome.model.core.Planelnfo, ome.model.core. PixelsOriginalFileMap, ome.model.containers.DatasetlmageLink,
ome.model.containers.ProjectDatasetLink, ome.model.containers.CategoryGroupCategoryLink,
ome.model.containers.CategorylmageLink, ome.model.display.ChannelBinding, ome.model.display.QuantumDef,
ome.model.display. Thumbnail, ome.model.meta.Share, ome.model.meta.Event, ome.model.meta. EventLog,
ome.model.meta. GroupExperimenterMap, ome.model.meta.Node, ome.model.meta.Session,
ome.model.annotations.RoiAnnotationLink, ome.model.roi.Roi, ome.model.roi.Shape, ome.model.roi.Text,
ome.model.roi.Rectangle, ome.model.roi.Mask, ome.model.roi.Ellipse, ome.model.roi. Point,
ome.model.roi.Path, ome.model.roi.Polygon, ome.model.roi. Polyline, ome.model.roi.Line,
ome.model.screen.ScreenAcquisitionWellSampleLink, ome.model.screen.ScreenPlateLink,
ome.model.screen.WellReagentLink, ome.model.stats.StatsInfo

property omero.search.include_actions

274 Chapter 2. System Administrator Documentation

https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html
https://www.quartz-scheduler.org/api/1.8.6/org/quartz/CronExpression.html

OMERO

omero.search.include_actions

EventLog.action values which will be indexed. Unless custom code is generating other action types, this property
should not need to be modified.

Default: INSERT, UPDATE, REINDEX, DELETE

property omero.search.include_types

omero.search.include_types

Whitelist of object types which will be indexed. All other types will be ignored. This matches the currently available
UI options but may need to be expanded for custom search bridges.

Default: ome.model.core.Image, ome.model.containers. Project, ome.model.containers.Dataset,
ome.model.screen.Plate, ome.model.screen.Screen, ome.model.screen.PlateAcquisition, ome.model.screen.Well

property omero.search.locking_strategy

omero.search.locking_strategy

Default: native

property omero.search.max_file_size

omero.search.max_file_size

Maximum file size for text indexing (bytes) If a file larger than this is attached, e.g. to an image, the indexer will simply
ignore the contents of the file when creating the search index. This should not be set to more than half of the Indexer
heap space.

Note: If you set the max file size to greater than 1/2 the size of the indexer’s heap (256 MB by default), you may
encounter Out of Memory errors in the Indexer process or you may cause the search index to become corrupt. Be sure
that you also increase the heap size accordingly (see OutOfMemoryError / PermGen space errors in OMERQO.server

logs).

Default: 131072000

property omero.search.max_fileset_size

omero.search.max_fileset_size

Maximum number of fileset entries which will be indexed Increasing this cut-off can lead to indexing performance
degradation notably in the high-content screening domain where plates typically contain 1K-10K images associated
with 10-100K fileset entries each If set to 0, no fileset entry will be indexed

Default: 10

property omero.search.max_partition_size

2.5. Optimizing Server Configuration 275

OMERO

omero.search.max_partition_size

Number of objects to load in a single indexing window. The larger this value the fewer times a single object will be
indexed unnecessarily. Each object uses roughly 100 bytes of memory.

Default: 1000000

property omero.search.merge_factor

omero.search.merge_factor

Default: 25

property omero.search.ram_buffer_size

omero.search.ram_buffer_size

Default: 64

property omero.search.repetitions

omero.search.repetitions

Instead, it is possible to tell the server to run more indexing repetitions, each of which gets completely committed before
the next. This will only occur when there is a substantial backlog of searches to perform. (More than 1 hours worth)

Default: /

property omero.search.reporting_loops

omero.search.reporting_loops

Periodically the completion percentage will be printed. The calculation can be expensive and so is not done frequently.

Default: 100

Security

property omero.security.chmod_strategy

omero.security.chmod_strategy

Default: groupChmodStrategy

property omero.security.filter.bitand

276

Chapter 2. System Administrator Documentation

OMERO

omero.security.filter.bitand

Default: (intSand(permissions, %s) = %s)

property omero.security.keyStore

omero.security.keyStore

A keystore is a database of private keys and their associated X.509 certificate chains authenticating the corresponding
public keys. A keystore is mostly needed if you are doing client-side certificates for authentication against your LDAP
Server.

Default: [empty]

property omero.security.keyStorePassword

omero.security.keyStorePassword

Sets the password of the keystore
Default: [empty]

property omero.security.login_failure_throttle_count

omero.security.login_failure_throttle_count

Default: /

property omero.security.login_failure_throttle_time
omero.security.login_failure_throttle_time

Default: 3000

property omero.security.password_provider
omero.security.password_provider

Implementation of PasswordProvider that will be used to authenticate users. Typically, a chained password provider
will be used so that if one form of authentication (e.g. LDAP) does not work, other attempts will be made.

Default: chainedPasswordProvider

property omero.security.password_required

2.5. Optimizing Server Configuration 277

OMERO

omero.security.password_required

Controls whether the server will allow creation of user accounts with an empty password. If set to true (default, strict
mode), empty passwords are disallowed. This still allows the guest user to interact with the server.

Default: true

property omero.security.trustStore

omero.security.trustStore

A truststore is a database of trusted entities and their associated X.509 certificate chains authenticating the correspond-
ing public keys. The truststore contains the Certificate Authority (CA) certificates and the certificate(s) of the other
party to which this entity intends to send encrypted (confidential) data. This file must contain the public key certificates
of the CA and the client’s public key certificate.

Default: [empty]

property omero.security.trustStorePassword

omero.security.trustStorePassword

Sets the password of the truststore
Default: [empty]
Server

property omero.server.nodedescriptors

omero.server.nodedescriptors

Override the default set of OMERO services. For example, to run OMERO.server with Blitz and Tables only (i.e.
disable Processor, DropBox, Indexer, PixelData) set this to master:Blitz-0,Tables-0. Also use this to distribute
OMERO services across multiple nodes, for example: master:Blitz-0,Tables-0 workerl:Processor-0. See
https://docs.openmicroscopy.org/omero/latest/sysadmins/grid.html#deployment-examples

Default: [empty]

Web

property omero.web.admins

278 Chapter 2. System Administrator Documentation

https://docs.openmicroscopy.org/omero/latest/sysadmins/grid.html#deployment-examples

OMERO

omero.web.admins

A list of people who get code error notifications whenever the application identifies a broken link or raises an unhandled
exception that results in an internal server error. This gives the administrators immediate notification of any errors, see
OMERO.mail. Example:' [["Full Name", "email address"]]'.

Default: []

property omero.web.application_server

omero.web.application_server

OMERO.web is configured to run in Gunicorn as a generic WSGI (TCP)application by default. Available options:
wsgi-tcp (Gunicorn, default), wsgi (Advanced users only, e.g. manual Apache configuration with mod_wsgi).

Default: wsgi-tcp

property omero.web.application_server.host

omero.web.application_server.host

The front-end webserver e.g. NGINX can be set up to run on a different host from OMERO.web. The property ensures
that OMERO.web is accessible on an external IP. It requires copying all the OMERO.web static files to the separate
NGINX server.

Default: 127.0.0.1

property omero.web.application_server.max_requests

omero.web.application_server.max_requests

The maximum number of requests a worker will process before restarting.
Default: 0

property omero.web.application_server.port

omero.web.application_server.port

Upstream application port
Default: 4080

property omero.web.apps

2.5. Optimizing Server Configuration 279

OMERO

omero.web.apps

Add additional Django applications. For example, see Creating an app
Default: []

property omero.web.base_include_template

omero.web.base_include_template

Template to be included in every page, at the end of the <body>
Default: None

property omero.web.caches

omero.web.caches

OMERO.web offers alternative session backends to automatically delete stale data using the cache session store back-
end, see Django cached session documentation for more details.

Default: {\”default\”: \"BACKEND\”: \”django.core.cache.backends.dummy.DummyCache\” }}

property omero.web.chunk_size

omero.web.chunk_size

Size, in bytes, of the “chunk”
Default: 1048576

property omero.web.cors_origin_allow_all

omero.web.cors_origin_allow_all

If True, cors_origin_whitelist will not be used and all origins will be authorized to make cross-site HTTP requests.
Default: false

property omero.web.cors_origin_whitelist

omero.web.cors_origin_whitelist

A list of origin hostnames that are authorized to make cross-site HTTP requests. Used by the django-cors-headers app
as described at https://github.com/ottoyiu/django-cors-headers

Default: []

property omero.web.csrf_cookie_httponly

280 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cached-sessions
https://github.com/ottoyiu/django-cors-headers

OMERO

omero.web.csrf_cookie_httponly

Prevent CSRF cookie from being accessed in JavaScript. Currently disabled as it breaks background JavaScript POSTs
in OMERO.web.

Default: false

property omero.web.csrf_cookie_samesite

omero.web.csrf_cookie_samesite

The value of the SameSite flag on the CSRF cookie. This flag prevents the cookie from being sent in cross-site requests
thus preventing CSRF attacks and making some methods of CSRF session cookie impossible.

Default: Lax

property omero.web.csrf_cookie_secure

omero.web.csrf_cookie_secure

Restrict CSRF cookies to HTTPS only, you are strongly recommended to set this to true in production.
Default: false

property omero.web.csrf_trusted_origins

omero.web.csrf_trusted_origins

A list of hosts which are trusted origins for unsafe requests. When starting with ‘., all subdomains are included.
Example '[".example.com", "another.example.net"]'. For more details see CSRF trusted origins.

Default: []

property omero.web.databases

omero.web.databases

Default: {}

property omero.web.debug

omero.web.debug

A boolean that turns on/off debug mode. Use debug mode only in development, not in production, as it logs sensitive
and confidential information in plaintext.

Default: false

property omero.web.django_additional_settings

2.5. Optimizing Server Configuration 281

https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-trusted-origins

OMERO

omero.web.django_additional_settings

Additional Django settings as list of key-value tuples. Use this to set or override Django settings that aren’t managed
by OMERO.web. E.g. [""CUSTOM_KEY", "CUSTOM_VALUE"]

Default: []

property omero.web.favicon_url

omero.web.favicon_url

Favicon URL, specifies the path relative to django’s static file dirs.
Default: webgateway/img/ome.ico

property omero.web.feedback.comment.enabled

omero.web.feedback.comment.enabled

Enable the feedback form for comments. These comments are sent to the URL in omero.qa.feedback (OME team
by default).

Default: true

property omero.web.feedback.error.enabled

omero.web.feedback.error.enabled

Enable the feedback form for errors. These errors are sent to the URL in omero.qga. feedback (OME team by default).
Default: true

property omero.web.html_meta_referrer

omero.web.html_meta_referrer

Default content for the HTML Meta referrer tag. See https://www.w3.org/TR/referrer-policy/#referrer-policies for al-
lowed values and https://caniuse.com/referrer-policy for browser compatibility. Warning: Internet Explorer 11 does
not support the default value of this setting, you may want to change this to “origin™ after reviewing the linked docu-
mentation.

Default: origin-when-crossorigin

property omero.web.index_template

282 Chapter 2. System Administrator Documentation

https://www.w3.org/TR/referrer-policy/#referrer-policies
https://caniuse.com/referrer-policy

OMERO

omero.web.index_template

Define template used as an index page http://your_host/omero/.If None user is automatically redirected to the
login page.For example use ‘webclient/index.html’.

Default: None

property omero.web.logdir

omero.web.logdir

A path to the custom log directory.
Default: /home/omero/OMERO.server/var/log

property omero.web.login.client_downloads_base

omero.web.login.client_downloads_base

GitHub repository containing the Desktop client downloads
Default: ome/omero-insight

property omero.web.login.show_client_downloads

omero.web.login.show_client_downloads

Whether to link to official client downloads on the login page
Default: true

property omero.web.login_incorrect_credentials_text

omero.web.login_incorrect_credentials_text

The error message shown to users who enter an incorrect username or password.
Default: Connection not available, please check your user name and password.

property omero.web.login_logo

omero.web.login_logo

Customize webclient login page with your own logo. Logo images should ideally be 150 pixels high or less and will
appear above the OMERO logo. You will need to host the image somewhere else and link to it with the OMERO logo.

Default: None

property omero.web.login_redirect

2.5. Optimizing Server Configuration 283

OMERO

omero.web.login_redirect

Redirect to the given location after logging in. It only supports arguments for Django reverse function.

For example: '{"redirect": ["webindex"], "viewname": "load_template", "args":["userdata"],
"query_string": {"experimenter": -1}}'
Default: {}

property omero.web.login_view

omero.web.login_view

The Django view name used for login. Use this to provide an alternative login workflow.
Default: weblogin

property omero.web.max_table_download_rows

omero.web.max_table_download_rows

Prevent download of OMERO.tables exceeding this number of rows in a single request.
Default: 10000

property omero.web.maximum_multifile_download_size

omero.web.maximum_multifile_download_size

Prevent multiple files with total aggregate size greater than this value in bytes from being downloaded as a zip archive.
Default: 1073741824

property omero.web.middleware

omero.web.middleware

Warning: Only system administrators should use this feature. List of Django middleware classes in the form [{“class’:

LEINT3

“class.name”, “index”: FLOAT}]. See Django middleware. Classes will be ordered by increasing index

Default: [\”index\”: 1, \”class\”: \”django.middleware.common.BrokenLinkEmailsMiddleware\” },{\”index\":

2, \"class\”: \"django.middleware.common. CommonMiddleware\” },{\"index\”: 3,
\"class\”: \"django.contrib.sessions.middleware.SessionMiddleware\” },{\”index\”: 4,
\"class\”: \"django.middleware.csrf.CsrfViewMiddleware\” },{\”index\": 5, \class\”:
\"django.contrib.messages.middleware.MessageMiddleware\” },{\” index\": 6, \"class\”:

\"django.middleware.clickjacking. XFrameOptionsMiddleware\” } |

property omero.web.nginx_server_extra_config

284 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/1.11/topics/http/middleware/

OMERO

omero.web.nginx_server_extra_config

Extra configuration lines to add to the Nginx server block. Lines will be joined with n. Remember to terminate lines
with; when necessary.

Default: []

property omero.web.open_with

omero.web.open_with

A list of viewers that can be used to display selected Images or other objects. Each viewer is defined as ["Name",
"url", options]. Urlisreverse(url). Selected objects are added to the url as ?image=:1&image=2Objects supported
must be specified in options with e.g. {"supported_objects":["images"]} to enable viewer for one or more
images.

Default: [\"Image viewer\”, \"webgateway\”, {\”supported_objects\”: [\”image\”]\”script_url\”: \"web-
client/javascript/ome.openwith_viewer.js\” }]|

property omero.web.page_size

omero.web.page_size

Number of images displayed within a dataset or ‘orphaned’ container to prevent from loading them all at once.
Default: 200

property omero.web.ping_interval

omero.web.ping_interval

Timeout interval between ping invocations in seconds
Default: 60000

property omero.web.pipeline_css_compressor

omero.web.pipeline_css_compressor

Compressor class to be applied to CSS files. If empty or None, CSS files won’t be compressed.
Default: None

property omero.web.pipeline_js_compressor

2.5. Optimizing Server Configuration 285

OMERO

omero.web.pipeline_js_compressor

Compressor class to be applied to JavaScript files. If empty or None, JavaScript files won’t be compressed.
Default: None

property omero.web.pipeline_staticfile_storage

omero.web.pipeline_staticfile_storage

The file storage engine to use when collecting static files with the collectstatic management command. See the docu-
mentation for more details.

Default: pipeline.storage. PipelineStorage

property omero.web.plate_layout

omero.web.plate_layout

If ‘shrink’, the plate will not display rows and columns before the first Well, or after the last Well. If ‘trim’, the plate
will only show Wells from A1 to the last Well. If ‘expand’ (default), the plate will expand from A1 to a multiple of 12
columns x 8 rows after the last Well.

Default: expand
property omero.web.prefix

omero.web.prefix

Used as the value of the SCRIPT_NAME environment variable in any HTTP request.
Default: None

property omero.web.public.cache.enabled

omero.web.public.cache.enabled

Default: false

property omero.web.public.cache.key

omero.web.public.cache.key

Default: omero.web.public.cache.key

property omero.web.public.cache.timeout

286 Chapter 2. System Administrator Documentation

https://django-pipeline.readthedocs.org/en/latest/storages.html
https://django-pipeline.readthedocs.org/en/latest/storages.html

OMERO

omero.web.public.cache.timeout

Default: 86400

property omero.web.public.enabled

omero.web.public.enabled

Enable and disable the OMERO.web public user functionality.
Default: false

property omero.web.public.get_only

omero.web.public.get_only

Restrict public users to GET requests only
Default: true

property omero.web.public.password

omero.web.public.password

Password to use during authentication.
Default: None

property omero.web.public.server_id

omero.web.public.server_id

Server to authenticate against.
Default: /

property omero.web.public.url_filter

omero.web.public.url_filter

Set a regular expression that matches URLs the public user is allowed to access. If this is not set, no URLs will be
publicly available.

Default: (?#This regular expression matches nothing)a™

property omero.web.public.user

2.5. Optimizing Server Configuration 287

OMERO

omero.web.public.user

Username to use during authentication.
Default: None

property omero.web.redirect_allowed_hosts

omero.web.redirect_allowed hosts

If you wish to allow redirects to an external site, the domains must be listed here. For example [“openmicroscopy.org’].
Default: []

property omero.web.root_application

omero.web.root_application
Override the root application label that handles /. Warning you must ensure the application’s URLs do not conflict
with other applications. omero-gallery is an example of an application that can be used for this (set to gallery)

Default: [empty]

property omero.web.search.default_group

omero.web.search.default_group

ID of the group to pre-select in search form. A value of O or -1 pre-selects All groups.
Default: 0

property omero.web.search.default_user

omero.web.search.default_user

ID of the user to pre-select in search form. A value of 0 pre-selects the logged-in user. A value of -1 pre-selects All
Users if the search is across all groups or All Members if the search is within a specific group.

Default: 0

property omero.web.secret_key

omero.web.secret_key

A boolean that sets SECRET_KEY for a particular Django installation.
Default: None

property omero.web.secure

288 Chapter 2. System Administrator Documentation

OMERO

omero.web.secure

Force all backend OMERO.server connections to use SSL.
Default: false

property omero.web.secure_proxy_ssl_header

omero.web.secure_proxy_ssl_header

A tuple representing a HTTP header/value combination that signifies a request is secure. Example
' ["HTTP_X_FORWARDED_PROTO_OMERO_WEB", "https"]'. For more details see secure proxy ssl header.

Default: /]

property omero.web.server_list

omero.web.server_list

A list of servers the Web client can connect to.
Default: [/\”localhos\”, 4064, \” omero\”]]

property omero.web.session_cookie_age

omero.web.session_cookie_age

The age of session cookies, in seconds.
Default: 86400

property omero.web.session_cookie_domain

omero.web.session_cookie _domain

The domain to use for session cookies
Default: None

property omero.web.session_cookie_name

omero.web.session_cookie _name

The name to use for session cookies
Default: None

property omero.web.session_cookie_path

2.5. Optimizing Server Configuration 289

https://docs.djangoproject.com/en/1.11/ref/settings/#secure-proxy-ssl-header

OMERO

omero.web.session_cookie_path

The path to use for session cookies
Default: None

property omero.web.session_cookie_samesite

omero.web.session_cookie samesite

The value of the SameSite flag on the session cookie. This flag prevents the cookie from being sent in cross-site requests
thus preventing CSRF attacks and making some methods of stealing session cookie impossible.

Default: Lax

property omero.web.session_cookie_secure

omero.web.session_cookie secure

Restrict session cookies to HTTPS only, you are strongly recommended to set this to true in production.
Default: false

property omero.web.session_engine

omero.web.session_engine

Controls where Django stores session data. See Configuring the session engine for more details.Allowed values are:
omeroweb.filesessionstore (deprecated), django.contrib.sessions.backends.db, django.contrib.
sessions.backends.file, django.contrib.sessions.backends.cache or django.contrib.sessions.
backends.cached_db.

Default: django.contrib.sessions.backends.file

property omero.web.session_expire_at_browser_close

omero.web.session_expire_at_browser_close

A boolean that determines whether to expire the session when the user closes their browser. See Django Browser-length
sessions vs. persistent sessions documentation for more details.

Default: true

property omero.web.session_serializer

290 Chapter 2. System Administrator Documentation

https://docs.djangoproject.com/en/1.11/ref/settings/#session-engine
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#browser-length-vs-persistent-sessions

OMERO

omero.web.session_serializer

You can use this setting to customize the session serialization format. See Django session serialization documentation
for more details.

Default: django.contrib.sessions.serializers.PickleSerializer

property omero.web.sharing.opengraph

omero.web.sharing.opengraph

Dictionary of server-name: site-name, where server-name matches a name from omero.web.server_list. For example:
'{"omero": "Open Microscopy"}'

Default: [}

property omero.web.sharing.twitter

omero.web.sharing.twitter

Dictionary of server-name: @twitter-site-username, where server-name matches a name from omero.web.server_list.
For example: '{"omero": "@openmicroscopy"}'

Default: {}

property omero.web.show_forgot_password

omero.web.show_forgot_password

Allows to hide ‘Forgot password’ from the login view - useful for LDAP/ActiveDir installations
Default: true

property omero.web.static_root

omero.web.static_root

The absolute path to the directory where collectstatic will collect static files for deployment. If the staticfiles contrib
app is enabled (default) the collectstatic management command will collect static files into this directory.

Default: /home/omero/OMERQO.server/var/static

property omero.web.static_url

2.5. Optimizing Server Configuration 291

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#session-serialization

OMERO

omero.web.static_url

URL to use when referring to static files. Example: '/static/' or 'http://static.example.com/"'. Used as
the base path for asset definitions (the Media class) and the staticfiles app. It must end in a slash if set to a non-empty
value.

Default: /static/

property omero.web.staticfile_dirs

omero.web.staticfile_dirs

Defines the additional locations the staticfiles app will traverse if the FileSystemFinder finder is enabled, e.g. if you
use the collectstatic or findstatic management command or use the static file serving view.

Default: []

property omero.web.template_dirs

omero.web.template_dirs

List of locations of the template source files, in search order. Note that these paths should use Unix-style forward
slashes.

Default: []

property omero.web.thumbnails_batch

omero.web.thumbnails_batch

Number of thumbnails retrieved to prevent from loading them all at once. Make sure the size is not too big, otherwise
you may exceed limit request line, see https://docs.gunicorn.org/en/latest/settings.html?highlight=limit_request_line

Default: 50

property omero.web.time_zone

omero.web.time_zone

Time zone for this installation. Choices can be found in the TZ database name column of: https://en.wikipedia.org/
wiki/List_of tz_database_time_zones Default "Europe/London"

Default: Europe/London

property omero.web.top_logo

292 Chapter 2. System Administrator Documentation

https://docs.gunicorn.org/en/latest/settings.html?highlight=limit_request_line
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

OMERO

omero.web.top_logo

Customize the webclient top bar logo. The recommended image height is 23 pixels and it must be hosted outside of
OMERO.web.

Default: [empty]

property omero.web.top_logo_link

omero.web.top_logo_link

The target location of the webclient top logo, default unlinked.
Default: [empty]

property omero.web.ui.center_plugins

omero.web.ui.center_plugins

Add plugins to the center panels. Plugins are ['Channel overlay', 'webtest/webclient_plugins/
center_plugin.overlay.js.html', 'channel_overlay_panel']. The javascript loads data into
$("#div_id").

Default: []

property omero.web.ui.metadata_panes

omero.web.ui.metadata_panes

Manage Metadata pane accordion. This functionality is limited to the existing sections.

Default: [{\"name\”: \"tag\”, \"labe\”: \"Tags\”, \"index\”: 1},{\"name\”: \"map\”, \”label\”: \”Key-Value
Pairs\”, \”index\”: 2},{\"name\”: \"table\”, \”label\”: \"Tables\”, \”index\”: 3},{\"name\”: \”file\”, \"label\”:
\"Attachments\”, \"index\”: 4},{\"name\”: \”commeni\”, \”label\”: \” Comments\”, \”index\”: 5},{\”’name\”: \”rat-
ing\”,\”label\”: \”Ratings\”, \”index\”: 6},{\”"name\”: \”othe\”, \”label\”: \” Others\”, \”index\”: 7}]

property omero.web.ui.right_plugins

omero.web.ui.right_plugins

Add plugins to the right-hand panel. Plugins are ['Label', 'include.js', 'div_id']. The javascriptloads data
into $("#div_id").

Default: [I\"Acquisition\”, \"webclient/data/includes/right_plugin.acquisition.js.htmI\”, \"meta-
data_tab\”],[\” Preview\”, \"webclient/data/includes/right_plugin.preview.js.htmI\”, \”preview_tab\” ||

property omero.web.ui.top_links

2.5. Optimizing Server Configuration 293

OMERO

omero.web.ui.top_links

Add links to the top header: links are ['Link Text', 'link|lookup_view', options], where the url is
reverse(‘link’), simply ‘link’ (for external urls) or lookup_view is a detailed dictionary {‘“viewname”: ”?

113

str”,
“args”: [], “query_string”: {“param™: “value” }], E.g. '["Webtest", "webtest_index"] or ["Homepage",
"http://...", {"title": "Homepage", "target": '"new"}] or ["Repository", {"viewname":
"webindex", "query_string": {"experimenter": -1}}, {"title": "Repo"}]'

Default: [/\”Data\”, \"webindex\”, {\”title\”: \”Browse Data via Projects, Tags etc\”}],[\”History\”, \” history\”,
{\"title\”: \”History\” }],[\”Help\”, \” https://help.openmicroscopy.org/\”,{\"title\” \” Open OMERO user guide in a
new tab\”, \"targef\” \"new\” } ||

property omero.web.use_x_forwarded_host

omero.web.use x_forwarded host

Specifies whether to use the X-Forwarded-Host header in preference to the Host header. This should only be enabled
if a proxy which sets this header is in use.

Default: false

property omero.web.user_dropdown

omero.web.user_dropdown

Whether or not to include a user dropdown in the base template. Particularly useful when used in combination with
the OMERO.web public user where logging in may not make sense.

Default: true

property omero.web.viewer.view

omero.web.viewer.view

Django view which handles display of, or redirection to, the desired full image viewer.
Default: omeroweb.webclient.views.image_viewer

property omero.web.webgateway_cache

omero.web.webgateway cache

Default: None

property omero.web.wsgi_args

294 Chapter 2. System Administrator Documentation

OMERO

omero.web.wsgi_args

A string representing Gunicorn additional arguments. Check Gunicorn Documentation https://docs.gunicorn.org/en/
latest/settings.html

Default: None

property omero.web.wsgi_timeout

omero.web.wsgi_timeout

Workers silent for more than this many seconds are killed and restarted. Check Gunicorn Documentation https://docs.
gunicorn.org/en/stable/settings.html#timeout

Default: 60

property omero.web.wsgi_workers

omero.web.wsgi_workers

The number of worker processes for handling requests. Check Gunicorn Documentation https://docs.gunicorn.org/en/
stable/settings.html#workers

Default: 5

property omero.web.x_frame_options
omero.web.x_frame_options
Whether to allow OMERO.web to be loaded in a frame.

Default: SAMEORIGIN

2.5.8 Syslog configuration

syslog is a standard for message logging over networks. OMERO.server supports logging to either a local or remote
syslog service.

This allows all logs of the OMERO.server to be routed to a central location instead of (or as well as) to a file.

Note: It is important to note that this applies only to the OMERO.server itself, not to components like OMERO.web.

2.5. Optimizing Server Configuration 295

https://docs.gunicorn.org/en/latest/settings.html
https://docs.gunicorn.org/en/latest/settings.html
https://docs.gunicorn.org/en/stable/settings.html#timeout
https://docs.gunicorn.org/en/stable/settings.html#timeout
https://docs.gunicorn.org/en/stable/settings.html#workers
https://docs.gunicorn.org/en/stable/settings.html#workers
https://en.wikipedia.org/wiki/Syslog

OMERO

How it works

Whenever a log message is generated, OMERO’s logging framework will forward that message to any configured
appenders.

By default, OMERO is configured to log everything to files.

Note: OMERO is configured to log a record of events for operations such as import. These are written directly to the
Managed Repository. It is very likely that even if replacing file logging with syslog, this aspect should be retained in
files. This is easily achieved by not changing any loggers using SIFT.

Configuration

To configure OMERO to be able to log to syslog, it is necessary to modify the file OMERO. server/current/etc/
logback.xml. Itis possible to do all the configuration changes in this file alone, but for ease of config management, it is
demonstrated here where an additional OMERO. server/current/etc/logback_syslog.xml file is used in addition.

The following information is required to configure OMERO to log to syslog.
* The host on which syslog is running: e.g. localhost
* The port number on which syslog is running on that host: e.g. 574

* The facility (RFC 3164) that OMERO should be handled as: e.g. user or local6

Note: The facility is important because it determines how syslog will handle the messages it receives. It is unlikely
that OMERO’s log output will be desired in a local systems primary message log for example. On Linux this is often
/var/log/messages. Remember to configure the syslog configuration to avoid this. This is also where configuration
of onward forwarding can be configured (to a service such as splunk). Finally, syslog can be configured to specifically
output this facility output to a file such as /var/log/omero.

Create the new file OMERO. server/current/etc/logback_syslog.xml:

<?xml version="1.0" encoding="UTF-8"7>
<included>
<!l-- syslog -—>
<appender name="SYSLOG" class="ch.qos.logback.classic.net.SyslogAppender">

<!-- Exclude debug level logging from ome.services.blitz.repo.ManagedImportRequestI -
=
<filter class="ch.qos.logback.core.filter.EvaluatorFilter">
<evaluator> <!-- defaults to type ch.gos.logback.classic.boolex.

—»JaninoEventEvaluator -->
<expression>return Level.DEBUG.equals(Level.tolLevel(level)) && logger.
—equals("ome.services.blitz.repo.ManagedImportRequestI") ;</expression>
</evaluator>
<OnMismatch>NEUTRAL</OnMismatch>
<OnMatch>DENY</OnMatch>

</filter>
<!-- Exclude debug level logging from omero.* (except allow omero.cmd.*) -->
<filter class="ch.qos.logback.core.filter.EvaluatorFilter">

<evaluator> <!-- defaults to type ch.gos.logback.classic.boolex.

(continues on next page)

296 Chapter 2. System Administrator Documentation

https://tools.ietf.org/html/rfc3164
https://www.splunk.com/

OMERO

(continued from previous page)
—»JaninoEventEvaluator -->
<expression>return Level.DEBUG.equals(Level.tolLevel(level)) && logger.

—.startsWith("omero.") && !logger.startsWith("omero.cmd.") ;</expression>

</evaluator>

<OnMismatch>NEUTRAL</OnMismatch>

<OnMatch>DENY</OnMatch>

</filter>

<syslogHost>localhost</syslogHost>

<facility>localb</facility>

<suffixPattern>0MERO [%level] [%thread] %logger %msg</suffixPattern>
</appender>

</included>

This creates an appender that sends messages to syslog. syslogHost is the host on which syslog is running. No port is
specified as 514 is the default. The suffixPattern is customizable. In this instance it is identical to OMERO’s file logger
except an added “OMERO” identifier has been added for clarity. The name of the appender has been set to SYSLOG.
The filters replicate the same behaviour from the default FILE appender.

Note: If configuring the appender directly in the OMERO. server/current/etc/logback.xml file, then the included
tag should not be used.

Within the configuration tag of OMERO. server/current/etc/logback.xml add:

[<inc1ude file="/path/to/OMERO. server/etc/logback_syslog.xml" />

Note: The included file path can be relative, but note that it is NOT relative to the OMERO. server/current/etc/
logback.xml file, but to the current directory set by OMERO. It is highly recommended to use a full path.

Finally, also within OMERO. server/current/etc/logback.xml modify the root tag to include a second appender-
ref (It can also be replaced if the file logs are not desired or syslog will handle writing those to a file on OMERO’s
behalf):

<root level="OFF">
<appender-ref ref="SYSLOG"/>
<appender-ref ref="FILE"/>
</root>

Note: A restart of OMERO will be necessary before this takes effect.

2.5. Optimizing Server Configuration 297

OMERO

2.6 Managing OMERO

This section contains details on how to manage users, groups and data access in OMERO. New in OMERO 5.4.0, full
administrators can now create restricted administrators to allow facility managers or other trusted users to carry out
tasks on behalf of all users.

2.6.1 Groups and permissions system

See also:

OMERQO permissions querying, usage and history

Summary

A user may belong to one or more groups, and the data in a group may at most be shared with users in the same group
on the same OMERO server. The degree to which their data is available to other members of the group depends on
the permissions settings for that group. Whenever a user logs on to an OMERO server, they are connected under one
of their groups. All data they import and any work that is done is assigned to the current group, however the user can
move their data into another group.

Users

Administrator
Your OMERO server will have one or more administrators. Each group can be administrated by any of your
server administrators. The administrators control all settings for groups.

Group owner
Your group may have one or more owners. The group owner has some additional rights within each group
compared to a standard group member, including the ability to add other members to the group.

Group member
This is the standard user.

Restricted Administrators
New in OMERO 5.4.0, these administrators can be created with a subset of privileges allowing trusted users to
act on behalf of all other OMERO users for a defined set of tasks. See Administrators with restricted privileges
for further information.

Groups and users must be created by the server administrator or a restricted administrator with the correct privileges.
Users can then be added by the administrator (either a full admin or a restricted admin with the correct privileges) or
by one of the group owners assigned by the administrator (group owners would typically include the PI of the lab). The
group’s owners or administrators can also choose the permission level for that group. See the Help guide for managing
groups for more information about how to administrate them in OMERO.

298 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/sharing-data.html#owner
https://help.openmicroscopy.org/sharing-data.html#owner

OMERO

Group permission levels

The various permission levels are:

Private
This group is the most restrictive:

* A private Group owner can see and control who the group members are and can view their data.
* As a Group member, you will only ever be able to see your own data.

» This can be used for general data storage, access and analysis, but has very limited collaboration potential
other than for the Group owner to see other group members’ data.

Potential use cases of Private group:

* A Pl as Group owner and their student, as a Group member, can access the student’s data. A student might
use this to store all of their data and from here, the PI and/or student might decide which data could/should
be moved into a more collaborative group where additional members would also be able to view the data.

* An institutional repository type structure where data are being archived, but not necessarily open for general
viewing.

Read-only
This group allows visibility of other users and their data, but minimal ability to annotate their data:

e The Group owner can control group members as above and can perform annotations on the other group
members data.

e Group member can see who other members are and view their data, but cannot annotate another members’
data at all.

Potential use cases of Read-only group:

¢ A scientist might move data into a read-only group when they want other group members to access and
view their data. Their PI, as a group owner could then annotate and/or add Regions of Interest (ROIs) to
their images.

* Scientists submitting a publication could move data to a read-only group as part of the publication workflow,
making them publicly available via a URL for reviewers and readers (see the Help guide for public data).

» For an institutional repository where data are being archived and then available for other users in the institute
to view; this could be standard storage of all original data, or for data that is included in publications.

Read-annotate
This group allows some collaboration on other members’ data for all members:

* Group member can view other members, their data and can make annotations on those other members’
data.

Potential use cases of Read-annotate group:
* This could be used by a group of scientists working together with data for a publication.

Read-write
This group essentially allows all the group members to behave as if they co-own all the data:

* Group member can view, annotate, edit and delete all data; the only restriction is that they cannot move
other members’ data into another group.

Potential use cases of Read-write group:

* A group of scientists working in a completely collaborative way, trusting every member of the group to
have equal rights and access to all the data.

2.6. Managing OMERO 299

https://help.openmicroscopy.org/publish.html#public

OMERO

Note: Restricted administrators are designed to work independently of group permissions. They act as full adminis-
trators when using their subset of privileges, allowing them to perform actions on data belonging to other users even
in private groups (see the permissions tables below).

See also:

Help guide for sharing data
Workflow guide covering the groups and permissions system

Changing group permissions

It is possible for the Group owner or server Administrator to change the permissions level on a group after it has been
created and filled with data, with the following limitations:

e It is not possible to ‘reduce’ permissions to Private if the group contains a projection made by one member
from data owned by another user. In other circumstances, reducing permissions to private will warn of loss of
annotations etc. as noted below, but will still be possible.

* Only Administrator can promote a group to Read-write permissions. Make certain all the members understand
that this allows anyone in the group to permanently delete any of the data before performing this action.

Warning: Please be very careful before downgrading a group’s permission level. If a user has annotated other
users’ data and the group is downgraded, any links to annotations that are not permitted by the new permissions
level will be lost.

Permissions on your and other users’ data

What can you do with your data?

All OMERO users in all groups can perform all actions on their own data (with the exception of changing the ownership
of the data).

The main actions available include, but are not limited to:
* create projects and/or datasets
* import data
* delete data
* edit names and descriptions of images
* change rendering settings on images
* annotate images (rate, tag, add attachments and comments)
* de-annotate (remove annotations that you have added)
* use Regions of Interest (ROIs) (add, import, edit, delete, save and analyze them)
* run scripts
* move data between groups, if you belong to more than one group

What can you do with someone else’s data in your group?

300 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/sharing-data.html

OMERO

Actions available for you on someone else in your group’s data will depend both on the permissions of the group you
are working in, and what sort of user you are. See the table below for a quick reference guide to permissions available
on other people’s data.

Some of these policies may evolve as the permissions functionality matures in response to user feedback. Please let us
know any comments or suggestions you have via our mailing lists or forums.

Permissions tables

The following are the permissions valid for users working on data belonging to other group members. These permis-
sions depend on the group permissions and on the type of the user performing the action.

Restricted administrators act as full administrators when using their subset of privileges. For all actions which
are not covered by their privileges subset, they act as standard group members. For example, a data analyst with
write data privileges can edit data even in a private group (without having to be a member of that group) but without
the delete privilege they cannot delete data belonging to another user unless that data is in a read-write group they are
a member of. All restricted administrators can view and download any data regardless of group type and their subset
of privileges. See Administrators with restricted privileges for further information.

Administrator

This table covers both full server administrators and restricted administrators with the privileges required for these
actions. Restricted administrators act as group members for any actions that are not covered by their subset of privileges.

Action Private Read-only Read-annotate Read-write
View Y Y Y Y
Annotate N Y Y Y
Delete Y Y Y Y
Edit Y Y Y Y
Move between groups Y Y Y Y
Remove annotations Y Y Y Y
Mix data N Y Y Y
Change ownership Y Y Y Y

2.6. Managing OMERO 301

https://www.openmicroscopy.org/support/

OMERO

Group owner

Action Private Read-only Read-annotate Read-write
View Y Y Y Y
Annotate N Y Y Y
Delete Y Y Y Y
Edit Y Y Y Y
Move between groups N N N N
Remove annotations Y Y Y Y
Mix data N Y Y Y
Change ownership Y Y Y Y

Group member

Action Private Read-only Read-annotate Read-write
View

Annotate

Delete

Edit

Move between groups
Remove annotations
Mix data

Change ownership

ZZ2Z222Z22Z7ZZ
ZZZ2Z2ZZZK
ZZ2Z2Z22Z2Z~<~
ZHKHKZHKAHRAKA

Key

Action
Action on other users’ data.

Annotate
Add annotations (rating, tag, attachment, comment, ROI) to another users’ data. Also create & save ROIs (save
ROIs that you draw on another users’ data).

Change ownership
Assign ownership of the data to a different user. The target user should be a member of the group the data belongs
to.

Delete
Delete data such as images or ROIs. ROIs may have been added by others or yourself.

302 Chapter 2. System Administrator Documentation

OMERO

Edit
Modify the name or description of other users’ objects such as images.
Mix data

Copy, Move or Remove other users’ data to or from your Projects, Datasets or Screens. Copy, Move or Remove
your or others’ data to or from others’ Projects, Datasets or Screens.

Note: You should always be able to remove annotations (such as tags) that you linked to other users’ data (you
own the link). The link can be deleted, but the tag itself will not be deleted.

Move between groups
Only an admin has the right to move other users’ data between groups.

Note: An admin does not have to be a member of either the original or the destination group.

Remove annotations
Remove annotations made by others on your data.

Render
Create your own rendering settings (this will not modify the settings of the owner).

View
View other users’ data such as images. View ROIs added by others. Draw ROIs on other users’ data, but they
cannot be saved.

Issues to be aware of

ROIs

* You can never edit (change text or move) other users’ ROI.

* Any ROIs added to other users’ data will not affect ROIs added by the owner.

Tags and attachments

* A tag or attachment is ‘owned’ by the person who creates it or uploads it to the server.

* The link between a tag or an attachment is ‘owned’ by the person who annotates an image with that tag or
attachment i.e. makes a link between the tag/attachment and the image.

* De-annotation deletes the link between the tag/attachment and image but does not remove/delete the tag or at-
tachment from the system.

2.6. Managing OMERO 303

OMERO

Scripts

¢ Although all users can run scripts on other users’ data, the actions within those scripts will be subject to the
restrictions of the permissions detailed in the tables above.

2.6.2 Administrators with restricted privileges

Summary

OMERO allows you to create administrators with a subset of the full administrator privileges. This is a way to cater
for the need for more powerful users acting on behalf of all other OMERO users, with no group membership but with
access to all groups and data of all users in OMERO. This should be achieved without creating new full administrators in
OMERQO. In the real world, these administrators with restricted privileges (restricted admins) will typically be imaging
facility managers, image analysts, or anybody who needs to organize users and data of others in OMERO. Even a
restricted administrator is still a powerful user so each must be a highly trusted individual.

Warning: Restrictions on privileges can communicate an administrator’s intended role and prevent many acci-
dents whose consequences would be severe. However, even a little privilege can go a long way so never grant
administrative powers lightly. These restrictions do not protect against a cunning, malicious user: never elevate a
user even as far as group ownership unless they are truly trusted.

Full administrators in OMERO can create new administrators with restricted privileges using the OMERO.web inter-
face, see the facility managers guide in our Help documentation. OMERO.cli does not yet support easy management
of restrictions nor does it offer the helpful permissions mapping but advanced users may use OMERO.cli to adjust the
restrictions on an administrator.

Four suggested workflows

We suggest here four setups that should cover the four mainstream workflows. Nevertheless, you can combine the
privileges (check the checkboxes in the OMERO.web interface) in any way you see fit. The privileges were designed
in such a way that they still bear useful functionality even when used in isolation. For example, checking the Chown
checkbox will give the new administrator with restricted privileges the power to transfer ownership of other users’ data.
For exact server-side definitions of the privileges displayed in OMERO.web interface see Administrator restrictions:
relating OMERO.webadmin to OMERO.server.

Required Privileges Data Viewer Importer Analyst Group and Data Organizer
Sudo N Y N N
Write Data N N Y Y
Delete Data N N N Y
Chgrp N N N Y
Chown N N Y (0O) Y
Create and Edit Groups N N N Y
Create and Edit Users N N N Y
Add Users to Groups N N N Y
Upload Scripts N N Y N

Y

privilege required, checkbox in OMERO.web interface is checked
N

privilege not required, checkbox is not checked

304 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager.html#lightadmin

OMERO

(0]
privilege optional for the workflow

Note: Restricted admins workflows in OMERO.clients

Please do not expect for any workflows mentioned here that all OMERO.clients OMERO.web, OMERO.insight, com-
mand line interface (CLI) are fully equipped to execute them (see details below). New features will be added in
OMERO.clients in the 5.4.x series of OMERO releases.

Note: Group membership

All the workflows here assume that the administrator with restricted privileges is not a member of any group except
the System group. This does not preclude such administrator from being a member of any number of groups. Inside
the groups the restricted admin is a member of, they have the same privileges as other group members of that group
additionally to their administrative privileges.

Note: Deleting privileges

Sudo privilege includes ability to delete the data of the user whom the administrator is working on behalf of. If you
want to prevent the restricted admin from deleting others’ data entirely, do not give Delete Data and do not give Sudo
privileges.

Note: Privilege escalation

The administrators with restricted privileges (restricted admins) are prevented from escalation of their privileges. Cre-
ation of a restricted admin with higher privileges than the creator, and creation of a full administrator, are prevented.
Furthermore, although a restricted admin can Sudo on behalf of a full administrator, their privileges will not expand to
the full administrator privilege set by this action. See also Sudo.

Workflow 1: Data Viewer

If you do not give any explicit privileges to the administrator with restricted privileges, this administrator still has some
useful privileges. These include browsing and viewing all the data of all users in all groups (including the groups
where they are not members). The administrator with restricted privileges is also able to download all the data in all
types of groups. Furthermore, they can view user and group information, such as usernames, e-mail addresses, group
permission levels and lists of all users and groups. They are not able to annotate, edit or delete any of the data or
change any user or group information though. Note that any administrator with restricted privileges described below
or otherwise created combining the privileges at will would be able to perform the Data Viewer workflow as well.

Client Details:

* OMERO.insight: is not designed to show any groups, or data belonging to any groups, you are not a member of.
The Data Viewer workflow is preferably executed using OMERO.web or CLI.

* OMERO.web: allows viewing and downloading the data, see Viewing Data.

¢ CLI: allows listing all images, groups and users and downloading the data:

List all users on server
$ omero user list
List all groups on server
(continues on next page)

2.6. Managing OMERO 305

https://help.openmicroscopy.org/viewing-data

OMERO

(continued from previous page)
$ omero group list
List all images on server
$ omero fs images

Workflow 2: Importer

The Importer role is to import images into OMERO for other users, i.e. in such a manner that the imported images are
owned by the users in OMERO, not by the user in the role of the Importer. The Importer role is typically used by an
imaging facility manager who is importing data acquired by users on microscopes into OMERO.

The importer workflow can be achieved with only the Sudo privilege (first line in the above table). This privilege allows
them to “become” the user they are importing the data for. The Importer role may need to reorganize the imported data.
For example, they made a mistake, Sudoed as a wrong user in a wrong group and need to rectify the mistake using the
command line interface (CLI) client. Whilst being sudoed, the Importer role can Delete the wrongly imported data
(even without Delete privilege given, see the Note above), logout, login and Sudo as the correct user and repeat the
import process. In short, whilst Sudoed, Importer role can do any action which the user they are becoming is allowed
to do. In case any more post-import cleaning and data organizing is necessary for Importer, this might be enabled by
giving them also privilege necessary for the Data organizers (see Workflow 4: Group and Data Organizer below).

If you have any doubts about giving the administrators with restricted privilege the Sudo privilege (which implicitly
gives the ability to delete other users’ data), there are two workarounds which enable import for others without Sudo.

The first, simpler, workaround involves importing the data as Importer into the group of the future data owner and then
transferring the ownership of the data (see details in Workflow 3: Analyst). The second workaround involves importing
into the group of the Importer as the importer, then moving the data into the group of the prospective data owner and
then changing the ownership of the data to the owner (necessary tools are described in Workflow 3: Analyst).

Client details:

* OMERO.importer or OMERO.insight: you have to be a member of the group you want to import to in
OMERO.importer or OMERO.insight. Login as the administrator with restricted privileges and perform the
import for others as described in the chapter of the Help documentation import for others.

e CLI: documentation is available covering Import images and Import targets (see also the videos on import on
the OME YouTube channel):

-

Login as the Importer and sudo as the user you want to import for
omero --sudo Importer -u user login

Create new containers belonging to the user

omero obj new Dataset name=Dataset-of-user

omero obj new Project name=Project-of-user

Link the containers

omero obj new ProjectDatasetLink parent=Project:17 child=Dataset:13
Import into created Dataset

omero import ~/Desktop/CMPOl.png -T Dataset:name:Dataset-of-user

A FH A H A H e H

306 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager#import
https://www.youtube.com/channel/UCyySB9ZzNi8aBGYqcxSrauQ

OMERO

Workflow 3: Analyst

Typically, the Analyst role in OMERO is to
* read the data (always possible, see Workflow 1: Data Viewer: Data Viewer)

* change and save the rendering settings of the images (enabled by Write Data privilege, exception is Private
groups, where they cannot save rendering settings)

* annotate the data (enabled by Write Data privilege, but not possible in Private groups)

¢ draw and save ROIs on other users’ images (enabled by Write Data privilege, but no saving in Private groups
possible)

* upload and attach result files to the analyzed images (enabled by Write Data privilege, except Private groups,
where attaching is not possible)

* create Projects and Datasets for newly imported images in groups they are not a member of (enabled by Write
Data privilege)

* import new images resulting from image analysis into these Projects and Datasets

* link new images resulting from image analysis to existing Projects and Datasets of the original data owner (en-
abled by Write Data privilege)

* (possibly) changing the ownership of the newly created conainers and contained result images to the users (en-
abled by Chown privilege)

* upload, edit and delete official scripts usable by all OMERO users (enabled by Upload Scripts privilege)
Client details:

* OMERO.insight or Insight-ImageJ plugin: Analyst has to be a member of the group where the data is located.
They can draw ROIs and extract analysis results from the ROIs and data in any type of group. They can save
ROIs except in Private groups. They can upload official scripts in OMERO.insight (any group type, Analyst does
not have to be a member of any particular group for script upload in OMERO.insight).

¢ OMERO.web, OMERO.insight, Insight-ImageJ plugin: Analyst can adjust rendering settings and save them,
upload attachments with results and annotate (for example tag, key-value pairs, rating, commenting). These
actions are not permitted in Private groups with images belonging to others. See Help guides for rendering,
annotating, attaching files, attaching data.

¢ CLI: Upload of official scripts is allowed (in any group type, see OMERO.scripts user guide and below). Upload
of attachments with results, annotating (not in private group), creating containers, import of resulting images into
groups you are not a member of (in private groups these are invisible for the owner of the original data, unless
you transfer their ownership), transferring ownership of these containers (any group type), transferring ownership
of objects (images, annotations, ROIs, uploaded attachments with results) is possible too (see Command Line
Interface as an OMERQO client):

Upload an official script

omero script upload --official /PATH/TO/YOUR_SCRIPT
Login to the group the original data are in

omero -g testgroup login

Create new Dataset

omero obj new Dataset name=new-dataset

Import result images into the Dataset

omero import -T Dataset:name:new-dataset /PATH/TO/RESULT/IMAGES
Transfer the ownership of the Dataset and

of the contained images to the user with ID:55
omero chown 55 Dataset:112

A H H e H e H A H A H

2.6. Managing OMERO 307

https://help.openmicroscopy.org/managing-data#rendering
https://help.openmicroscopy.org/managing-data#annotating
https://help.openmicroscopy.org/managing-data#attach
https://help.openmicroscopy.org/managing-data#attach

OMERO

Workflow 4: Group and Data Organizer

Group and Data Organizer role is for creation of new users and groups in OMERO and allocating the users to appropriate
groups. It is also possible to change the users’ information such as e-mail and to change group permissions level. These
tasks are facilitated by the privileges Create and Edit Groups, Create and Edit Users and Add Users to Groups.

The Group and Data Organizer might also be tasked with dealing with data owned by OMERO users who have left the
institution. The Organizer can transfer ownership of the data owned by the leaving person (facilitated by the Chown
privilege) to another user. In cases where the new owner of the data may not be a member of the data group, the
Organizer first moves the data between groups (facilitated by the Chgrp privilege), and then transfers the ownership of
the data. Always try to avoid the situation where owner of the data is not in data group.

For moving data between groups, usage of OMERO.web is highly recommended. The Organizer can create new con-
tainers (Projects, Datasets) on behalf of data owner in OMERO.web conveniently as part of the Move to Group com-
mand in OMERO.web (Move to Group). The containers and links of data to containers will belong to data owner. For
new container creation and linking, the Write Data privilege is necessary. CLI can be used for the move action as well,
see Moving objects between groups.

In case of data owner not being in the group where the data is, the Organizer can also add the data owner to the data
group (facilitated by the Add Users to Groups privilege), instead of moving the data. The Organizer will transfer the
ownership of the data to the new owner only after they have added the new data owner to the data group.

During all data manipulation steps, the Organizer needs the Write Data privilege to create new Projects, Datasets or
Screens for the new owners of the data and to link the data to those containers or to already existing containers owned
by the new owner. Since OMERO 5.4.0, OMERO.web enables Organizers with Write Data privilege to create new
containers belonging to other users, see the OMERO.web in Data structure section of our Help documentation. Except
the links created during creation of new Datasets inside others’ Projects in OMERO.web, any links created by the
Organizer will belong to the Organizer, not the owner of the data. This will be addressed in OMERO.web in the 5.4.x
series. The ownership transfer of the containers and links can be done later on the CLI. Linking of others’ data is never
possible in Private groups.

After the Organizer has dealt with the data, they can remove the leaving person from any group (included in the Add
Users to Groups privilege) and make the user inactive (facilitated by the Create and Edit Users privilege).

Note that the ownership of data of a user can be transferred either piecemeal, i.e. specifying each Project or Dataset
to transfer (using omero chown command of CLI), or all of the data of the user can be transferred in one step. The
transfer of all the data of the user in one step has to be considered an advanced feature; it may be slow and demanding
of CPU resources in cases of complex data.

Quite naturally the Group and Data Organizer can be easily split into two separate roles, with the Group Organiser role
having Create and Edit Groups, Create and Edit Users, Add Users to Groups privileges, and the Data Organiser role
having Write Data, Delete Data, Chgrp, Chown privileges. It is of course possible to use any combination of these
privileges as you see fit. It is recommended to always grant Create and Edit Users with Add Users to Groups so that
the new restricted administrator is able to deactivate users.

Client Details:

* OMERO.web: all the Data Organizing actions are possible, except transfer of ownership (possible only in CLI,
will be addressed in the 5.4.x series). Creation of Projects, Datasets or Screens for other users in OMERO.web
is possible since OMERO 5.4.0, see Data structure (OMERO.web). All the Group and User Organizing actions
are possible if all Create and Edit Groups, Create and Edit Users and Add Users to Groups privileges are given.
It is also reasonable to give Create and Edit Users and Add Users to Groups or Create and Edit Groups and
Add Users to Groups. These combinations give the restricted adiminstrator good user interface experience in
OMERO.web.

» CLI see User/group management, Moving objects between groups, Changing ownership of objects and examples
below for CLI features useful for Group and Data Organizing:

308 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/group-owner#move
https://help.openmicroscopy.org/facility-manager#data
https://help.openmicroscopy.org/facility-manager#data

OMERO

Create new user and put them into 2 groups

omero user add username firstname lastname groupl group2

Edit login name of a user with ID:55

omero obj update Experimenter:55 omeName=new-login-name

Add a user to a group named "testgroup"

omero group adduser --name testgroup --user-name newbieingroup
omero group removeuser --name testgroup --user-name thegoner

Make a user a group owner. Works also when the owner-to-be

is already a member of the group

omero group adduser --name group --user-name ownertobe --as-owner
Remove a group owner from ownership of the group. Does not remove
the formerowner from group, just unsets the ownership.

omero user leavegroup testgroup --name formerowner --as-owner
Move a Dataset hierarchy to group 5 and include all annotations
on the Dataset and objects linked to the Dataset

omero chgrp 5 Dataset:51 --include Annotation

Transfer ownership to user 55 of the Project 112

omero chown 55 Project:112

Transfer the ownership of a Project-Dataset link. Useful in case the
link was created by the Organizer and links objects of others
omero chown 55 ProjectDatasetLink:123

Transfer the ownership of Dataset-Image link

omero chown 55 DatasetImagelLink:154

Transfer all data of user 5 to user 11 (advanced, might be slow)
omero chown 11 Experimenter:5

A H A A H H e FH e H H A H H A HH A FH e FHF A H

Key

Add Users to Groups
Administrator can add or remove users to groups. See Workflow 4: Group and Data Organizer for more details.

Analyst
Administrator who performs image analysis on others’ images in OMERO. See more details in Workflow 3:
Analyst.

Chgrp
Administrator can move others’ data to a different Group. See Workflow 4: Group and Data Organizer for more
details.

Chown
Administrator can transfer others’ data to a different Owner. See Workflow 4: Group and Data Organizer for
more details.

Create and Edit Groups
Administrator can create and edit groups (but not add or remove users). See Workflow 4: Group and Data
Organizer for more details.

Create and Edit Users
Administrator can create and edit other users (but not add them to groups). See Workflow 4: Group and Data
Organizer for more details.

Data Viewer
Administrator who views and downloads data of others. See more details in Workflow 1: Data Viewer.

Delete Data

2.6. Managing OMERO 309

OMERO

Administrator can delete other users’ data. See Note on Delete for more details. Integral part of Workflow 4:
Group and Data Organizer.

Group and Data Organizer
Administrator who creates new users and groups in OMERO and allocates or removes the users to or from
appropriate groups. This administrator also deals with data left after OMERO users which left the institution,
or otherwise is tasked with reorganizing of others’ data. See more details in Workflow 4: Group and Data
Organizer.

Importer
Administrator who imports images into OMERO for other users. The imported images are owned by the users
in OMERQO, not by the Importer. This is typically an imaging facility manager who is importing data acquired
by users on microscopes into OMERO. See more details in Workflow 2: Importer.

Sudo
Administrator can log in as another user, with all the permissions of that user. When the restricted admin is
working on behalf of a user and using Sudo, their privileges are a common least denominator of the privileges of
the user and of the restricted admin (i.e. if a restricted administrator is using Sudo on behalf of a full administrator,
they do not have full admin rights to perform actions not covered by their own privileges). See also Note on
privilege escalation, Note on Delete and Workflow 2: Importer for more details.

Upload Scripts
Administrator can upload “official” OMERO.scripts to the server. See Workflow 3: Analyst for more details.

Write Data
Administrator can create data in groups of which he/she is not a member. Also allows annotating, adding attach-
ments to and editing and linking of other users’ data. See Workflow 3: Analyst for more details.

Administrator restrictions: relating OMERO.webadmin to OMERO.server
Summary

OMERO allows you to create administrators with a subset of the full administrator privileges, see Administrators with
restricted privileges. The OMERO.web user interface form for creation and editing of restricted administrators (see
the creating Administrators with restricted privileges section) collates the server-side privileges into fewer options and
gives the options user-friendly names. Here, the mapping of the OMERO.web options to the server-side privileges is
given. The server-side privileges are more granular and direct work with them is possible on the CLI, as described in
Adjusting administrator restrictions.

Map of the OMERO.web Ul options to the server-side privileges

Option in OMERO.web Server-side privilege(s)

Sudo Sudo

Write data WriteOwned, WriteFile, WriteManagedRepo
Delete data DeleteOwned, DeleteFile, DeleteManagedRepo
Chgrp Chgrp

Chown Chown

Create and Edit groups ModifyGroup

Create and Edit Users ModifyUser

Add Users to Groups ModifyGroupMembership

Upload Scripts WriteScriptRepo, DeleteScriptRepo

310 Chapter 2. System Administrator Documentation

https://help.openmicroscopy.org/facility-manager.html#lightadmin

OMERO

Note: CLI lists restrictions, OMERQ.web lists privileges The lists shown using CLI commands recommended
in Adjusting administrator restrictions will be complementary lists to the ones which can be deduced from the table
above.

Note: ReadSession privilege is never given to restricted admin In OMERO.web, you can never create an adminis-
trator with restricted privileges who has the “ReadSession” privilege.

See also:
e Command Line Interface guides for User/group management and Changing ownership of objects

e Facility Managers help guide

2.7 Data Import and Storage

This section contains details of how OMERO.fs allows you to import and store data with OMERO 5.

2.7.1 OMERO.dropbox

DropBox was originally designed as the first stage of the file system changes referred to as OMERO.fs. It utilizes a file
system monitor to find newly uploaded files and run a fully automatic import on those files if possible. This release of
OMERO.dropbox runs on the same machine as the OMERO.server and watches designated areas of the local filesystem
for new or modified files. If those files are importable, then an automatic import is initiated. OMERO.dropbox is started
automatically when the OMERO.server starts and it will run if the prerequisites below are met.

Prerequisites

In addition to the general System requirements OMERO.dropbox has the following more specific requirements:

¢ OMERO.dropbox is built on underlying OS file-notification system, and so is only available for specific versions
of certain operating systems. OMERO.dropbox has been tested on the following systems:

— Linux with kernel 2.6.13 and higher.
— Mac OS 10.6 and later.
¢ In addition some platforms require further Python packages to be available:

— Mac OS systems that use a macports install of Python will need to have FSEvents available in
the PYTHONPATH. This will require a path of the form /System/Library/Frameworks/Python.
framework/Versions/3.X/Extras/lib/python/PyObjC/ to be added, according to the version of
Python used.

¢ The filesystem which OMERO.dropbox watches must be local to the given operating system. Watching a network-
attached share (NAS) is strictly *not* supported.

2.7. Data Import and Storage 311

https://help.openmicroscopy.org/facility-manager.html

OMERO

Installing DropBox

From the OMERO 5.6.0 release, the library omero-dropbox supports Python 3 and is now available on PyPI. We
recommend you use a Python virtual environment to install it. It should be installed in the same virtual environment
where omero-py is installed. See OMERO.server installation.

Activate the environment /opt/omero/server/venv3 where omero-py is installed and install omero-dropbox as
root:

$. /opt/omero/server/venv3/bin/activate
$ pip install omero-dropbox==5.6.2

Enable DropBox as the omero-server system user (su - omero-server):

$ omero admin ice server enable MonitorServer
$ omero admin ice server enable DropBox

Using DropBox

In its default configuration the monitored area of the file system is a DropBox subdirectory of the OmeroBinaryRepos-
itory directory. The system administrator should create DropBox and then under that a directory for each user, using
their omero username. The ownership and permissions should be set so that a user can copy files into their DropBox
directory:

/OMERO/DropBox/amy
/emily
/edgar
/root
/zak

Experimenters can add subdirectories under their named directory for convenience. Copying or moving a file of an
importable file type into a named directory or nested subdirectory will initiate an automatic import of that file for
that user. Multi-file formats will be imported after the last required file of a set is copied into the directory. Images
and plates will be imported into the default group of the user, with images placed into Orphaned images unless the
target option was configured (see below and Import targets).

Acquisition systems can then be configured to drop a user’s images into a given DropBox.

Note:

» The DropBox system is designed for image files to be copied in at normal acquisition rates. Copying many files
en masse may result in files failing to import.

* It is also intended as a write-once system. Modifying an image after it has been imported may result in that
modified image also being imported depending on the operating system and how the image was modified.

* Once directories are created within DropBox or files are copied or moved into DropBox they should not be
moved, renamed or otherwise changed. Images may be imported again or already imported images may become
unreadable.

312 Chapter 2. System Administrator Documentation

https://pypi.org

OMERO

Permissions

Changing the permissions of a directory within DropBox may result in duplicate imports as a newly readable directory
appears identical to a new directory. If directories need to be modified it is recommended that the DropBox system is
stopped and then restarted around any changes, as below.

As the omero-server system user, run

omero admin ice server disable DropBox
omero admin ice server stop DropBox

omero admin ice server disable MonitorServer
omero admin ice server stop MonitorServer

©a A A o

make any directory changes

$ omero admin ice server enable MonitorServer
$ omero admin ice server enable DropBox

Note: Any new files copied into DropBox during this disabled period will not be detected and thus not imported.

Log files
The log files var/log/FileServer.log, var/log/MonitorServer.logand var/log/DropBox. log will indicate

success or otherwise of start-up of the two components. Once running, var/log/MonitorServer.log will log file
events seen within designated file areas and var/log/DropBox.log will log the progress of any file imports.

Unicode path and file names

If file or path names contain Unicode characters this can cause DropBox to fail. This can be remedied by the use of a
sitecustomize.py or usercustomize.py file containing the following:

import sys
reload(sys)
sys.setdefaultencoding('utf-8")

For more details on using customization files in Python see: site — Site-specific configuration hook. For more discus-
sion on this issue within OMERO see the forum post: Dropbox halts on certain unicode characters.

Note: If a customization file is used and the OMERO server is upgraded please ensure the file is still available to
DropBox after the upgrade.

2.7. Data Import and Storage 313

https://docs.python.org/2.7/library/site.html
https://www.openmicroscopy.org/community/viewtopic.php?f=4&t=7810#p15910

OMERO

Advanced use
OMERO.dropbox can be configured in several ways through etc/grid/templates.xml. In its default configuration,
as detailed above, it monitors the subdirectory DropBox of the OMERO data directory for all users.

A number of the properties in templates.xml accept a semi-colon separated list of values. This extended configura-
tion allows a site to watch multiple directories, and configure each for a different user, a different type of file, etc. Any
value missing from the configuration (e.g. value="1; ;2") will be replaced by the default value.

One example alternative configuration would be to watch specific directories for specific users.

Note: Temporarily, the “importUsers” parameter is disabled, because of a bug. You can still configure the DropBox in
a way which gives all the users the same Advanced configs. To achieve this, do not specify the “importUsers” parameter
and always just use the “amy” or just the “zak” part of the other parameters or concatenate the “zak™ parameters with
“amy” parameters in the examples below.

In the example below two directories are monitored, one for user amy and one for zak:

<property name="omero.fs.importUsers" value="amy;zak"/>
<property name="omero.fs.watchDir" value="/home/amy/myData;/home/zak/work/data"/>

The remaining properties have been left at their default values for both users.

To limit DropBox to import only files belonging to specific image types the following property can be set,

[<property name="omero. fs.readers" value="/home/amy/my_readers.txt;"/>

Here only the image types listed in my_readers.txt will be imported for the user amy while the system-wide
readers. txt will be used for zak.

For a full description of the properties see below.

Properties

Each property takes the form of a single item or a semi-colon separated list of items. Where the item is a list, values
within that list should be comma separated.

* importUsers (temporarily disabled)

The importUsers is either default or a list of OMERO user names. In the case of the value being default,
the same configuration is applied to all users and each subsequent configuration setting should be a single value.
In the case of this value being a list of users, each subsequent value should be a list of the same length as the
number of users. The default value is default.

[<property name="omero. fs.importUsers" value="default"/>

e watchDir

The absolute directory path of interest for each user. The default is empty.

[<property name="omero.fs.watchDir" value=""/>

» eventTypes

For automatic import Creation and Modification events are monitored. It is also possible to monitor Deletion
events though these are not used by DropBox. The default is Creation,Modification.

314 Chapter 2. System Administrator Documentation

OMERO

[<property name="omero.fs.eventTypes" value="Creation,Modification"/>

* pathMode

By default existing and newly created subdirectories are monitored. It is possible to restrict monitoring to a single
directory (“Flat”), only existing subdirectories (“Recurse”), or all subdirectories (“Follow”). For DropBox to
function correctly the mode should be Follow. The default is Follow.

[<property name="omero. fs.pathMode" value="Follow"/>

¢ whitelist

A list of file extensions of interest. An empty list implies all file extensions are monitored. The default is an
empty list.

[<property name="omero.fs.whitelist" value=""/> J

¢ blacklist

A list of subdirectories to ignore. Not currently supported.

[<property name="omero.fs.blacklist" value=""/>

e timeout

This timeout in seconds is used by one-shot monitors. This property is not used by DropBox.

[property name="omero. fs.timeout" value="0.0"/>

¢ blockSize

The number of events that should be propagated to DropBox in one go. Zero implies all events possible. The
default is zero.

[<property name="omero. fs.blockSize" value="0"/>

* ignoreSysFiles

If this is True events concerning system files, such as filenames beginning with a dot or default new folder names,
are ignored. The exact events ignored will be OS-dependent. The default is True.

[<property name="omero. fs.ignoreSysFiles" value="True"/>

* ignoreDirEvents

If this is True then the creation and modification of subdirectories is not reported to DropBox. The default is
True.

[<property name="omero. fs.ignoreDirEvents" value="True"/>

¢ dirlmportWait

The time in seconds that DropBox should wait after being notified of a file before starting an import on that file.
This allows for companion files or filesets to be copied. If a new file is added to a fileset during this wait period
DropBox begins waiting again. The default is 60 seconds.

[<property name="omero. fs.dirImportWWait" value="60"/>

2.7. Data Import and Storage 315

OMERO

« fileBatch

The number of files that can be copied in before processing the batch. In cases where there are large numbers of
files in a typical file set it may be more efficient to set this value higher. The default is 10.

{<property name="omero.fs.fileBatch" value="10"/>]

* throttleImport

The time in seconds that DropBox should wait after initiating an import before initiating a second import. If
imports are started too close together connection issues can arise. The default is 10 seconds.

[<property name="omero. fs.throttleImport" value="10"/>

¢ readers

A file of readers. If this is a valid file then it is used to filter those events that are of interest. Only files corre-
sponding to a reader in the file will be imported. The default is empty.

[<property name="omero. fs.readers" value=""/>]

* importArgs

A string of extra arguments supplied to the importer. This could include, for example, an email address to report
failed imports to: --report --email test@example.com. The default is empty. For details on available
extra arguments see /mport images.

{<pr0perty name="omero. fs.importArgs" value=""/>

Example

Here is a full example of a configuration for two users:

<property name="omero.fs.importUsers" value="amy;zak" />

<property name="omero.fs.watchDir" value="/home/amy/myData; /home/zak/work/data" />
<property name="omero.fs.eventTypes" value="Creation,Modification;Creation,
—Modification"/>

<property name="omero. fs.pathMode" value="Follow;Follow" />

<property name="omero.fs.whitelist" value=";"/>

<property name="omero.fs.blacklist" value=";"/>

<property name="omero.fs.timeout" value="0.0;0.0"/>

<property name="omero.fs.blockSize" value="0;0"/>

<property name="omero.fs.ignoreSysFiles" value="True;True"/>
<property name="omero.fs.ignoreDirEvents" value="True;True"/>

<property name="omero.fs.dirImportWait" value="60;60"/>

<property name="omero.fs.fileBatch" value="10;10"/>

<property name="omero.fs.throttleImport" wvalue="10;10"/>

<property name="omero.fs.readers" value="/home/amy/my_readers.txt;"/>

<property name="omero.fs.importArgs" value="-T \"regex:*.*/(?<Containerl>.*?)\";--

—report --email zak@example.com"/>

See also:
Import images

Import targets

316 Chapter 2. System Administrator Documentation

OMERO

In-place import

2.7.2 In-place import

In-place import allows files which are accessible from the OMERO.server’s filesystem to be imported into OMERO
without the need to upload them over an OMERO login session. This requires users to have shell (SSH, etc.) access
to the server machine, and so there are a number of /imitations to this implementation. Development of this feature
is on-going, with improvements planned to enable a more user-friendly experience. This CLI-based stop-gap is being
made available at this stage because for some users, in-place import is essential for their use of OMERO.

This feature is designed to allow imaging facilities to import large datasets into OMERO while keeping them safely
stored on the file system in a secure location that is read-only for users. Leaving the data in a user’s file system is very
dangerous as they may forget they need to keep it or move to a different institution. Under no circumstances should
in-place import be used with temporary storage.

Warning: The instructions below should help you get started but it is critical that you understand the implica-
tions of using this feature. Please do not just copy commands and hope for the best.

Responsibilities

As a data management platform, OMERO assumes that it is in control of your data in order to help prevent data loss.
It assumes that data was copied into the server and only a server administrator or authorized OMERO user would have
the rights to do anything destructive to that data.

With in-place import, the data either resides completely outside of OMERO or is shared with other users. This means
that the critical, possibly sole, copy of your data must be protected outside of OMERO. This is your responsibility for
the lifetime of the data.

Limitations

In-place import is only available on the OMERO server system itself. In other words, using SSH or similar, you will
need to shell into the server and run the command-line importer directly. If you are uncomfortable with this, you should
let someone else handle in-place importing.

Someone wanting to perform an in-place import MUST have:
 aregular OMERO account
¢ an OS (Operating System)-account with access to bin/omero
* read access to the location of the data
* write access to the ManagedRepository or one of its subdirectories

The above means that it may be useful to create a single OS account (e.g. “import_user”’) which multiple users can log
into, and then use their own OMERO accounts to import data. Alternatively, each OMERO user can be given an OS
account with access rights to the data storage as well as the managed repository.

Also, there is still some data duplication when pyramids are generated. We are hoping to find a workaround for this in
the future.

For soft linking with --transfer=1n_s it has been noticed that some plate imports run rather more slowly than usual.
Other operations may also be affected. In determining if or how to use in-place import at your high-content screening
facility, we thus recommend time profiling with representative data, and alerting us to any significant disappointments.

2.7. Data Import and Storage 317

https://docs.openmicroscopy.org/latest/ome-model/omero-pyramid/

OMERO

Warning: Do not use soft links when pointing to data inside the ManagedRepository. If the originals are deleted,
the data will be lost.

Safety tips

Whether you chose to use the hard- or soft-linking option below, you should take steps to secure files which are in-place
imported to OMERO. The best option is making them read-only for both the OMERO user and also for the owner of
the data. This means the server cannot accidentally modify the files (e.g. if a client mixes up the file IDs and tries to
write to the wrong location) and that the files cannot be removed from the system while OMERO is still using them.
Files may not be renamed or otherwise altered such that the OMERO server user cannot find them at the expected
location.

If possible, all the files should be added to your regular backup process. If the files for imported images are later
removed or corrupted, the result will probably be that while the images remain in their projects or screens with their
annotations and basic metadata, they simply cannot be successfully viewed. However, this behavior is not guaranteed,
so do not assume that the resulting problems will not extend further. Once the problem is noticed, replacing the original
image files from backups, in the same place with the same name, is likely but not guaranteed to fully restore the images
and their associated data in OMERO.

Additional setup requirements

In-place import requires additional user and group setup. As no one should be allowed to log into the account used to
install the server, to permit in-place imports you need to create a different user account, allowing someone to log into
the server but not accidentally delete any files. Therefore, you should set up an ‘in-place’ user and an ‘in-place’ group
and configure a subset of directories under ManagedRepository to let members of that group write to them. Important
criteria include:

* In-place users can write to directories that are newly created for import so that they may link out to the original
file locations.

* In-place users cannot write to directories not required for their imports.
* In-place users cannot corrupt or delete each other’s imports.
* OMERO.server can read and delete all the imported files.

One may achieve the above with careful setting of sticky bits and choice of umasks or use of ACLs. The best approach
depends on the background of your system administrators and the capabilities of the underlying filesystems. The
example below details how this was done for one of our test servers in Dundee which runs with the default setting for
omero. fs.repo.path:

STATUS BEFORE

[sysadmin@ome-server omero_system_user]$ umask
0002

[sysadmin@ome-server omero_system_user]$ 1ls -ltrad ManagedRepository/
drwxrwxr-x 8 omero_system_user omero_system_user 4096 Apr 24 10:13 ManagedRepository/

[sysadmin@ome-server omero_system_user]$ grep inplace /etc/passwd /etc/group
/etc/passwd:inplace_user:x:501:501::/home/inplace_user:/bin/bash
/etc/group:omero_system _user:x:500:inplace_user
/etc/group:inplace_user:x:501:

(continues on next page)

318 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

[sysadmin@ome-server omero_system_user]$ grep omero_system_user /etc/passwd /etc/group
/etc/passwd:omero_system_user:x:500:500: : /home/omero_system_user:/bin/bash
/etc/group:omero_system_user:x:500:inplace_user

[sysadmin@ome-server omero_system_user]$ sudo -u inplace_user -i
[inplace_user@ome-server ~]$ umask
0002

SCRIPT
chgrp inplace_user /repositories/binary-repository/ManagedRepository
chmod g+rws /repositories/binary-repository/ManagedRepository

chmod g+rws /repositories/binary-repository/ManagedRepository/*
chmod g+rws /repositories/binary-repository/ManagedRepository/*/*
chmod g+rws /repositories/binary-repository/ManagedRepository/*/*/*

chgrp inplace_user /repositories/binary-repository/ManagedRepository/*
chgrp inplace_user /repositories/binary-repository/ManagedRepository/*/*
chgrp inplace_user /repositories/binary-repository/ManagedRepository/*/*/*

With the above, newly created directories should be in the inplace group
As long as the file is readable by omero_system_user, then it should work fine!

AFTER SCRIPT

[root@ome-server omero_system_user]# ls -ltrad ManagedRepository/
drwxrwsr-x 8 omero_system_user inplace_user 4096 Apr 24 10:13 ManagedRepository/

TEST

with default umask this likely has to do

[inplace_user@ome-server ~]$ cd /repositories/binary-repository/ManagedRepository/
[inplace_user@ome-server ManagedRepository]$ mkdir inplace.test
[inplace_user@ome-server ManagedRepository]$ ls -ltrad inplace.test/

drwxrwsr-x 2 inplace_user inplace_user 4096 Apr 30 11:35 inplace.test/

[omero_system_user@ome-server omero_system_user]$ cd /repositories/binary-repository/
—ManagedRepository/

[omero_system_user@ome-server ManagedRepository]$ rmdir inplace.test/
[omero_system_user@ome-server ManagedRepository]$

If you are controlling OMERO.server with systemd you should add UMask=0002 to the Service section of your
systemd service file.

2.7. Data Import and Storage 319

OMERO

Getting started

The command-line import client has a help menu which explains the available options:

[$ omero import --advanced-help]

ADVANCED OPTIONS:

These options are not intended for general use. Make sure you have read the
documentation regarding them. They may change in future releases.

In-place imports:

--transfer=ARG File transfer method

General options:

upload # Default
upload_rm # Caution! File upload followed by source deletion.
some.class.Name # Use a class on the CLASSPATH.

Server-side options:

In # Use hard-link.

In_s # Use soft-link.

In_rm # Caution! Hard-link followed by source deletion.
cp # Use local copy command.

cp_rm # Caution! Copy followed by source deletion.

e.g. $ omero import --transfer=In_s foo.tiff
$./importer-cli --transfer=In bar.tiff
$ CLASSPATH=mycode.jar ./importer-cli --transfer=com.example.MyTransfer baz.tiff

Background imports:

--keep-alive=SECS Frequency in seconds for pinging the server.
--auto-close Close completed imports immediately.
--minutes-wait=ARG Choose how long the importer will wait on server-

—»side processing.

ARG > 0 implies the number of minutes to wait.

ARG = 0 exits immediately. Use a *-completed option.
—to clean up.

ARG < 0 waits indefinitely. This is the default.

--close-completed Close completed imports.
--wait-completed Wait for all background imports to complete.
e.g. $ omero import -- --minutes-wait=0 filel.tiff file2.tiff file3.tiff

(continues on next page)

320 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

$./importer-cli --minutes-wait=0 some_directory/
$./importer-cli --wait-completed # Waits on all 3 imports.

File exclusion:

--exclude=filename Exclude files based on filename.

--exclude=clientpath Exclude files based on the original path.

e.g. $ omero import --exclude=filename foo.tiff # First-time imports
$ omero import --exclude=filename foo.tiff # Second-time skips

Import speed:

--checksum-algorithm=ARG Choose a possibly faster algorithm for detecting.
—.file corruption,
e.g. Adler-32 (fast), CRC-32 (fast), File-Size-64.
- (fast),
MD5-128, Murmur3-32, Murmur3-128,
SHA1-160 (slow, default)

e.g. $ omero import --checksum-algorithm=CRC-32 foo.tiff
$./importer-cli --checksum-algorithm=Murmur3-128 bar.tiff

--no-stats-info Disable calculation of minima and maxima when as part.
—0f the Bio-Formats reader metadata

e.g. $ omero import -- --no-stats-info foo.tiff
$./importer-cli --no-stats-info bar.tiff

--no-thumbnails Do not perform thumbnailing after import

e.g. $ omero import -- --no-thumbnails foo.tiff
$./importer-cli --no-thumbnails bar.tiff

--no-upgrade-check Disable upgrade check for each import
e.g. $ omero import -- --no-upgrade-check foo.tiff
$./importer-cli --no-upgrade-check bar.tiff

Feedback:
--gqa-baseurl=ARG Specify the base URL for reporting feedback
e.g. $ omero import broken_image.tif -- --email EMAIL --report --upload --logs --qa-

—baseurl=http://ga.example.com
$./importer-cli broken_image.tif --email EMAIL --report --upload --logs --qa-
—baseurl=http://ga.openmicroscopy.org.uk/ga

(continues on next page)

2.7. Data Import and Storage 321

OMERO

(continued from previous page)

{Report bugs at https://www.openmicroscopy.org/forums

The option for performing an in-place transfer is --transfer. A new extension point, file transfers allow a choice of
which mechanism is used to get a file into OMERO.

[$ omero import --transfer=1ln_s my_file.dv }

L main] INFO
—S
L main] INFO

%1
L main] INFO

—0.0-rcl-DEV-ice35 revision:

group(s) with 1 call(s) to

—0.0-rcl-DEV-ice35 revision:

101008f date: 31 January 2014
formats.importer.cli.CommandLineImporter

formats.importer.cli.CommandLineImporter

—.Formats: ERROR OMERO.importer: INFO

setId in 98ms.

ome. formats.OMEROMetadataStoreClient

—.connection to localhost:4064

101008f date: 31 January 2014

Using session bba923bb-cfOc-4cf®-80c5-a309be523ad8 (root@localhost:4064). Idle timeout:.
10.0 min. Current group: system

oL main] INFO ome. formats.importer. ImportConfig - OMERO Version: 5.0.0-
—rcl-DEV-ice35
L main] INFO ome. formats.importer.ImportConfig - Bioformats version: 5.

Setting transfer to ln_

Log levels -- Bio-

oL main] INFO ome. formats.importer.ImportCandidates - Depth: 4 Metadata.
—Level: MINIMUM
L main] INFO ome. formats.importer.ImportCandidates - 1 file(s) parsed into..

(100ms total) [® unknowns]

Attempting initial SSL.

L main] INFO ome. formats.OMEROMetadataStoreClient - Insecure connection.,
—requested, falling back

L main] INFO ome. formats.OMEROMetadataStoreClient - Server: 5.0.0

L main] INFO ome. formats.OMEROMetadataStoreClient - Client: 5.0.0-rcl-DEV-
—.ice35

L main] INFO ome. formats.OMEROMetadataStoreClient - Java Version: 1.7.0_51

L main] INFO ome. formats.OMEROMetadataStoreClient - OS Name: Linux

L main] INFO ome. formats.OMEROMetadataStoreClient - OS Arch: amd64

L main] INFO ome. formats.OMEROMetadataStoreClient - OS Version: 3.8.0-27-
—.generic
. main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_
—PREPARATION
oL main] INFO ome. formats.importer.ImportConfig - OMERO Version: 5.0.0-
—rcl-DEV-ice35

L main] INFO ome. formats.importer.ImportConfig - Bioformats version: 5.

L main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_START
oL main] INFO s.importer.transfers.SymlinkFileTransfer - Transferring /tmp/a.
- fake. ..
oL main] INFO ormats.importer.cli.LoggingImportMonitor - FILE_UPLOAD_STARTED: /
—tmp/a. fake
L main] INFO ormats.importer.cli.LoggingImportMonitor - FILE_UPLOAD_COMPLETE: /
—tmp/a. fake
oL main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_END
...[1.Client-1] INFO ormats.importer.cli.LoggingImportMonitor - METADATA_IMPORTED.,
—.Step: 1 of 5 Logfile: 24605
...[1.Client-0] INFO ormats.importer.cli.LoggingImportMonitor - PIXELDATA_PROCESSED..
—Step: 2 of 5 Logfile: 24605
...[1.Client-1] INFO ormats.importer.cli.LoggingImportMonitor - THUMBNAILS_GENERATED.,

(continues on next page)

322

Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

—Step: 3 of 5 Logfile: 24605

...[l.Client-0] INFO ormats.importer.cli.LoggingImportMonitor
—Step: 4 of 5 Logfile: 24605

...[1.Client-1] INFO ormats.importer.cli.LoggingImportMonitor - OBJECTS_RETURNED Step:..
5 of 5 Logfile: 24605

...[1l.Client-0] INFO ormats.importer.cli.LoggingImportMonitor
—file: /tmp/a.fake

Imported pixels:

5001

Other imported objects:

Fileset:4102

Image:5001

...[1.Client-0] INFO ome. formats.importer.cli.ErrorHandler - Number of errors: 0

METADATA_PROCESSED..

IMPORT_DONE Imported.

The only visible difference here is the line:

[. ..formats.importer.cli.CommandLineImporter - Setting transfer to ln_s J

Rather than uploading via the OMERO API, the command-line importer makes a call to the system /n command.

Transfer options

Previously, OMERO only offered the option of uploading via the API. Files were written in blocks via the RawFileStore
interface. With in-place import, several options are provided out of the box as well as the ability to use your own.

“In_s” - soft-linking

The most flexible option is soft-linking. For each file, it executes /n -s source target on the local file system. This works
across file system boundaries and leaves a clear record of what file was imported:

/OMERO/ManagedRepository/root_0/2014-01/24/10-11-14.947% 1ls -1ltra
total 8
lrwxrwxrwx 1 omero omero 11 Jan 24 10:11 my-file.dv -> /home/demo/my-file.dv

Here you can see in the imported file set, a soft-link which belongs to the omero user, but which points to a file in the
/home/demo directory.

Deleting the imported images in OMERO will delete the soft link but not the original file under /home. This could
come as a surprise to users, since the deletion will effectively free no space.

Warning: The deletion of the original files under /home (or equivalent) will lead to a complete loss of the data
since no copy is held in OMERO. Therefore, this method should only be used in conjunction with a properly
managed and backed-up data repository. If the files are corrupted or deleted, there is no way to use OMERO to
retrieve them.

2.7. Data Import and Storage 323

OMERO

“In” - hard-linking

The safest option is hard-linking, though it cannot be used across file systems. For each file, it executes In source target.
Attempting to hard link across file system boundaries will lead to an error:

— main] INFO ome. formats.importer.ImportConfig - OMERO Version: 5.0.0-
—rcl-DEV-ice35
_— main] INFO ome. formats.importer.ImportConfig - Bioformats version: 5.
—0.0-rcl-DEV-ice35 revision: 101008f date: 31 January 2014

L main] INFO formats.importer.cli.CommandLineImporter - Setting transfer to 1ln
— main] INFO formats.importer.cli.CommandLineImporter - Log levels -- Bio-
—Formats: ERROR OMERO.importer: INFO
— main] INFO ome. formats.importer.ImportCandidates - Depth: 4 Metadata.
—Level: MINIMUM
_— main] INFO ome. formats.importer.ImportCandidates - 1 file(s) parsed into.
1 group(s) with 1 call(s) to setId in 96ms. (98ms total) [0 unknowns]

L main] INFO ome. formats.OMEROMetadataStoreClient - Attempting initial SSL.
—,connection to localhost:4064
e main] INFO ome.formats.OMEROMetadataStoreClient - Insecure connection.,
—requested, falling back

L main] INFO ome. formats.OMEROMetadataStoreClient - Server: 5.0.0

L main] INFO ome. formats.OMEROMetadataStoreClient - Client: 5.0.0-rcl-DEV-
—ice35

L main] INFO ome. formats.OMEROMetadataStoreClient - Java Version: 1.7.0_51

L main] INFO ome. formats.OMEROMetadataStoreClient - OS Name: Linux

L main] INFO ome. formats.OMEROMetadataStoreClient - OS Arch: amd64

L main] INFO ome. formats.OMEROMetadataStoreClient - OS Version: 3.8.0-27-
—.generic
— main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_
—PREPARATION
_— main] INFO ome. formats.importer.ImportConfig - OMERO Version: 5.0.0-
—rcl-DEV-ice35
— main] INFO ome. formats.importer.ImportConfig - Bioformats version: 5.
—.0.0-rcl1-DEV-ice35 revision: 101008f date: 31 January 2014

L main] INFO ormats.importer.cli.LoggingImportMonitor - FILESET_UPLOAD_START
_— main] INFO .importer.transfers.HardlinkFileTransfer - Transferring /tmp/a.
- fake...
— main] INFO ormats.importer.cli.LoggingImportMonitor - FILE_UPLOAD_STARTED: /
—tmp/a.fake

L main] ERROR .importer.transfers.HardlinkFileTransfer - transfer process.
—returned 1

L main] ERROR .importer.transfers.HardlinkFileTransfer - error in closing raw.

—file store
omero.ResourceError: null

at sun.reflect.NativeConstructorAccessorImpl.newInstance®(Native Method) ~[na:1.7.0_
-51]

at sun.reflect.NativeConstructorAccessorImpl.
—newInstance(NativeConstructorAccessorImpl. java:57) ~[na:1.7.0_51]

at sun.reflect.DelegatingConstructorAccessorImpl.
—newInstance(DelegatingConstructorAccessorImpl.java:45) ~[na:1.7.0_51]

at java.lang.reflect.Constructor.newInstance(Constructor.java:526) ~[na:1.7.0_51]

at java.lang.Class.newInstance(Class.java:374) ~[na:1.7.0_51]

at IceInternal.BasicStream.createUserException(BasicStream.java:2615) ~[ice.jar:na]

(continues on next page)

324 Chapter 2. System Administrator Documentation

OMERO

(continued from previous page)

at IceInternal.BasicStream.access$300(BasicStream.java:12) ~[ice.jar:na]

at Icelnternal.BasicStream$EncapsDecoderl0.throwException(BasicStream.java:3099) ~
—[ice.jar:na]

at IceInternal.BasicStream.throwException(BasicStream.java:2077) ~[ice.jar:na]

at IceInternal.Outgoing.throwUserException(Outgoing.java:538) ~[ice.jar:na]

at omero.api._RawFileStoreDellM.close(_RawFileStoreDelM. java:466) ~[omero-blitz.
< jar:na]

at omero.api.RawFileStorePrxHelper.close(RawFileStorePrxHelper.java:1739) ~[omero-
—blitz.jar:na]

at omero.api.RawFileStorePrxHelper.close(RawFileStorePrxHelper.java:1701) ~[omero-
—blitz.jar:na]

at ome.formats.importer.transfers.AbstractFileTransfer.
—.cleanupUpload(AbstractFileTransfer.java:123) ~[omero-blitz.jar:na]

at ome.formats.importer.transfers.AbstractExecFileTransfer.
—transfer (AbstractExecFileTransfer. java:63) [omero-blitz.jar:na]

at ome.formats.importer.ImportLibrary.uploadFile(ImportLibrary.java:410) [omero-
—blitz.jar:na]

at ome.formats.importer.ImportLibrary.importImage (ImportLibrary.java:465) [omero-
—blitz.jar:na]

at ome.formats.importer.ImportLibrary.importCandidates(ImportLibrary.java:274).
—, [omero-blitz. jar:na]

at ome.formats.importer.cli.CommandLineImporter.start(CommandLineImporter.java:218)..
-, [omero-blitz. jar:na]

at ome.formats.importer.cli.CommandLineImporter.main(CommandLineImporter.java:658)..
— [omero-blitz.jar:na]
2014-01-31 12:59:20,338 3152 [main] ERROR ome. formats.importer.
— ImportLibrary - Error on import
java.lang.RuntimeException: transfer process returned 1

at ome.formats.importer.transfers.AbstractExecFileTransfer.
—exec(AbstractExecFileTransfer.java:137) ~[omero-blitz.jar:na]

at ome.formats.importer.transfers.AbstractExecFileTransfer.
—transfer(AbstractExecFileTransfer.java:57) ~[omero-blitz.jar:na]

at ome.formats.importer.ImportLibrary.uploadFile(ImportLibrary.java:410) ~[omero-
—blitz.jar:na]

at ome.formats.importer.ImportLibrary.importImage (ImportLibrary.java:465) ~[omero-
—blitz.jar:na]

at ome.formats.importer.ImportLibrary.importCandidates(ImportLibrary.java:274) ~
-, [omero-blitz. jar:na]

at ome.formats.importer.cli.CommandLineImporter.start(CommandLineImporter.java:218)..
— [omero-blitz.jar:na]

at ome.formats.importer.cli.CommandLineImporter.main(CommandLineImporter.java:658)..
—, [omero-blitz.jar:na]
2014-01-31 12:59:20,338 3152 [main] INFO ome. formats.importer.
—ImportLibrary - Exiting on error

The safeness of this method comes from the fact that OMERO also has a pointer to the data. Deletion of the original
file under /home would leave data in OMERO in place. Again, this could cause a surprise as the space would not be
properly freed, but at least there cannot be an accidental loss.

Warning: The primary concern with this method is modification of files. If the original data is written by a user,
unexpected results could follow in OMERO. See the Safety tips section above for ways around this.

2.7. Data Import and Storage 325

OMERO

If you are unclear about how hard-linking works, please see the Hard link article on Wikipedia.

The semantics of hard-linking have changed recently on Linux systems with the “protected hardlinks” feature, which
is enabled by default and is in use on Ubuntu 14.04, CentOS 7 and other contemporary systems. When you create a
hard-link to a file, Linux now requires that you are either the owner of the file, or that you have read-write permissions
to the file. Other Unix systems, and older Linux systems, allow a hard-link to be made if you have search access to the
file (i.e. you have appropriate read and execute permissions on the directory path containing the file), but do not check
the file permissions themselves. See the kernel-hardening mailing list post which describes the change in more detail.
The implication for in-place import is that the user performing the import must own or have read-write permissions on
the data files being imported in-place.

“In_rm” - moving

Finally, the least favored option is In_rm. It first performs a hard-link like /n, but once the import is complete it attempts
to delete the original file. This is currently in testing as an option for DropBox but is unlikely to be of use to general
users. Although this option is more limited than the upload_rm option below it will be much faster.

“upload_rm” - uploading and deleting

This option is not strictly an in-place option but is detailed here for convenience. It first performs a file upload like
default import, but once the import is complete it attempts to delete the original files. It deletes the original files if and
only if the import is successful.

“cp” and “cp_rm” variants

The ¢p and cp_rm commands provide the same functionality as /n and In_rm but perform a copy rather than a link
operation. The benefit of a copy is that it works over OS filesystem boundaries while still providing the integrity that
In_s cannot. The primary downside of a raw ¢p compared to In is that there is data duplication. cp_rm being very
similar to In_rm usually works around this downside, except in the case of a failed import. Then the duplicated data
will remain in OMERO and an explicit cleanup step will need to be taken.

Your own file transfer

If none of the above options work for you, it is also possible to write your own im-
plementation of the ome.formats.importer.transfers.FileTransfer class, likely subclassing
ome.formats.importer.transfers.AbstractFileTransfer or ome.formats.importer.transfers.AbstractExecFileTransfer.
If you do so, please let us know how we might improve either the interface or the implementations that we provide.

Once your implementation has been compiled into a jar and placed in the lib/clients directory, you can invoke it using:

[$ omero import --transfer=example.package.ClassName ...]

326 Chapter 2. System Administrator Documentation

https://en.wikipedia.org/wiki/Hard_link
https://www.openwall.com/lists/kernel-hardening/2012/02/21/20

OMERO

Related advanced options

In addition to the --transfer option, a number of other advanced options have been added which may be useful
for either tweaking import performance or dealing with complicated situations. Comments and suggestions are very
welcome.

Checksums

If you think that calculating the checksums for your large files is consuming too much time, you might want to configure
the checksum algorithm used. This can be done with the --checksum_algorithm property. Available options are
printed with the --advanced-help option and include Adler-32, CRC-32, MD5-128, Murmur3-32, Murmur3-128,
and the default SHA1-160.

DropBox

As described in the scenarios “DropBox import (automatic delete)” and “In-place DropBox import (automatic delete)”,
DropBox can be configured to use any of the options described above. The configuration property to modify is
omero.fs.importArgs:

[$ omero config set -- omero.fs.importArgs "--transfer=upload_rm"]

This will move files into OMERO rather than leaving a copy in the DropBox directory.

[$ omero config set -- omero.fs.importArgs "--transfer=1ln_rm" J

This will also move files into OMERO rather than leaving a copy in the DropBox directory. For this to work, the two
directories will need to be on the same file system. This option is much faster than upload_rm. Please read “In_rm” -
moving carefully to ensure you fully understand the implications of using this option.

For more information on OMERO.fs, please visit Import under OMERO.fs.

Warning: Use at your own risk!

See also:

Advanced import scenarios
OMERQO.dropbox

Import under OMERO.fs
Import images

Import targets

Command Line Interface as an OMERQO client

2.7. Data Import and Storage 327

OMERO

2.7.3 Advanced import scenarios
Increasingly users of OMERO are needing to go beyond the traditional “upload via a GUI”’-style import model to more
powerful methods.

There is a set of requirements for getting data into OMERO that is common to many institutions. Some of the require-
ments may be mutually exclusive.

» Users need to get data off microscopes quickly. This likely includes not waiting for import to complete. Users
will often move data immediately, or even save remotely during acquisition.

 Users would like direct access to the binary repository file-system to read original files for analysis.
» Users would like to view and begin working with images as soon as possible after acquisition.

Below we explain which options are available to you, and why there is a trade-off between the above requirements.

Import overview

The “OMERO binary repository” (or repo) is the directory belonging to the OMERO user where files are imported:

» The ManagedRepository directory inside of the repo is where files go during import into OMERO. Each user
receives a top-level directory inside of “ManagedRepository” which fills with timestamped directories as imports
accrue.

* Depending on the permissions of this directory, users may or may not be able to see their imported files. Man-
aging the permissions is the responsibility of the system administrator.

In “normal import”, files are copied to the OMERO binary repo via the API and so can work remotely or locally. In
“in-place import”, files are “linked” into place.

Warning: In-place import is a new, powerful feature - it is critical that you read and understand the documentation
before you consider using it.

Traditional import

Manual import (GUI)

This is the standard workflow and the one currently used at the University of Dundee. Users dump data to a shared
file-system from the acquisition system, and then use the OMERO.insight client from the lab to import.

Advantages

 Users can validate that import worked.
* Failed imports can be repeated and/or reported to QA etc.
» Users do not have to wait for import to be scheduled.

» Import destination is known: Project/Dataset etc.

328 Chapter 2. System Administrator Documentation

OMERO

Disadvantages

 Imports can be slow due to the data transfer from file-system to OMERO via the client.
 Users must remember to delete data from the shared file-system to avoid data duplication.

» Users cannot access the OMERO binary repo directly and must download original data via clients for local
analysis.

Manual import (CLI)

Another typical workflow is that rather than using the GUI, users perform the same procedure as under “Manual import”
but with the command-line (CLI) importer.

Advantages

¢ With a CLI workflow, it may be easier for users to connect remotely to kick off an import and to leave it running
in the background for a long period of time.

Disadvantages

All the same disadvantages apply as under “Manual import (GUI)”.

Cronjob import (manual delete)

For importing via cron, users still dump their data to a shared file-system from the acquisition system. They must have
permissions to write to “their” directory which is mapped to a user in OMERO.

A cronjob starts a CLI import, possibly at night. The cronjob could be given admin rights in OMERO to perform an
“Import As” for a particular user.

Disadvantages

* If a normal import is used, the cronjob would have to manually delete imported files from their original location
to avoid duplication.

 Users cannot work with their data in OMERO until some time after acquisition.

* Failed imports are logged within the managed repository but not yet notified. Logs would probably need to be
accessed via a sysadmin/cli. The cronjob could capture stdout and stderr and check for failures.

2.7. Data Import and Storage 329

OMERO

DropBox import (manual delete)

Similar to the cronjob scenario, DropBox importing requires that users drop their data in “their” directory which has
special permissions for writing. The DropBox service monitors those directories for modifications and imports the files
on a first-come-first-serve basis.

* OMERO.dropbox

Advantages

 Users should see their data in OMERO quickly.

Disadvantages

¢ There is a limitation on the rate of new files in monitored locations.

¢ There is also a limitation on which file systems can be used. A networked file share cannot be monitored by
DropBox.

 Users must manually delete imported files from their DropBox directory to avoid duplication.

* Failed imports are logged within the managed repository but not yet notified. Logs would probably need to be
accessed via a sysadmin or through the CLI and searched by the user and file name.

DropBox import (automatic delete)

One option is to have files removed from DropBox automatically after a successful import. This is achieved by perform-
ing an “upload” import from the DropBox directory to the ManagedRepository then deleting the data from DropBox if
and only if the import was successful. For failed imports, files will remain in the DropBox directories until someone
manually deletes them.

Advantages

¢ For all successful imports, files will be automatically removed from the DropBox directories thus reducing du-
plication.

In-place import
The following sections outline in-place based scenarios to help you judge if the functionality may be useful for you.
Common advantages

 All in-place import scenarios provide non-copying benefit. Data that is too large to exist in multiple places, or
which is accessed too frequently in its original form to be renamed, remains where it was originally acquired.

330 Chapter 2. System Administrator Documentation

OMERO

Common disadvantages

¢ Like the DropBox import scenario above, all in-place imports require the user to have access to the user-based
directories under the ManagedRepository. See limitations for more details.

 Similarly, all the following scenarios carry the same burden of securing the data externally to OMERO. This
is the primary difference between a normal import and an in-place import: backing up OMERO is no longer
sufficient to prevent data loss. The original location must also be secured! This means that users must not
move or alter data once imported.

In-place manual import (CLI)

The in-place version of a CLI manual import is quite similar to the normal CLI import, with the primary difference
being that the data is not transferred from the shared file-system where the data is initially stored after acquisition, but
instead is just “linked” into place.

Advantages

* Local filesystem in-place import is faster than traditional importing, due to the lack of a data transfer.

Disadvantages

* Requires proper security setup as explained above.

In-place Cronjob import

Assuming all the restrictions are met, the cronjob-based workflow above can carry out an in-place import by adding
the in-place transfer flag. The advantages and disadvantages are as above.

In-place DropBox import (manual delete)

Just as with the in-place cronjob import, using in-place import for DropBox is as straight-forward as passing the in-place
flag. The common advantages and disadvantages of in-place import apply.

In-place DropBox import (automatic delete)

An option that also exists in the in-place scenario is to have files removed from DropBox automatically after a suc-
cessful import. This is achieved by first performing a “hardlink in-place import” from the DropBox directory to the
ManagedRepository and then by deleting the data from DropBox if and only if the import was successful. For failed
imports, files will remain in the DropBox directories until someone manually deletes them.

2.7. Data Import and Storage 331

OMERO

Advantages

* For all successful imports, files will be automatically removed from the DropBox directories.

Disadvantages

* This option is only available if the filesystem which DropBox watches is the same as the file system which the
ManagedRepository lives on. This prevents the use of network file systems and similar remote shares.

Parallel import

Parallel import is a variant of manual CLI import for making large-scale imports considerably faster. It is experimental
and may see extensive changes between patch versions. Use of this feature entails risk: if high thread counts are
specified then the import client or OMERO server may function poorly. New uses of parallel import should be tested
with a non-production server. Experience gained within OME and reported by users will help to make parallel import
more friendly and safe.

omero import --parallel-fileset sets how many filesets are imported at the same time. omero import
--parallel-upload sets how many files are uploaded at the same time. File upload occurs early in import and
the fileset import threads share the same file upload threads among them so it typically makes sense to set the file
upload thread count at least as high as the fileset import thread count. They both default to a value of 1.

These options can provide clear benefits if set even at lower numbers like 4. Do not assume that higher is always better:
more concurrent threads means higher overhead and may severely exhaust resources on the server and the client. Issues
with parallel import include:

* Import can fail when the same repository directory is being created to hold the files from different filesets. An
effective workaround is to set the server’s Template path such that the %$thread% term precedes any subdirectories
that may need to be created at import time.

 Import can fail when the same import target is created to contain multiple filesets. An effective workaround is
to create the targets in advance of starting the imports.

» The server’s connections to the database may become saturated, making the server unresponsive. Set the omero.
db.poolsize property higher than the number of filesets that will be imported across all users at any one time.

See also:
In-place import
OMERO.dropbox
Import images

Import targets

2.8 Optimizing OMERO as a Data Repository

This section explains how to customize the appearance and functionality of OMERO clients to host images for groups
or public viewing.

332 Chapter 2. System Administrator Documentation

OMERO

2.8.1 Publishing data using OMERO.web

The OMERO.web framework allows raw data to be published using built-in tools or supplied through web services to
external web pages. Selected datasets can be made visible to a ‘public user’ using the standard OMERO permissions
system, ensuring you always have control over how users can interact with your data.

There are several ways of publishing data using OMERO.web:

* using a URL to launch the web-based Image viewer, as described in Launching OMERO.web viewer, which
can be accompanied by a thumbnail. For more details of how to load the thumbnail, see URLs from within
OMERO.web

» embedding the image viewport directly into other web pages, for more details see Customizing the content of the
embedded OMERO.web viewport

* allowing public access to the OMERO.web data manager

* writing your own app to host your public data (see Creating an app) and then allowing public access to the chosen
URL for that app

The sections below describe how you might use these features and how to set them up.

Configuring public user

The OMERO.web framework supports auto-login for a single username / password. This means that any public visitors
to certain OMERO.web pages will be automatically logged in and will be able to access the data available to the defined
‘public user’.

To set this up on your OMERO.web installation:

¢ Create a group with read-only permissions (the name can be anything e.g. “public-data”). We recommend read-
only permissions so that the public user will not be able to modify, delete or annotate data belonging to other
members.

* Create a member of this group, noting the username and password (you will enter these below). Again, the First
name, Last name, Username and Password can be anything you like.

Note: If you add this member to other groups, all data in these groups will also become publicly accessible for
as long as this user remains in the group.

* Enable the omero.web.public.enabled property and set omero.web.public.user and omero.web.
public.password:

$ omero config set omero.web.public.enabled True
$ omero config set omero.web.public.user '<username>'

$ omero config set omero.web.public.password '<password>'

¢ By default the public user is only allowed to perform GET requests. This means that the public user will not be
able to Create, Edit or Delete data, as these require POST requests. If you want to allow these actions from the
public user, you can change the omero.web.public.get_only property:

[$ omero config set omero.web.public.get_only false J

e Set the omero.web.public.url_filter. This filter is a regular expression that will allow only matching
URLSs to be accessed by the public user. If this is not set, no URLs will be publicly available.

2.8. Optimizing OMERO as a Data Repository 333

OMERO

You need to configure the url_filter to allow all URLs that are required for the pages you wish to be public but to
block any URLs that you do not want public users to access.

Some examples are listed below:

— To allow all URLs from a single app, such as ‘webgateway’, use a filter for URLs that start with the app
name. For example:

[$ omero config set omero.web.public.url_filter 'A/webgateway']

This filter permits all URLs needed for the full image viewer. If you wish to block webgateway URLs for
downloading data, use:

$ omero config set omero.web.public.url filter 'A/webgateway/(?!archived_
—files|download_as)'

— You may need to allow access to additional URLs for some apps. For example, the OMERO.iviewer also
uses some webgateway and api URLs:

[$ omero config set omero.web.public.url_filter 'A/iviewer|webgateway|api' J

— You can use the full webclient UI for public browsing of images. Attempts by public user to create, edit
or delete data will fail silently with the default omero.web.public.get_only setting above. You may
also choose to disable various dialogs for these actions such as launching scripts or OME-TIFF export, for
example:

$ omero config set omero.web.public.url_filter 'A/(webadmin/myphoto/|webclient/
—(?!(script_ui|ome_tiff|figure_script)) |webgateway/(?! (archived_files|download_
—as)) |iviewer|api)'

 Set the omero.web.public.server_id which the public user will be automatically connected to. Default: 1
(the first server in the omero.web.server_list):

[$ omero config set omero.web.public.server_id 1 }

If you enable public access to the main webclient but still wish registered users to be able to log in, the login page can
always be accessed using a link of the form https://your_host/webclient/login/.

Full example of hosting data for a publication

Putting the pieces of this puzzle together, the following describes the steps of a complete workflow for using OMERO
to host public data associated with a publication. It is illustrated using an example publication from the Swedlow lab
in Dundee, Schleicher et al, 2017 with the data hosted at https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017.

Ansible playbooks can be found describing how the production server in Dundee (“nightshade’”) was configured in the
prod-playbooks repository on GitHub.

334 Chapter 2. System Administrator Documentation

https://www.openmicroscopy.org/omero/iviewer/
https://royalsocietypublishing.org/doi/10.1098/rsob.170099
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://github.com/ome/prod-playbooks

OMERO

Group setup

A group-per-publication allows the public user to be selectively added (or removed) from given publications to decide
their visibility.

1. Create a dedicated read-only group to host the raw data underlying the publication (see User/group management).
2. Add all the authors of the paper to this new group.

3. Once you have configured OMERO.web to create a public user (see below), add the public user as a member of
the newly created read-only group.

Configuring OMERO.web

If you wish to have an automatically logged-in public user while still giving your existing OMERO users an unchanged
user experience (i.e. not automatically logging them in as the public user), a dedicated, separate web server for servicing
the public workflows can be added and configured to point at your existing OMERO.server. This is the workflow
adopted here by adding a public OMERO.web at https://omero.lifesci.dundee.ac.uk, without changing the existing
internal OMERO.web.

1. Follow the steps in Configuring public user above on the chosen OMERO.web.

2. Also configure the filter on the public user on the chosen OMERO.web by setting omero.web.public.
url_filter to allow ‘webclient’ so that the full webclient is visible for the public user, and thus the Data
tree with Projects and Datasets is also browsable, as well as the Tags tab and the full image viewer.

Data migration

The data to be made public will need to be in the publication group to be considered “published”.

1. Move the original images into the dedicated group using OMERO.web or OMERO.cli. The CLI is best used
where Images or Datasets are cross-linked to other Datasets or Projects in the original group. The command
omero chgrp Project:$ID --include Dataset,Image cuts the cross-links in the original group and pre-
serves the Project/Dataset/Image hierarchy prepared for the move by the author.

2. If you have used OMERO.figure to create your figures for publication, you can always find the original data
by using the ‘info’ tab, as shown in the OMERO.figure Help guide (OMERO.figure supports a complete figure
creation workflow, including exporting figures into image processing applications for final adjustments - see the
OMERO .figure Help guide for full details).

3. Having all the data belong to one user simplifies the UI experience for public users. If necessary, ownership of
data can be transferred using the ‘Chown’ privilege (see Administrators with restricted privileges and Changing
ownership of objects).

Data layout

Once the data is in the dedicated read-only group, it can be reorganized and renamed to reflect the publication e.g.
Projects can be renamed according to the corresponding figure panels in the manuscript while the names of the Datasets
could be retained corresponding to different treatment conditions represented in each figure panel. For example, Project
Schleicher_etal_figure7_c contains images underlying the publication Figure panel 7(c). Some Projects underlie two
publication figure panels, such as Project Schleicher_etal_figure2_a_c where representative images are shown in panel
(a) and the corresponding quantification is shown in panel (c) of Figure 2. This makes clear which original images are
underlying which figure panels in the publication.

2.8. Optimizing OMERO as a Data Repository 335

https://omero.lifesci.dundee.ac.uk
https://help.openmicroscopy.org/figure.html#info
https://help.openmicroscopy.org/figure.html
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27920
https://royalsocietypublishing.org/cms/attachment/36fd7495-4d87-454f-952e-a581da261f71/rsob170099f07.jpg
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27917
https://royalsocietypublishing.org/cms/attachment/aac23d26-2197-4dc1-8f85-7bb5686f926d/rsob170099f02.jpg

OMERO

Data can also be tagged with OMERO tags to enhance the browsing possibilities through these data for any user with
basic knowledge of OMERO. For example, see Tag:Schleicher_etal_figurel_a. The tags are highlighting the images
displayed in the publication figures as images. The other, non-tagged images in the group are the ones used for analysis
which produced the published numerical data.

Key-Value pairs can be used to add more detailed information about the study and publication. For example, go to
Schleicher_etal_figurel_a and expand the ‘Key-Value Pairs’ section in the right-hand pane to display the content (see
the Managing data guide for information on using Key-Value pairs).

Configuring URLs

The URL of the first Project (corresponding to the first figure in the publication) can be used for a DOI and data
landing page. For example, Project ‘Schleicher_etal_figurel_a’ https://omero.lifesci.dundee.ac.uk/webclient/?show=
project-27936 corresponds to http://dx.doi.org/10.17867/10000109.

Optionally, you can decide on a set pattern of URLs for this and future publications. For example, in Dundee we
have established a pattern which supposes every new publication from our institution will be in a separate group,
and this group will be directly navigable by the public user using the syntax: ‘“server-address/pub/publication-
identifier”. This means for example, https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017 is the link where
“omero.lifesci.dundee.ac.uk” is the server address, and “schleicher-et-al-2017” is the publication-identifier.

This makes use of redirects allowing https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017 to link to the correct
group and Project in OMERO, just as the DOI above does. Redirects need to be set in the NGINX component of the
OMERO.web installation dedicated to publication workflows. You can find our configuration for this example here on
GitHub:

location /pub/schleicher-et-al-2017 {
return 307 /webclient/?show=project-27936;
}

2.8.2 OMERO.web Ul customization

The OMERO.web offer a flexible user interface that can be customized. The sections below describe how to set up
these features.

Note that depending on the deployment choice, OMERO.web will not activate configuration changes until Gunicorn is
restarted using omero web restart.

Index page

This allows you to add a homepage at <your-omero-server>/index/. Visitors to your root url at <your-omero-server>/
will get redirected here instead of redirecting to <your-omero-server>/webclient/.

Create new custom template in /your/path/to/templates/mytemplate/index.html and add the following:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.index_template 'mytemplate/index.html’'

336 Chapter 2. System Administrator Documentation

https://omero.lifesci.dundee.ac.uk/webclient/?show=tag-364188
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
https://help.openmicroscopy.org/managing-data.html#keyvalue
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
https://omero.lifesci.dundee.ac.uk/webclient/?show=project-27936
http://dx.doi.org/10.17867/10000109
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://omero.lifesci.dundee.ac.uk/pub/schleicher-et-al-2017
https://nginx.org/
https://github.com/ome/prod-playbooks/blob/2018-01/nightshade-webclients.yml#L181
https://github.com/ome/prod-playbooks/blob/2018-01/nightshade-webclients.yml#L181

OMERO

Login page logo

omero.web.login_logo allows you to customize the webclient login page with your own logo. Logo images should
ideally be 150 pixels high or less and will appear above the OMERO logo. You will need to host the image somewhere

else and link to it with:

[$ omero config set omero.web.login_logo 'http://www.url/to/image.png’]

G...m..m H A1 ation s E p T o e
il W o S T L L : AP ESSI
- y

¢+ OMERO...

vy o DHH

RIS TS0 N

Login redirection

omero.web.login_redirect property redirects to the given location after logging in to named pages. In the example
below, a user who tries to visit the "webindex" URL (/webclient/) will be redirected after login to a URL defined
by the viewname "load_template". The "args" are additional arguments to pass to Django’s reverse () function
and the "query_string" will be added to the URL.:

$ omero config set omero.web.login_redirect '{"redirect": ["webindex"], "viewname":
—"load_template", "args":["userdata"], "query_string": "experimenter=-1"}'

2.8. Optimizing OMERO as a Data Repository 337

OMERO

Top links menu

omero.web.ui.top_links adds links to the top header:

$ omero config append omero.web.ui.top_links '["Figure", "figure_index", {"title": "Open.
- Figure in new tab", "target": "_blank"}]'
$ omero config append omero.web.ui.top_links '["GRE", "http://lifesci.dundee.ac.uk/gre"]"’

v+ OMERO Data History Admin Figure GRE

Swedlow Lab Aleksandra Tarkowska

Explore Tags Public

Q

Open With option
omero.web.open_with adds items to the ‘Open with’ options. This allows users to open selected images or other

data with another web app or URL. See Linking from Webclient.

Include template in every page

An HTML template specified by omero.web.base_include_template will be included in every HTML page in
OMERO.web. The template is inserted just before the </body> tag and can be used for adding a <script> such as
Google analytics.

For example, create a file called /your/path/to/templates/base_include.html with:

<script>
console.log("Hello World");
</script>

Set the following:

$ omero config append omero.web.template_dirs '"/your/path/to/templates/"'
$ omero config set omero.web.base_include_template 'base_include.html'

Group and Users in dropdown menu

Customize the groups and users dropdown menu by changing the labels or hiding the entire list:

omero config set omero.client.ui.menu.dropdown.leaders.label "Owners"

omero config set omero.client.ui.menu.dropdown.leaders.enabled true

omero config set omero.client.ui.menu.dropdown.colleagues.label "Members"
omero config set omero.client.ui.menu.dropdown.colleagues.enabled true
omero config set omero.client.ui.menu.dropdown.everyone.label "All Members"
omero config set omero.client.ui.menu.dropdown.everyone.enabled false

A A A A A

338 Chapter 2. System Administrator Documentation

OMERO

Virtual Microscope Anatomy
ViGTE T et es - All courses
-——————!—-——-n———l

Course:
- . Anatomy Dermatology

- |l BI52004 MSc Neu
: ®
+ [BI52004 Neurohig

» [l BS21007 Introductory Dentistry
» [l BS31002 Histology £ Haematology

Medicine

Orphaned container

omero.client.ui.tree.orphans.name allows you to change the name of the “Orphaned images” container located
in the client data manager tree:

[$ omero config set omero.client.ui.tree.orphans.name "Orphaned images"

Explore Tags Public

Q

+ [Big images 14
=] Drop Box

Disabling scripts

omero.client.scripts_to_ignore hides the scripts that the clients should not display:

[$ omero config append omero.client.scripts_to_ignore "/my_scripts/script.py"

2.8. Optimizing OMERO as a Data Repository 339

OMERO

Seal
J analysis_scripts >
export_scripts 2
figure_scripts 2
util_scripts »

Download restrictions

omero.policy.binary_access determines whether users can access binary files from disk. Binary access includes
all attempts to download a file from the Ul:

[$ omero config set -- omero.policy.binary_access +read,+write,+image

or on a specific group with ID 15:

$ omero group info 15
$ omero obj map-set ExperimenterGroup:15 config -- omero.policy.binary_access +read,
—+write,+image

NI =] NN =]
Download... Save As JPEG
Export as OME-TIFF... Save As PNG
Save As JPEG Save As TIFF
Save As PNG R
Save As TIFF

340 Chapter 2. System Administrator Documentation

CHAPTER
THREE

DEVELOPER DOCUMENTATION

The following documentation is for developers wishing to write OMERO client code or extend the OMERO server.
Instructions on downloading, installation and administering OMERO can be found under the System Administrator
Documentation of the main site.

—

.S J; .

= a _ OMERO scripts OMERO cli
. cll
OMERO insight OMERO.web / cmd line interface

é/ \/

L 4\ e python Ceod-

Java MATLAB

N/

OMERO.server

OMERQO is an open source client/server system written in Java for visualizing, managing, and annotating microscope
images and metadata. The OMERO Application Programming Interface allows clients to be written in Java, Python,
C++ or MATLAB. OMERO releases include a Java client OMERO.insight, a Python-based web client OMERO.web
and the Command Line Interface as an OMERO development tool, which also uses Python. There is also an ImageJ
plugin. OMERO can be extended by modifying these clients or by writing your own in any of the supported languages
(see figure). OMERO also supports a Scripting Service which allows Python scripts to be run on the server and called
from any of the other clients.

OMERO is designed, developed and released by the Open Microscopy Environment, with contributions from Glencoe
Software, Inc. OMERO is released under the GNU General Public License (GPL) with commercial licenses and
customization available from Glencoe Software, Inc.. You can read about how OMERO has developed since the project
started in the CHANGELOGS. We ask contributors to sign once the Contributor License Agreement (CLA) . When
signed, please do send the agreement to contributors at openmicroscopy.org.

For help with any aspect of OMERO, see details of our forums and mailing lists.

341

https://downloads.openmicroscopy.org/latest/omero5.5/
https://www.openmicroscopy.org
https://www.glencoesoftware.com/
https://www.glencoesoftware.com/
https://www.gnu.org/licenses/licenses.html#GPL
https://www.glencoesoftware.com/
https://drive.google.com/file/d/1ld6s678JWRF15qUT4_3LyTE4IGYh-wRZ/
https://www.openmicroscopy.org/support/

OMERO

3.1 Introduction to OMERO

3.1.1 What’s new for OMERO 5.6 for developers

This release focuses on migrating all Python components to Python 3, and decoupling them into separate repositories
with the benefit of permitting each to be released to PyPI independently:

* https://github.com/ome/omero-py

* https://github.com/ome/omero-web

* https://github.com/ome/omero-dropbox
* https://github.com/ome/omero-marshal

For details on migrating your own code to Python 3, see Migration from OMERO 5.5 (Python 2) to OMERO 5.6 (Python
3).

You may also find the Sysadmins Migration to Python 3 page useful.
Other changes which you need to be aware of:
¢ The path module is now named omero_ext.path.

For a full list of api changes, bug fixes and other improvements, see the CHANGELOGS.

3.1.2 Migration from OMERO 5.5 (Python 2) to OMERO 5.6 (Python 3)

This page serves as a collection of recommendations, developed as the OME team went through the migration to Python
3. This is not a complete guide but may serve as a useful starting point.

For more information, please see a dedicated Python 3 page like http://python-future.org/.

Futurize

Installing future from Python 3 is now required for all OMERO Python components. This library comes with the
Suturize tool which performs many of the basic transformations needed to migrate Python 2 code to Python 3:

[futurize -0 your_file.py

Add -w to update the file in place.

print()

The most common transformation needed is adding parentheses around print statements since print is no longer a
keyword.

342 Chapter 3. Developer Documentation

https://github.com/ome/omero-py
https://github.com/ome/omero-web
https://github.com/ome/omero-dropbox
https://github.com/ome/omero-marshal
http://python-future.org/

OMERO

dict.keys()

The return value from the keys() method of dictionaries is of type dict_keys and no longer has methods like sor#().
Wrap with a call to list if you need the previous behavior: list(my_dict.keys()).

Strings

Changes to the handling of strings was our major hurdle in upgrading from Python 2 to Python 3. In Python 2, there is
a separation between str and unicode. In Python 3, both of those are like unicode (but called str) and a new type was
introduced: bytes. A good starting places to learn the difference is:

http://python-future.org/compatible_idioms.html?highlight=string#strings-and-bytes

The future library which enables support for Python 2 and Python 3 concurrently has its own str class. It is necessary
to look at the imports for a module to know what str is being used.

Which str is it??

If nothing special is imported, str is the builtin st which in Python 2 is non-unicode and unicode in Python 3. String
literals like “foo” are also of type str.

If unicode_literal is imported, then “foo” is the same as u”foo” and is unicode in Python 2 or just str in Python 3.

If from builtins import str is imported, then str is more like unicode and may fail existing calls to isinstance().

isinstance(x, str)

Since str can change its type, this often will not do what you want. Using past.builtins.basestring is generally a good
solution, e.g. isinstance(x, basestring)

str(some_variable)

If you are trying to turn a variable into a string, this may not do what you want since it might be creating a unicode.

This is especially problematic for passing strings to Ice methods, which are implemented in C++ and fail spectacularly
if they receive non-string objects (like unicode).

future.utils.native_str maintains the previous semantics producing builtin str objects. Native str semantics are especially
important when working with Ice, e.g.

ctx = {'omero.group': native_str(groupId)}
conn.getUpdateService() .saveArray(pixels, ctx)

3.1. Introduction to OMERO 343

http://python-future.org/compatible_idioms.html?highlight=string#strings-and-bytes

OMERO

StringlO and open(“file”, “r”)

StringlO and open() may need replacing with BytesIO and open(“file”, “rb”) respectively. This depends on whether
or not your code is expecting a stream to be binary.

Regexes
Regexes must start with »”” for raw to prevent escapes from being misinterpreted (e.g. d).

Numerics

long no longer exists. Replace omero.rtypes.wrap(long_value) with omero.rtypes.rlong(long_value).

Division with / now produces a floating point. For example, choice * int(percent)/ 100 no longer produces an integer
in Python 3. Use //.

3.1.3 Installing OMERO from source

Warning: Starting from OMERO 5.5, many components have been moved to their own repositories e.g.
OMERO.py, to modernize the application and allow more flexibility.

This page is currently under review.

Using the source code

The source code of each release of OMERO is available for download from the Source code section of the OMERO
download page.

Note: At the moment, this source code bundle does not contain the version of Bio-Formats. To include this version
information, you will need to manually copy the ant/gitversion.xml file included in the source code bundle of
Bio-Formats for the same release under components/bioformats/ant.

Using the Git source repository
To use the Git source repository, you will need to install Git on your system. See the Using Git section of the Con-
tributing documentation for more information on how to install and configure Git.

The main repository for OMERO is available from https://github.com/ome/openmicroscopy. Most OME development
is currently happening on GitHub, therefore it is highly suggested that you become familiar with how it works, if not
create an account for yourself.

Start by cloning the official repository:

[git clone https://github.com/ome/openmicroscopy.git J

Since the openmicroscopy repository now makes use of submodules, you first need to initialize all the submodules:

cd openmicroscopy
git submodule update --init

344 Chapter 3. Developer Documentation

https://github.com/ome/omero-py
https://downloads.openmicroscopy.org/latest/omero5.5/
https://docs.openmicroscopy.org/contributing/using-git.html
https://github.com/ome/openmicroscopy

OMERO

Alternatively, with version 1.6.5 of git and later, you can pass the --recursive option to git clone and initialize all
submodules:

[git clone --recursive https://github.com/ome/openmicroscopy.git J

See also:

Using Git
Section of the contributing documentation explaining how to use Git for contributing to the source code.

Building OMERO

To install the dependencies required to run the OMERO.server on Linux or Mac OS X, take a look at the OMERO.server
installation page where you will also find links to walk-throughs for specific platforms.

Some environment variables may need to be set up before building the server:

* If the system slice files cannot be found you must set SLICEPATH to point to the slice directory of the Ice
installation.

Once all the dependencies and environment variables are set up, you can build the server using:

[python build.py]

or the clients using:

[python build.py release-clients J

See also:

Build System
Section of the developer documentation detailing the build system

3.1.4 Build System

Overview

The page goes into details about how the build system is configured.

Since 5.5, OMERO decouples many components and uses, for some components, an Gradle-based build. The two
overarching repositories are https://github.com/ome/omero-build and https://github.com/ome/omero-gradle-plugins.
See the README of each repository for more details. OMERO still uses an Ant-based build, for some components,
with dependency management provided by Ivy. C++ code is built using Cmake and Python uses the traditional distu-
tils/setuptools tools.

3.1. Introduction to OMERO 345

https://docs.openmicroscopy.org/contributing/using-git.html
https://gradle.org/
https://github.com/ome/omero-build
https://github.com/ome/omero-gradle-plugins
https://ant.apache.org
https://ant.apache.org/ivy

OMERO

Structure of the build

This is an (abbreviated) snapshot of the structure of the filesystem for OMERO:

OMERO_SOURCE_PREFIX
I
|-- build.zxml
I
|-- build.py
—.configuration

| -- omero.class

grid
ivysettings.xml
hibernate.properties
build.properties
logback.xml
omero.properties
profiles

| -- examples
I
\components

I

| --<component-name>

| |-- build.xml
ivy.xml
test.xml
src

| - dvy.exml oo
| |-- test.xmliiii.a..
N B
| |-- resources
| I T3
| \-- targetc..oiuieeannnn.
I

| NOTABLE COMPONENTS

I

| \--<tool-name>
| | --build.xml
| \--ivy.xml

\--antlib
—.referenced by the build

|

\--resources

| --global.xml

| --hibernate.xml

|--1lifecycle.xml

\--version.xml

Top-level build file

Python wrapper to handle 0S-specific..

Self-contained Ant launcher

Configuration folder
Deployment files folder
Main Ivy configuration file

User examples

Each component has this same basic structure.
Build file

Jar dependencies

Test dependencies

Source code

Other files of interest

Test source code and test resources

Build output (deleted on clean)

Other server-components with special build.
Build scripts

Build file

Jar dependencies

Special component which is not built, but.
Build resources

Global build properties

Ivy-related targets
Version properties

346

Chapter 3. Developer Documentation

OMERO

Note: User examples are explained under Working with OMERO

Unfortunately, just the above snapshot of the code repository omits some of the most important code. Many megabytes
of source code is generated both by our own DSLTask as well as by the Ice slice2java, slice2cpp, and slice2py
code generators. These take an intermediate representation of the OME-Model and generate our OME-Remote Objects.
This code is not available in git, but once built, can be found in all the directories named “generated”.

Build tools

Ant

./build.py is a complete replacement for your local ant install. In many cases, you will be fine running ant. If you
have any issues (for example OutOfMemory) , please use . /build.py instead. However, only use one or the other;
do not mix calls between the two.

The main build targets are defined in the top-level build.xml file. All available targets can be listed using:

[./build.py p]

vy
The build system uses Ivy 2.3.0 as the dependency manager. The general Ivy configuration is defined in a settings file
located under https://github.com/ome/openmicroscopy/blob/develop/etc/ivysettings.xml.

In order to determine the transitive closure of all dependencies, Ivy resolves each ivy.xml file and stores the resolved
artifacts in a cache to speed up other processes. The OMERO build system defines and uses two kinds of caches:

1. the local dependencies cache under 1ib/cache is used by most resolvers

2. Maven resolvers use the Maven cache under ~/.m2/repository

Note: When the Ivy configuration file or the version number is changed, the cache can become stale. Calling ./
build.py clean from the top-level build will delete the content of the local cache.

Resolvers are key to how Ivy functions. Multiple dependency resolvers can be defined fine-grained enough to resolve
an individual jar in order to pick up the latest version of any library from a repository, a generic URL or from the local
file system. Since OMERO 5.1.3, the remote repository resolvers are set up to resolve transitive dependencies.

The OMERO build system uses by default a chain resolver called omero-resolver which resolves the following
locations in order:

1. target/repository which contains most artifacts published by the build system in the install step of the
lifecycle

2. the local dependency repository under 1ib/repository
3. the local Maven cache under ~/.m2/repository

4. the Maven central repository

5. the OME artifactory

Bio-Formats dependencies are resolved using a specific chain resolver called ome-resolver which resolves the fol-
lowing locations in order:

3.1. Introduction to OMERO 347

https://github.com/ome/omero-dsl-plugin/tree/v5.5.2/
https://zeroc.com
https://docs.openmicroscopy.org/latest/ome-model/ome-xml/
https://ant.apache.org/ivy
https://ant.apache.org/ivy/history/2.3.0/settings.html
https://github.com/ome/openmicroscopy/blob/develop/etc/ivysettings.xml
https://ant.apache.org/ivy/history/2.3.0/settings/caches/cache.html
https://ant.apache.org/ivy/history/2.3.0/settings/resolvers.html
https://ant.apache.org/ivy/history/2.3.0/resolver/ibiblio.html
https://ant.apache.org/ivy/history/2.3.0/resolver/url.html
https://ant.apache.org/ivy/history/2.3.0/resolver/filesystem.html
https://ant.apache.org/ivy/history/2.3.0/resolver/filesystem.html
https://ant.apache.org/ivy/history/2.3.0/resolver/chain.html
https://central.sonatype.org
https://artifacts.openmicroscopy.org
https://ant.apache.org/ivy/history/2.3.0/resolver/chain.html

OMERO

1. the local Maven cache under ~/.m2/repository
2. the OME artifactory

To define its dependencies, each component uses a top-level Ivy file, ivy.xml, for the build and optionally another Ivy
file, test.xml, for the tests.

The OMERO build system defines and uses four types of Ivy configurations:
1. build: defines dependencies to be used for building
2. server: defines dependencies to be bundled under 1ib/server
3. client: defines dependencies to be bundled under 1ib/client
4. test: defines dependencies to be used for running the tests

While building, most Java components follow the same lifecycle define in lifecycle.xml. The default dist target for each
component calls each of the following steps in order:

1. retrieve: retrieve the resolved dependencies and copy them under target/libs

2. prepare: prepare various resources (property files, https://github.com/ome/openmicroscopy/blob/develop/lib/
logback-build.xml)

generate: copy all resources from the previous step for compilation
compile: compile the source files into the destination repository
package-extra: package the sources and the Javadoc into Jar files for publication

package: package the compiled classes into a Jar file for publication

N o AW

install: convert the component Ivy file into a pom file using makepom and publish the component artifacts

Individual components can override the content of this default lifecycle via their build.xml.

OmeroTools

The Ant build alone is not enough to describe all the products which get built. Namely, the builds for the non-Java com-
ponents stored under https://github.com/ome/openmicroscopy/tree/develop/components/tools are a bit more complex.
Each tools component installs its artifacts to the tools/target directory which is copied on top of the dist top-level
distribution directory.

Jenkins

The OME project currently uses Jenkins as a continuous integration server available here, so many binary packages can
be downloaded without compiling them yourself. See the Continuous Integration documentation for further details.

Server build

The default ant target (build-default) will build the OMERO system and copy the necessary components for a binary
distribution to the dist directory. Below is a comparison of what is taken from the build, where it is put, and what
role it plays in the distribution.

348 Chapter 3. Developer Documentation

https://artifacts.openmicroscopy.org
https://ant.apache.org/ivy/history/2.3.0/ivyfile.html
https://ant.apache.org/ivy/history/2.3.0/ivyfile/configurations.html
https://github.com/ome/openmicroscopy/blob/develop/components/antlib/resources/lifecycle.xml
https://ant.apache.org/ivy/history/2.3.0/use/retrieve.html
https://github.com/ome/openmicroscopy/blob/develop/lib/logback-build.xml
https://github.com/ome/openmicroscopy/blob/develop/lib/logback-build.xml
https://ant.apache.org/ivy/history/2.3.0/use/makepom.html
https://ant.apache.org/ivy/history/2.3.0/use/publish.html
https://ant.apache.org
https://github.com/ome/openmicroscopy/tree/develop/components/tools
https://jenkins.io
https://ci.openmicroscopy.org/
https://docs.openmicroscopy.org/contributing/ci-omero.html

OMERO

OMERO_SOURCE_PREFIX OMERO_SOURCE_PREFIX/dist Comments

components/tools/OmeroCpp/lib* 1ib/ Native shared libraries
lib/repository/<some> lib/client & 1ib/server Libraries needed for the build

etc/ etc/ Configuration

sql/*.sql sql/ SQL scripts to prepare the database

Note: By default, OMERO C++ language bindings are not built. Use build-all for that.

These files are then zipped to OMERO.server-<version>.zip via release-zip

Coupled development
Since OMERO 5.1.3, Bio-Formats is decoupled from the OMERO build system which consumes Bio-Formats artifacts
from the OME Maven repository via Ivy.

While this decoupling matches most of the development use cases, it is sometimes necessary to work on coupled
Bio-Formats and OMERO branches especially during breaking changes of the OME Data Model or the Bio-Formats
APL

The general rule for coupled branches is to build each component in their dependency order and use the local Maven
repository under ~/.m2/repository to share artifacts.

Building Bio-Formats

From the top-level folder of the Bio-Formats repository,

1. if necessary, adjust the version of Bio-Formats which will be built, installed locally and consumed by OMERO
e.g. for 5.2.0-SNAPSHOT:

[$./tools/bump_maven_version.py 5.2.0-SNAPSHOT

2. run the Maven command allowing to build and install the artifacts under the local Maven cache:

[$ mvn clean install

Building OMERO

From the top-level folder of the OMERO repository,

1. in https://github.com/ome/omero-model, adjust the version of ome: formats-gpl in https://github.com/ome/
omero-model/blob/v5.6.12/build.gradle to the version chosen for the Bio-Formats build

2. publish locally the change using gradle publishToMavenLocal

3.1. Introduction to OMERO 349

https://ant.apache.org/ivy
https://github.com/ome/omero-model
https://github.com/ome/omero-model/blob/v5.6.12/build.gradle
https://github.com/ome/omero-model/blob/v5.6.12/build.gradle

OMERO

3.1.5 Working with OMERO

This page describes various tools and resources useful for working with the OMERO API, as well as some tips on setting
up your working environment. It should be useful to client developers working in any of the supported languages. For
language specific info, see the following links: OMERQO Java language bindings, OMERO Python language bindings,
OMERO C++ language bindings, OMERO MATLAB language bindings.

OMERDO .clients

The OMERO model is implemented as a relational PostgreSQL database on the OMERO.server and mapped to code-
generated model objects used by the clients in the various supported languages (linked above). The OMERO API
consists of a number of services for working with these objects and associated binary data. Typically, clients will use
various stateless services to query the OMERO model and then use the stateful services for exchange of binary data or
image rendering.

A typical client interaction might have an outline such as:
* Log in to OMERO, obtaining connection and ‘service factory’.
» Use the stateless ‘Query Service’ or ‘Container Service’ to traverse Projects, Datasets and Images.
* Use the stateful ‘Rendering Engine’ or ‘Thumbnail Service’ to view images.
 Use the stateful ‘Raw Pixels Service’ or ‘Raw File Store’ to retrieve pixel or file data for analysis.
* Create new Annotations or other objects and save them with the stateless ‘Update Service’.
* Close stateful services to free resources and close the connection.

OMERO.clients use a common ‘gateway’ to communicate with an OMERO.server installation and allow the user to
import, display, edit, and manage server data. The OMERO team has developed a suite of clients (see OMERO clients
overview), but the open source nature of the OMERO project also allows developers to create their own, customized
clients. If you are interested in doing this, further information is available on Developing OMERO clients.

OMERO server

Although most interactions with OMERO can be achieved remotely, you will generally find it easier to have the server
installed on your development machine, particularly if you are going to be doing a lot of OMERO development. This
gives you local access to the database, binary repository, logs etc. and means you can work ‘off-line’.

Even if the server you are connecting to is remote, you will still want to have the server package available locally, so
as to give you the command line tools, Python libraries, etc. It is important that all OMERO server and client libraries
you use are the same OMERO version.

You may wish to work with the most recent OMERO release, or alternatively you can use the latest development code.
Instructions on how to download or check out the code can be found on the main downloads page.

Regular builds of the server are performed by Jenkins including generated Javadocs. See the contributing developer
continuous integration documentation for more information.

350 Chapter 3. Developer Documentation

https://downloads.openmicroscopy.org/latest/omero5.5/
https://jenkins.io
https://docs.openmicroscopy.org/contributing/ci-omero.html
https://docs.openmicroscopy.org/contributing/ci-omero.html

OMERO

Environment variables

In addition to the install instructions, you might find it useful to set the following variables:
 For Python developers, create a virtual environment and install omero-py.

* Add to your PATH the /bin/ directory of the virtual environment e.g. OMERO_VENV=/opt/omero/server/
venv3 where omero-py is installed - allows you to call the ‘omero’ command from anywhere

[export PATH=$PATH: $OMERO_VENV/bin/

Now checkout the CLI.

[$ omero -h }

Network hopping for laptops

By default OMERO will bind to all available interfaces. On a laptop this has the undesirable effect of requiring an
OMERQO restart when changing network connections, e.g. from a home to a work network connection. To avoid this,
it is possible to bind only on the localhost interface which will never change IP address.

$ omero config set Ice.Default.Host 127.0.0.1
Restart to activate the new setting
$ omero admin restart

Note: Be warned, if doing this, it will no longer be possible to connect to the OMERO server instance from anywhere
except the local machine.

Database access
It is useful to be able to directly query or browse the OMERO PostgreSQL database, which can be achieved with a
number of tools. E.g.

* psql - this command line tool should already be installed. Depending on your permissions, you may need to
connect as the ‘postgres’ user:

$ sudo -u postgres psql omero

Password: # sudo password

omero=# \d; # give a complete list of tables and views

omero=# \d annotation; # list all the columns in a particular table
omero=# select id, discriminator, ns, textValue, file from annotation order by id.
—.desc; # query

e pgAdmin is a free, cross platform GUI tool for working with PostgreSQL

3.1. Introduction to OMERO 351

https://www.pgadmin.org/

OMERO

OMERO model

Project Jt—{ Annotation
Dataset]1—»[Annotation
Image]1—)[Annotation

You can browse the OMERO model in a number of ways, one of which is by looking at the database itself (see above).
Another is via the OMERO model API documentation.

However, due to the complexity of the OMERO model, it is helpful to have some starting points (follow links below to
the docs themselves).

Note: These figures show highly simplified outlines of various model objects.

Projects, datasets and images

Projects and Datasets are many-to-many containers for Images (linked by ProjectDatasetLinks and DatasetImageLinks
respectively).

Projects, Datasets, Images and a number of other entities can be linked to Annotations (abstract superclass) via spe-
cific links (ProjectAnnotationLink, DatasetAnnotationLink etc). Annotation subclasses such as CommentAnnotation,
FileAnnotation etc. are stored in a single database table in OMERO (all Annotations have unique ID).

Images

Images in OMERO are made up of many entities. These include core image components such as Pixels and Channels,
as well as a large number of additional metadata objects such as Instrument (microscope), Objective, Filters, Light
Sources, and Detectors.

352 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/Project.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/Dataset.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/Image.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/ProjectDatasetLink.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/DatasetImageLink.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/Annotation.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/ProjectAnnotationLink.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/DatasetAnnotationLink.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/CommentAnnotation.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/FileAnnotation.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/Pixels.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model/Channel.html

OMERO

[Image }—4'[nstrument]

I

Pixels
sizeX, sizeY, sizel
sizeC, sizeT

I

Channel]

3

Logical Channel
name, fluor
. emWave, exWave

-

—»[Objective Settings]

—b[Detector Settings]
LightSource
Settin

4.[Light Path]

3.1. Introduction to OMERO

353

OMERO

Working with the OMERO model objects

For detailed information see OME-Remote Objects and Developing OMERQO clients pages.

Objects that you wish to work with on the client must be loaded from OMERO, with the query defining the extent of
any data graph that is “fetched”.

The OMERO Application Programming Interface supports two principle ways of querying OMERO and retrieving the
objects. You can write SQL-like queries using the query service (uses “HQL”) or you can use one of the other services
that already has suitable queries. Using the query service is very flexible but it requires detailed knowledge of the
OMERO model (see above) and is susceptible to any change in the model.

For example, to load a specific Project and its linked Datasets you could write a query like this:

queryService = session.getQueryService()
params = omero.sys.Parameters()
params.map = {"pid": rlong(projectId)}
query = "select p from Project p left outer join fetch p.datasetLinks as links left
outer join fetch links.child as dataset where p.id=:pid"
project = queryService.findByQuery(query, params)
for dataset in project.linkedDatasetList:
print(dataset.getName() .getValue())

Or use the Container Service like this:

containerService = session.getContainerService()
project = containerService.loadContainerHierarchy("'Project"”, [projectId], True)
for dataset in project.linkedDatasetList:

print(dataset.getName() .getValue())

For a list of the available services, see the OMERO Application Programming Interface page.
Examples
HQL examples

HQL is used for Query Service queries (see above). Some examples, coupled with the references for the OMERO
model and HQL syntax should get you going, along with notes about object loading on the OME-Remote Objects page.

Note: If possible, it is advisable to use an existing API method from one of the other services (as for the container
service above).

Although it is possible to place query parameters directly into the string, it is preferable (particularly for type-checking)
to use the omero.sys.Parameters object:

queryService. findByQuery("from PixelsType as p where p.value='%s'" % pType, None)

better to do

params = omero.sys.Parameters()

params.map = {"pType": rstring(pType)}

queryService. findByQuery("from PixelsType as p where p.value=:pType", params)

354 Chapter 3. Developer Documentation

https://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/queryhql.html

OMERO

psql queries

Below are a number of example psql database queries:

list any images that do not have pixels:
omero=#select id, name from Image i where i.id not in (select image from Pixels where._
—»image is not null) order by i.id desc;

omero=# select id, name, ome_perms(permissions) from experimentergroup;

id | name | ome_perms
_____ g
0 | system | -rw----

1 | user | -rwr-r-

2 | guest | -rw----

3 | JRS-private | -rw----

4 | JRS-read-only | -rwr---

omero=# select id, name, path, owner_id, group_id, ome_perms(permissions) from,.,
—originalfile order by id desc limit 100;

id | name | path o
< | owner_id | group_id | ome_perms
e o
memmeme= +-—— - o tomm -

56 | GFP-FRAP.cpe.xml | /Users/will/omero/editor/GFP-FRAP.cpe.xml o
. | 4 | 5 | -rwr---

omero=# \x

Expanded display is on.

omero=# select id, discriminator, ns, textValue, file from annotation where id=369;
~[L RECORD 1 J-+---—-———mmmm e

id | 369

discriminator | /type/OriginalFile/

ns | openmicroscopy.org/omero/import/companionFile
textvalue |

file | 570

omero=# \x
Expanded display is off.
omero=# select * from joboriginalfilelink where parent = 7;
id | permissions | version | child | creation_id | external_id | group_id | owner_id |._
—update_id | parent

s TP R o T e - - +--
e e

14 | -103 | | 110 | 891 | | 208 | 207 | o
. 891 | 7

17 | -103 | | 113 | 926 | | 208 | 207 | o
o 926 | 7

(2 rows)

omero=# select id, name, path, owner_id, group_id, ome_perms(permissions) from,.,
—soriginalfile where id in (110,113) order by id desc limit 100;
id | name | path ar
— | owner_id | group_id | ome_perms
(continues on next page)

3.1. Introduction to OMERO 355

OMERO

(continued from previous page)

_____ ol
b ————————— o ————————— e

113 | stdout | /Users/will/omero/tmp/omero_will/75270/processulLq8fd.dir/out..
| 207 | 208 | -rw----

110 | imagesFromRois.py | ScriptName0®6lea79c-£98c-447b-b720-d17003d6a72f o
< | 0 | 0 | -rw----

(2 rows)

find all annotations on Image ID=2
omero=# select * from annotation where id in (select child from imageannotationlink,,

—where parent = 2) ;

trouble-shooting postgres
omero=# select * from pg_stat_activity ;

omero hql

You can use the omero hgl command to query a remote OMERO database, entering your login details when requested.

Note: Because you will be querying the database under a particular login, the entries returned will be subject to the
permissions of that login.

omero hql -g --1limit=10 "select name from OriginalFile where id=4106"

omero hql -g --1limit=10 "select id, textValue, file from Annotation a order by a.id desc"
omero hql -q --1limit=10 "select id, textValue from TagAnnotation a order by a.id desc"
omero hql -q --1limit=100 "select id, owner.id, started, userAgent from Session where.
—closed is null"

3.1.6 Running and writing tests

The following guidelines apply to tests in both the Java and Python test components. However, some of the presented
options apply to only one or the other.

The default build target does not compile all the required testing resources. You should run test-compile (or build-dev
if you are using Eclipse) first:

[./build.py build-default test-compile }

You must rebuild the test-compile target if you subsequently modify any of the Java tests.

Note: The OMERO C++ components and tests are under heavy development, and are not compiled or run by the
targets mentioned on this page.

356 Chapter 3. Developer Documentation

OMERO

Running tests

Running unit tests

Starting from version 5.5, components have been migrated to their own repository.
The following repositories use Gradle to run the unit tests:
* https://github.com/ome/omero-model
e https://github.com/ome/omero-common
* https://github.com/ome/omero-romio
¢ https://github.com/ome/omero-renderer
¢ https://github.com/ome/omero-server
* https://github.com/ome/omero-blitz
¢ https://github.com/ome/omero-gateway-java
The following repositories use pytest to run the unit tests:
e https://github.com/ome/omero-py

* https://github.com/ome/omero-web

Running integration tests

Integration testing is a bit more complex because of the reliance on a database, which is not easily mockable. All
Hibernate-related classes are tested in integration mode.

The tests require a fast computer. Running all the integration tests places several restrictions on the environment:
* There must be a running OMERO database.
* An OMERO.server instance must be running.

Integration tests assume that:

* TICE_CONFIG has been properly set. The contents of the etc/ice.config file should be enough to configure a
running server for integration testing. This means that code creating a client connection as outlined in Developing
OMERO clients should execute without errors.

* An OMERO:.server instance is running on the host and port specified in the ICE_CONFIG file.

If any of the tests fail with a user authentication exception (or omero.client throws an exception), anew ice.config
file can be created and pointed to by the ICE_CONFIG environment variable. Most likely the first settings that will have
to be put there will be omero.user and omero.pass.

3.1. Introduction to OMERO 357

https://gradle.org/
https://github.com/ome/omero-model
https://github.com/ome/omero-common
https://github.com/ome/omero-romio
https://github.com/ome/omero-renderer
https://github.com/ome/omero-server
https://github.com/ome/omero-blitz
https://github.com/ome/omero-gateway-java
https://docs.pytest.org/en/latest/
https://github.com/ome/omero-py
https://github.com/ome/omero-web

OMERO

Running all tests

To run all the integration tests, use

[./build.py test-integration

Note that some Python tests are excluded by default, see Using markers in OmeroPy tests for more details.

Component tests

Running an integration test suite for an individual component can be done explicitly via:

[./build.py -f components/<component>/build.xml integration]

Results are placed in components/<component>/target/reports.

Individual tests

Warning: Some integration tests leak file descriptors. If many tests are run then they may start to fail after the
system’s open files limit is reached. Depending on your system the limit may be checked or adjusted using ulimit
-nand /etc/login.conf or /etc/security/limits.conf.

Running Java tests
Individual tests

Alternatively, you can run individual tests which you may currently be working on using the --tests parameter. The
test class must be provided in the fully qualified name form.

cd components/tools/OmeroJava
gradle test --tests "integration.gateway.AdminFacilityTest"

Individual test class methods

Individual OmeroJava test class methods can be run using the --tests parameter. The test method must be provided
in the fully qualified name form.

cd components/tools/OmeroJava
gradle test --tests "integration.chgrp.AnnotationMoveTest.testMoveTaggedImage"

358 Chapter 3. Developer Documentation

OMERO

Individual test groups

To run individual OmeroJava test groups the --tests parameter.

cd components/tools/OmeroJava
gradle test --tests "integration.*"

Using Eclipse to run tests

To facilitate importing OMERO components into Eclipse, there are .project and .classpath-template files stored
in each component directory (e.g. tools/OmeroJava’s .project and .classpath-template).

There are also top-level . classpath and .project files which allow for importing all components as a single project,
but this approach requires more memory and does not clearly differentiate the classpaths, and so can lead to confusion.

Before importing any component as a project into Eclipse, a successful build has to have taken place:

[./build.py]

This is for two reasons. Firstly, the Eclipse projects are not configured to perform the code generation needed. The
build.py command creates the directory:

[<component>/target]

which will be missing from any Eclipse project you open before building the source.

Secondly, Ivy is used to copy all the jar dependencies from OMERO_SOURCE_PREFIX/lib/repository to
<component>/target/libs, which is then used in the Eclipse .classpath files.

If Eclipse ever gets out of sync after the first build, . /build.py build-eclipse can be used to quickly synchronize.

A prerequisite of running unit and integration tests in the Eclipse Ul is having the TestNG plug-in installed and working
(help available on the TestNG site).

Running the unit tests under Eclipse requires no extra settings and is as easy as navigating to the package or class
context menu Run As or Debug As, then selecting TestNG.

Integration tests require the ICE_CONFIG environment variable to be available for the Eclipse-controlled JVM. This
can be done by editing Debug/Run configurations in Eclipse. After navigating to the Debug (or Run) Configurations
window, the Environment tab needs to be selected. After clicking New, ICE_CONFIG can be defined as a path to the
ice.config file. This setting needs to be defined per package, class or method.

By using the “debug” target from templates.xml, it is possible to have OMERO listen on port 8787 for a debugging
connection.

omero admin stop
omero admin start debug

Then in Eclipse, you can create a new “Debug” configuration by clicking on Remote Java Application, and setting the
port to 8787. These values are arbitrary and can be changed locally.

Keep in mind:

* The server will not start up until you have connected with Eclipse. This is due to the “suspend=y” clause in
templates.xml. If you would like the server to start without you connecting, use “suspend=n".

* If you take too much time examining your threads, your calls may throw timeout exceptions.

3.1. Introduction to OMERO 359

https://testng.org/doc/eclipse.html

OMERO

Running Python tests

Using markers in OmeroPy tests

Tests under OmeroPy can be included or excluded according to markers defined in the tests. This can be done by using
the -DMARK option. For example, to run all the integration tests marked as broken:

[./build.py -f components/tools/OmeroPy/build.xml integration -DMARK=broken

By default tests marked as broken are excluded so the following two builds are equivalent:

./build.py -f components/tools/OmeroPy/build.xml integration
./build.py -f components/tools/OmeroPy/build.xml integration

-DMARK="not broken"

In order to run all tests, including broken, an empty marker must be used:

[./build.py -f components/tools/OmeroPy/build.xml integration -DMARK=

See also:

Marking OmeroPy tests

Running tests directly

When writing tests it can be more convenient, flexible and powerful to run the tests from https://github.com/ome/
openmicroscopy/tree/develop/components/tools/OmeroPy or https://github.com/ome/openmicroscopy/tree/develop/
components/tools/OmeroWeb using pytest. Since Python is interpreted, tests can be written and then run without

having to rebuild or restart the server. A few basic options are shown below.

First create a python virtual environment as described on the OMERO Python page, including omero-py and
omero-web if you want to run OmeroWeb tests. Some tests also require the installation of PyTables.

Then install some additional test dependencies:

$ pip install pytest mox3 pyyaml tables

for Omeroweb tests
$ pip install pytest-django

Run tests directly with pytest, setting the ICE_CONFIG as described above.
OMERO:.server:

Also set OMERODIR to point to the

export ICE_CONFIG=/path/to/openmicroscopy/etc/ice.config
export OMERODIR=/path/to/OMERO.server-x.x.x-ice36-bxx

cd components/tools/OmeroPy
pytest test/integration/test_admin.py

OR for OmeroWeb tests:
cd components/tools/OmeroWeb

pytest test/integration/test_annotate.py

360 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroWeb
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroWeb

OMERO

-k <string>

This option will run all integration tests containing the given string in their names. For example, to run all the
tests under test/integration with permissions in their names:

[pytest test/integration -k permissions]

This option can also be used to run a named test within a test module:

[pytest test/integration/test_admin.py -k testGetGroup]

-m <marker>

This option will run integration tests depending on the markers they are decorated with. Available markers can be
listed using the pytest --markers option. For example, to run all integration tests excluding those decorated
with the marker broken:

[pytest test/integration -m "not broken"]

--markers

This option lists available markers for decorating tests:

[pytest --markers]
-s

This option allows the standard output to be shown on the console:

[pytest test/integration/test_admin.py -s J
-h, --help

This option displays the full list of available options:

[pytest -h J

See https://docs.pytest.org/en/latest/how-to/usage.html for more help in running tests.

Failing tests

The test.with.fail ant property is set to false by default, which prevents test failures from failing the build.
However, it can instead be set to true to allow test failures to fail the build. For example:

[. /build.py -Dtest.with.fail=true integration]

Some components might provide individual targets for specific tests (e.g. OmeroJava provides the broken target for
running broken tests). The build.xml file is the reference in each component.

3.1. Introduction to OMERO 361

https://docs.pytest.org/en/latest/how-to/usage.html

OMERO

Writing tests

Writing Java tests

For more information on writing tests in general see https://testng.org/. For a test to be an “integration” test, place it in
the “integration” TestNG group. If a test is temporarily broken, add it to the “broken” group:

@Test(groups = {"integration", "broken"}
public void testMyStuff() {

}

Tests should be of the Acceptance Test form. The ticket number for which a test is being written should be added in
the TestNG annotation:

[@Test(groups = "ticket:60")

This works at either the method level (see SetsAndLinksTest.java) or the class level (see UniqueResultTest.java).

The tests under https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroJava/test will be the
starting point for most Java-client developers coming to OMERO. An example skeleton for an integration test looks
similar to

@Test(groups = "integration')
public class MyTest {

omero.client client;

@BeforeClass

protected void setup() throws Exception {
client = new omero.client();
client.createSession();

3

@AfterClass
protected void tearDown() throws Exception {
client.closeSession();

3

@Test

public void testSimple() throws Exception {
client.getSession() .getAdminService().getEventContext();

}

362 Chapter 3. Developer Documentation

https://testng.org/
https://github.com/ome/omero-model/blob/v5.6.12/src/test/java/ome/model/utests/SetsAndLinksTest.java
https://github.com/ome/omero-server/blob/v5.6.9/src/test/java/ome/server/itests/query/UniqueResultTest.java
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroJava/test

OMERO

Writing Python tests

To write and run Python tests you first need to install pytest:

[pip install pytest

For more information on writing tests in general see https://pytest.org/.
Unit tests can be found in various repositories such as omero-py, omero-web, and omero-dropbox.

Integration tests which require OMERO.server to run are found in the openmicroscopy repository. See:
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy/test, https://github.com/ome/
openmicroscopy/tree/develop/components/tools/OmeroWeb/test and https://github.com/ome/openmicroscopy/tree/
develop/components/tools/OmeroFS/test.

The file names must begin with fest_ for the tests to be found by pyfest.

import omero.clients
class TestExample(object)

def setup_method(self, method):
client = new omero.client()
client.createSession()

def teardown_method(self, method):
client.closeSession()

def testSimple():
ec = client.getSession() .getAdminService().getEventContext()
assert ec, "No EventContext!"

Marking OmeroPy tests

Methods, classes and functions can be decorated with pytest markers to allow for the selection of tests. pytest provides
some predefined markers and markers can be simply defined as they are used. However, to centralize the use of custom
markers they should be defined in https://github.com/ome/openmicroscopy/tree/develop/components/tools/pytest.ini.

To view all available markers the pytest --markers option can be used with pytest or py.test as detailed in
Running tests directly.

There is one custom marker defined:

broken
Used to mark broken tests. These are tests that fail consistently with no obvious quick fix. Broken tests are
excluded from the main integration builds and instead are run in a separate daily build. broken markers should
have a reason, an associated Trac ticket number or both. If there are multiple associated tickets then a comma-
separated list should be used.

import pytest
class TestExample2(object):

@pytest.mark.broken(reason="Asserting false", ticket="12345,67890")

(continues on next page)

3.1. Introduction to OMERO 363

https://pytest.org/
https://github.com/ome/omero-py/tree/v5.16.0/test/unit
https://github.com/ome/omero-web/tree/v5.22.1/test/unit
https://github.com/ome/omero-dropbox/tree/v5.6.2/test/unit
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroPy/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroWeb/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroWeb/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroFS/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/OmeroFS/test
https://github.com/ome/openmicroscopy/tree/develop/components/tools/pytest.ini

OMERO

(continued from previous page)

def testBroken():
assert False, "Bound to fail"

Using the Python test library

The OMERO Python test library defines an abstract ITest class that implements the connection set up as well as many
methods shared amongst all Python integration tests.

Each concrete instance of the ITest will initiate a connection to the server specified by the ICE_CONFIG environment
variable at the setup_class() level. The following objects are created by ITest.setup_class() and shared by all
test methods of this class:

e self.root is a client for the root user

* self.group is a new group which permissions are set to ITest.DEFAULT_PERMS by default. Overriding
DEFAULTS_PERUS in a subclass of ITest means the group will be created with the new permissions.

e self.user is a new user and member of self.group

* self.client is a client for the self.user created at class setup.
Additionally, for the self.client object, different shortcuts are available:

e self.sf is the non-root client session

* self.update is the update service for the non-root client session

* self.query is the query service for the non-root client session

* self.ctx is the event context for the non-root client session. Note this corresponds to the context at creation
time and should be refreshed if the context is modified.

The example below inherits the ITest class and would create a read-write group by default

from omero.testlib import ITest
class TestExample(ITest):
DEFAULT_PERMS = 'rwrw--' # Override default permissions

def testl1(Q):
doAction(self.sf)

New user and groups can be instantiated by individual tests using the ITest.new_user() and ITest.new_group()
methods:

def testNewGroupOwner():
new_group = self.new_group(perms='rwa---")
new_owner = self.new_use(group=new_group, owner=True)
assert new_owner.id.val, "No EventContext!"

New clients can be instantiated by individual tests using the ITest.new_client() or ITest.
new_client_and_user () methods:

def testNewClient():
new_client = self.new_user_and_client()
ec = new_client.getSession().getAdminService() .getEventContext()
assert ec, "No EventContext!"

364 Chapter 3. Developer Documentation

https://github.com/ome/omero-py/blob/master/src/omero/testlib/__init__.py

OMERO

Images can be imported using the ITest.import_fake_file () method:

def testFileset():
2 images sharing a fileset
images = self.import_fake_file(2)
assert len(images) == 2

Writing OMERO.web tests

For OMERO.web integration tests, the OMERO.web test library defines an abstract IWebTest class that inherits from
ITest and also implements Django clients at the class setup using the Django testing tools.

On top of the elements created by ITest.setup_class(), the IWebTest class creates:
e self.django_root_client is a Django test client for the root user

* self.django_client is a client for the new user created at the class setup.

from omeroweb.testlib import IWebTest

class TestExample(IWebTest):
def testSimple():
self.django_client.post('/login/', {'username': 'john'})

New Django test clients can be instantiated by individual tests using the IWebTest.new_django_client () method:

def testNewDjangoClient():
new_user = self.new_user()
omeName = new_user.omeName.val
new_django_client = self.new_django_client(omeName, omeName)

See also:

test_simple.py
Example test class using the OMERO.web test library methods

3.2 Using the OMERO API

3.2.1 OMERO Python language bindings

To access the OMERO.server Python API, you need to install the Python client libraries.

From OMERO 5.6.0 release, the client library omero-py supports Python 3 and is now available on PyPI and Conda.
The omero-py API documentation is available at https://omero-py.readthedocs.io/. We recommend you use a Python
virtual environment to install the client library. You can create one using either venv or conda (preferred). If you opt
for Conda, you will need to install it first, see miniconda for more details.

To install omero-py using venv:

$ python3 -m venv myenv
$. myenv/bin/activate
$ pip install omero-py==5.16.0

To install omero-py using conda (preferred):

3.2. Using the OMERO API 365

https://github.com/ome/omero-web/blob/master/omeroweb/testlib/__init__.py
https://docs.djangoproject.com/en/1.11/topics/testing/tools
https://github.com/ome/openmicroscopy/blob/develop/components/tools/OmeroWeb/test/integration/test_simple.py
https://pypi.org
https://docs.conda.io/en/latest/
https://omero-py.readthedocs.io/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/miniconda.html

OMERO

conda create -n myenv -c conda-forge python=3.8 omero-py
conda activate myenv

You can then start using the library in the terminal where the environment has been activated:

$ python
>>> from omero.gateway import BlitzGateway
>>> conn = BlitzGateway('username', 'password', host='omero.server', port=4064)

>>> conn.connect()

In addition to the auto-generated Python libraries of the core OMERO Application Programming Interface, omero-py
includes a more user-friendly Python module ‘BlitzGateway’ that facilitates several aspects of working with the Python
API, such as connection handling, object graph traversal and lazy loading.

Building on the ‘BlitzGateway’, the Jackson Laboratory has created a module of convenience functions called ezomero.

This page gives you a large number of code samples to get you started. Then we describe a bit more about Blitz Gateway
documentation.

All the code examples below can be found at https://github.com/ome/openmicroscopy/tree/develop/examples/Training/
python.

Code samples

Connect to OMERO

e Import OMERO and the BlitzGateway

import omero.clients
from omero.gateway import BlitzGateway

¢ Create a connection

conn = BlitzGateway(USERNAME, PASSWORD, host=HOST, port=PORT)
conn.connect()

* Create a secure-only connection

By default, once we have logged in, data transfer is not encrypted. To ensure all data is transferred securely pass
the secure flag.

conn = BlitzGateway(USERNAME, PASSWORD, host=HOST, port=PORT, secure=True)
conn.connect()

* Create a connection using a context manager

The BlitzGateway should be closed after use to free up server resources. This can be automatically done by using
it as a context manager. This also automatically calls connect ().

with BlitzGateway(USERNAME, PASSWORD, host=HOST, port=PORT, secure=True) as conn:
for p in conn.getObjects('Project'):
print (p.name)

conn.close() is automatically called

366 Chapter 3. Developer Documentation

https://github.com/TheJacksonLaboratory/ezomero
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/python
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/python

OMERO

* Create a connection using an existing session

The BlitzGateway can also be initialized from an existing omero.client object.

>>> client = omero.client(HOST, PORT)
>>> session = client.createSession(USERNAME, PASSWORD)
>>> conn = BlitzGateway(client_obj=client)

In this example the BlitzGateway and client will not be closed automatically. If nothing else is using the client object
you could use with BlitzGateway(client_obj=client) as conn.

¢ Current session details

By default, you will have logged into your 'current' group in OMERO. This
can be changed by switching group in the OMERO.insight or OMERO.web clients.

user = conn.getUser()

print("Current user:")

print (" ID:", user.getId())

print(" Username:", user.getName())
print (" Full Name:", user.getFullName())

Check if you are an Administrator

print (" Is Admin:", conn.isAdmin())

if not conn.isFullAdmin(Q):
If Restricted Administrator' show privileges
print(conn.getCurrentAdminPrivileges())

print("Member of:'")
for g in conn.getGroupsMemberOf():
print (" ID:", g.getName(), " Name:", g.getId())
group = conn.getGroupFromContext ()
print("Current group: ", group.getName())

List the group owners and other members
owners, members = group.groupSummary ()

print (" Group owners:')
for o in owners:
print (" ID: Name: "% (
o.getId(), o.getOmeName(), o.getFullName()))
print (" Group members:')
for m in members:
print (" ID: Name: "% (

m.getId(), m.getOmeName(), m.getFullName()))

print("Owner of:")
for g in conn.listOwnedGroups():
print (" ID: ", g.getName(), " Name:", g.getId())

Added in OMERO 5.0
print("Admins:")
for exp in conn.getAdministrators():
print (" ID: Name: "% (
exp.getId(), exp.getOmeName(), exp.getFullName()))

(continues on next page)

3.2. Using the OMERO API 367

OMERO

(continued from previous page)
The 'context' of our current session
ctx = conn.getEventContext()
print(ctx) # for more info

¢ Close connection

If you did not use the context manager close the session to free up server resources.

[conn.close() }

Read data

def print_obj(obj, indent=0):
Helper method to display info about OMERO objects.
Not all objects will have a "name" or owner field.

i

print("""%s%s:%s Name:"%s" (owner=%s)""" % (
" " * indent,

obj.0OMERO_CLASS,
obj.getId(),
obj.getName(),
obj.getOwnerOmeName()))

« List all Projects available to me, and their Datasets and Images

Load first 5 Projects, filtering by default group and owner
my_exp_id = conn.getUser().getId()
default_group_id = conn.getEventContext().groupld
for project in conn.getObjects("Project", opts={'owner': my_exp_id,
'group': default_group_id,
'order_by': 'lower(obj.name)',
'limit': 5, 'offset': 0}):
print_obj(project)
We can get Datasets with listChildren, since we have the Project already.
Or conn.getObjects('"Dataset", opts={project', id}) if we have Project ID
for dataset in project.listChildren():
print_obj(dataset, 2)
for image in dataset.listChildren():
print_obj(image, 4)

* Get Objects by their ID or attributes

The first argument for conn.getObjects() or conn.getObject () is the object type. This is not case sensitive.
Supported types are project, dataset, image, screen, plate, plateacquisition, acquisition, well,
roi, shape, experimenter, experimentergroup, originalfile, fileset, annotation. You can find
attributes of these objects at OMERO model API.

Find objects by ID. NB: getObjects() returns a generator, not a list
projects = conn.getObjects("Project", [1, 2, 3])

Get a single object by ID. Can use "Annotation" for all types of annotations by ID

(continues on next page)

368 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model.html

OMERO

(continued from previous page)

annotation = conn.getObject("Annotation", 1)

Find an Object by attribute. E.g. 'name’
images = conn.getObjects("Image", attributes={"name": name})

¢ Get different types of Annotations*

Supported types are: tagannotation, longannotation, booleanannotation, fileannotation,
doubleannotation, termannotation, timestampannotation, mapannotation

List All Tags that you have permission to access
conn.getObjects("TagAnnotation™)

Find Tags with a known text value
tags = conn.getObjects('TagAnnotation", attributes={"textValue": text})

¢ Retrieve ‘orphaned’ objects

We can use the 'orphaned' filter to find Datasets, Images
or Plates that are not in any parent container
print("\nList orphaned Datasets: \n", "=" * 50)
datasets = conn.getObjects("Dataset"”, opts={'orphaned': True})
for dataset in datasets:

print_obj(dataset)

* Retrieve objects in a container

We can filter Images by their parent Dataset

We can also filter Datasets by 'project', Plates by 'screen’,

Wells by 'plate’

print("\nImages in Dataset:", datasetId, "\n", "=" * 50)

for image in conn.getObjects('Image', opts={'dataset': datasetId}):
print_obj(image)

* Retrieve an image by Image ID

Pixels and Channels will be loaded automatically as needed
image = conn.getObject("Image", imageId)
print(image.getName(), image.getDescription())
Retrieve information about an image.
print(" X:", image.getSizeX())
print(" Y:", image.getSizeY())
print(" Z:", image.getSizeZ())
print(" C:", image.getSizeC())
print(" T:", image.getSizeT())
List Channels (loads the Rendering settings to get channel colors)
for channel in image.getChannels():
print('Channel:"', channel.getLabel())
print('Color:"', channel.getColor().getRGB())
print('Lookup table:', channel.getLut())
print('Is reverse intensity?', channel.isReverseIntensity())

render the first timepoint, mid Z section

(continues on next page)

3.2. Using the OMERO API 369

OMERO

(continued from previous page)

z = image.getSizeZ() / 2

t=20

rendered_image = image.renderImage(z, t)

rendered_image.show() # popup (use for debug only)
rendered_image.save("test. jpg") # save in the current folder

¢ Get Pixel Sizes for the above Image

size_x = image.getPixelSizeX() # e.g. 0.132

print(" Pixel Size X:", size_x)

Units support, new in OMERO 5.1.0

size_x_obj = image.getPixelSizeX(units=True)

print(" Pixel Size X:", size_x_obj.getValue(), "(%s)" % size_x_obj.getSymbol())
To get the size with different units, e.g. Angstroms

size_x_ang = image.getPixelSizeX(units="ANGSTROM")

print(" Pixel Size X:", size_x_ang.getValue(), "(%s)" % size_x_ang.getSymbol())

¢ Retrieve Screening data

for screen in conn.getObjects("Screen"):
print_obj(screen)
for plate in screen.listChildren():
print_obj(plate, 2)
plateld = plate.getId(Q)

¢ Retrieve Wells and Images within a Plate

plate = conn.getObject("Plate", plateld)
print ("\nNumber of fields:", plate.getNumberOfFields())
print("\nGrid size:", plate.getGridSize())
print("\nWells in Plate:", plate.getName())
for well in plate.listChildren():

index = well.countWellSample()

print(" Well: ", well.row, well.column, " Fields:", index)
for index in range(®, index):
print (" Image: ", \

well.getImage(index) .getName(),\
well.getImage(index).getId())

« List all annotations on an object. Filter for Tags and get textValue

for ann in project.listAnnotations():
print(ann.getId(), ann.OMERO_TYPE)
print(" added by ", ann.link.getDetails().getOwner() .getOmeName())
if ann.OMERO_TYPE == omero.model.TagAnnotationI:
print("Tag value:", ann.getTextValue())

¢ Get Links between Objects and Annotations

Find Images linked to Annotation(s), unlink Images from these annotations
and link them to another Tag Annotation

annotation_ids = [1, 2, 3]

tag_id = 4

(continues on next page)

370 Chapter 3. Developer Documentation

OMERO

(continued from previous page)

for link in conn.getAnnotationLinks('Image', ann_ids=annotation_ids):
print("Image ID:", link.getParent().id)
print("Annotation ID:", link.getChild().id)
Update the child of the underlying omero.model.ImageAnnotationLinkI
link._obj.child = omero.model.TagAnnotationI(tag_id, False)
link.save()

Find Annotations linked to Object(s), filter by namespace (optional)
for link in conn.getAnnotationLinks('Image', parent_ids=image_ids, ns=namespace):
print("Annotation ID:", link.getChild().id)

Groups and permissions

¢ We are logged in to our ‘default’ group

group = conn.getGroupFromContext ()
print("Current group: ", group.getName())

* Each group has defined Permissions set

group_perms = group.getDetails().getPermissions()
perm_string = str(group_perms)
permission_names = {

'rw----": "PRIVATE',
'rwr---": 'READ-ONLY',
'rwra--": 'READ-ANNOTATE',
'rwrw--": 'READ-WRITE'}

print("Permissions: %s (%s)" % (permission_names[perm_string], perm_string))

¢ By default, any query applies to ALL data that we can access in our Current group.

This will be determined by group permissions e.g. in Read-Only or Read-Annotate groups, this will include other
users’ data - see Groups and permissions system.

projects = conn.listProjects() # may include other users' data
for p in projects:
print(p.getName(), "Owner: ", p.getDetails().getOwner().getFullName())

Will return None if Image is not in current group
image = conn.getObject('Image", imageId)
print("Image: ", image)

¢ For cross-group querying, use **-1""

conn.SERVICE_OPTS.setOmeroGroup('-1")
image = conn.getObject("Image", imageId) # Will query across all my groups
print("Image: ", image)
if image is not None:

print("Group: ", image.getDetails().getGroup().getName())

print(image.getDetails() .getGroup().getId()) # access groupIld without loading.
< group

3.2. Using the OMERO API 371

OMERO

* To query only a single group (not necessarily your ‘current’ group)

group_id = image.getDetails().getGroup().getId()
This is how we 'switch group' in webclient
conn. SERVICE_OPTS. setOmeroGroup (group_id)
projects = conn.listProjects()

image = conn.getObject("Image", imageId)
print("Image: ", image)

* To set (or change) the owner of an object (Admins only)

tag_ann = omero.gateway.TagAnnotationWrapper (conn)
tag_ann.setTextValue("Not owned by me")

update details of the wrapped omero.model.AnnotationI _obj
tag_ann._obj.details.owner = ExperimenterI(userId, False)
tag_ann.save()

If we want to perform multiple tasks it may be more convenient to
connect as another user. We can use 'user_conn' exactly as for 'conn'
user = conn.getObject("Experimenter", userId).getName()

user_conn = conn.suConn(user)

This annotation will be owned by user

map_ann = omero.gateway.MapAnnotationWrapper (user_conn)

map_ann. setNs(namespace)

map_ann.setValue(key_values)

map_ann.save()

Link will be owned by the user

project.linkAnnotation(map_ann)

user_conn.close()

Raw data access

* Retrieve a given plane

Use the pixelswrapper to retrieve the plane as

a 2D numpy array see [https://github.com/scipy/scipy]
#

Numpy array can be used for various analysis routines
#

image = conn.getObject("Image", imageId)

size_z = image.getSizeZ()

size_c = image.getSizeC()

size_t = image.getSizeT()

z, t, c=0, 0, 0 # first plane of the image
pixels = image.getPrimaryPixels()

plane = pixels.getPlane(z, c, t) # get a numpy array.
print("\nPlane at zct: ", z, c, t)

print(plane)

print("shape: ", plane.shape)

print("min:", plane.min(), max:", plane.max(),\
"pixel type:", plane.dtype.name)

* Retrieve a given stack

372 Chapter 3. Developer Documentation

OMERO

Get a Z-stack of tiles. Using getTiles or getPlanes (see below) returns
a generator of data (not all the data in hand) The RawPixelsStore 1is

only opened once (not closed after each plane) Alternative is to use

getPlane() or getTile() multiple times - slightly slower.

c, t=0,0 # First channel and timepoint

tile = (50, 50, 10, 10) # x, y, width, height of tile

list of [(0,0,0,(x,y,w,h)), (1,0,0,(x,y,w,h)), (2,0,0,(x,y,w,h))...]
zct_list = [(iz, c, t, tile) for iz in range(size_z)]

print("\nZ stack of tiles:")

planes = pixels.getTiles(zct_list)

for i, p in enumerate(planes):

print("Tile:", zct_list[i], " min:", p.minQ),\
" max:", p.max(), " sum:", p.sum())
* Retrieve a given hypercube
zct_list = []
for z in range(size_z / 2, size_z): # get the top half of the Z-stack
for c in range(size_c): # all channels
for t in range(size_t): # all time-points
zct_list.append((z, c, t))
print ("\nHyper stack of planes:")
planes = pixels.getPlanes(zct_list)
for i, p in enumerate(planes):
print("plane zct:", zct_list[i], " min:", p.min(), " max:", p.max())

¢ Retrieve a histogram

Get a 256 bin histogram for channel 0 and plane z=0/t=0:
hist = image.getHistogram([0], 256, False, 0, 0)
print(hist)

Write data

¢ Create a new Dataset

Use omero.gateway.DatasetWrapper:

new_dataset = Datasetlirapper(conn, omero.model.DatasetI())
new_dataset.setName('Scipy_Gaussian_Filter')
new_dataset.save()

print("New dataset, Id:", new_dataset.id)

Can get the underlying omero.model.DatasetI with:
dataset_obj = new_dataset._obj

OR create the DatasetI directly:

dataset_obj = omero.model.DatasetI()

dataset_obj.setName(rstring("New Dataset"))

dataset_obj = conn.getUpdateService().saveAndReturnObject(dataset_obj, conn.SERVICE_OPTS)
dataset_id = dataset_obj.getId().getValue()

print("New dataset, Id:", dataset_id)

¢ Link to Project

3.2. Using the OMERO API 373

OMERO

link = omero.model.ProjectDatasetLinkI()

We can use a 'loaded' object, but we might get an Exception

link.setChild(dataset_obj)

Better to use an 'unloaded' object (loaded = False)
link.setChild(omero.model .DatasetI(dataset_obj.id.val, False))
link.setParent (omero.model.ProjectI(projectId, False))
conn.getUpdateService() .saveObject(link)

* Annotate Project with a new Tag

tag_ann = omero.gateway.TagAnnotationWrapper (conn)
tag_ann.setValue("New Tag")
tag_ann.setDescription("Add optional description")
tag_ann.save()

project = conn.getObject("Project"”, projectld)
project.linkAnnotation(tag_ann)

* Add a Map Annotation (list of key: value pairs)

key_value_data = [["Drug Name", "Monastrol"], ["Concentration", "5 mg/ml"]]
map_ann = omero.gateway.MapAnnotationWrapper (conn)

Use 'client' namespace to allow editing in Insight & web

namespace = omero.constants.metadata.NSCLIENTMAPANNOTATION

map_ann. setNs(namespace)

map_ann.setValue(key_value_data)

map_ann.save()

project = conn.getObject("Project", projectId)

NB: only link a client map annotation to a single object
project.linkAnnotation(map_ann)

¢ Count the number of annotations on one or many objects

[print(conn.countAnnotations('Project', [projectId]))

« List all annotations on an object. Get text from tags

for ann in project.listAnnotations():
print(ann.getId(), ann.OMERO_TYPE)
print(" added by ", ann.link.getDetails() .getOwner() .getOmeName())
if ann.OMERO_TYPE == omero.model.TagAnnotationI:
print("Tag value:", ann.getTextValue())

¢ How to create a file annotation and link to a Dataset

dataset = conn.getObject('"Dataset", dataset_id)
Specify a local file e.g. could be result of some analysis
file_to_upload = "README.txt" # This file should already exist
with open(file_to_upload, 'w') as f:
f.write('annotation test')
create the original file and file annotation (uploads the file etc.)
namespace = "my.custom.demo.namespace"
print("\nCreating an OriginalFile and FileAnnotation")
file_ann = conn.createFileAnnfromLocalFile(
file_to_upload, mimetype="text/plain"”, ns=namespace, desc=None)

(continues on next page)

374 Chapter 3. Developer Documentation

OMERO

(continued from previous page)

print("Attaching FileAnnotation to Dataset: ", "File ID:", file_ann.getId(), \
",", file_ann.getFile() .getName(), "Size:", file_ann.getFile().getSize())
dataset.linkAnnotation(file_ann) # link it to dataset.

* Download a file annotation linked to a Dataset

make a location to download the file. "download" folder.
path = os.path.join(os.path.dirname(__file__), "download")
if not os.path.exists(path):
os.makedirs(path)
Go through all the annotations on the Dataset. Download any file annotations
we find. Filter by namespace is optional
print("\nAnnotations on Dataset:", dataset.getName())
namespace = "my.custom.demo.namespace"
for ann in dataset.listAnnotations(ns=namespace):
if isinstance(ann, omero.gateway.FileAnnotationWrapper):
print("File ID:", ann.getFile().getId(), ann.getFile().getName(), \
"Size:", ann.getFile().getSize())
file_path = os.path.join(path, ann.getFile().getName())

with open(str(file_path), 'wb') as f:
print("\nDownloading file to", file_path, "...")
for chunk in ann.getFileInChunks():

f.write(chunk)

print("File downloaded!")

* Load all the file annotations with a given namespace

ns_to_include = [namespace]
ns_to_exclude [1
metadataService = conn.getMetadataService()
annotations = metadataService.loadSpecifiedAnnotations(
'omero.model.FileAnnotation', ns_to_include, ns_to_exclude, None)
for ann in annotations:
print(ann.getId() .getValue(), ann.getFile() .getName() .getValue())

 Get first annotation with specified namespace

ann = dataset.getAnnotation(namespace)
print("Found Annotation with namespace:

, ann.getNs())

OMERO tables

¢ Create a name for the Original File (should be unique)

from random import random

table_name = "TablesDemo:%s" % str(random())
coll = omero.grid.LongColumn('Uid"', 'testLong', [])
col2 = omero.grid.StringColumn(' 'MyStringColumnInit', '', 64, [])

columns = [coll, col2]

¢ Create and initialize a new table.

3.2. Using the OMERO API 375

OMERO

resources = conn.c.sf.sharedResources()

repository_id = resources.repositories().descriptions[0].getId().getValue()
table = resources.newTable(repository_id, table_name)
table.initialize(columns)

¢ Add data to the table

ids = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
strings = ["one", "two", "three", "four", "five",
"six", "seven", "eight", "nine", "ten"]
datal = omero.grid.LongColumn('Uid', 'test Long', ids)
data2 = omero.grid.StringColumn('MyStringColumn', '', 64, strings)
data = [datal, data2]
table.addData(data)
orig_file = table.getOriginalFile()
table.close() # when we are done, close.

* Load the table as an original file

orig_file_id = orig_file.id.val

...so you can attach this data to an object e.g. Dataset

file_ann = omero.model.FileAnnotationI()

use unloaded OriginalFilel
file_ann.setFile(omero.model.OriginalFileI(orig_file_id, False))

file_ann = conn.getUpdateService() .saveAndReturnObject(file_ann)

link = omero.model.DatasetAnnotationLinkI()

link.setParent (omero.model .DatasetI(datasetId, False))
link.setChild(omero.model.FileAnnotationI(file_ann.getId().getValue(), False))
conn.getUpdateService() . saveAndReturnObject (1ink)

¢ Table API
See also:

:slicedoc_blitz:® OMERO Tables <omero/grid/Table.html>"

open_table = resources.openTable(orig_file)
print("Table Columns:")
for col in open_table.getHeaders():

print (" ", col.name)
rowCount = open_table.getNumberOfRows ()
print("Row count:", rowCount)

* Get data from every column of the specified rows

row_numbers = [3, 5, 7]
print("\nGet All Data for rows: ", row_numbers)
data = open_table.readCoordinates(range(rowCount))
for col in data.columns:
print("Data for Column:
for v in col.values:
print (" "ov)

, col.name)

¢ Get data from every column of the specified rows with slice

376 Chapter 3. Developer Documentation

OMERO

row_numbers = [3, 5, 7]
print ("\nGet All Data for rows with slice: ", row_numbers)
data = open_table.slice(range(len(open_table.getHeaders())), row_numbers)
for col in data.columns:
print("Data for Column:
for v in col.values:
print (" "v)

, col.name)

* Get data from specified columns of specified rows

col_numbers = [1]

start = 3

stop = 7

print ("\nGet Data for cols: ", col_numbers,\
" and between rows: ", start, "-", stop)

data = open_table.read(col_numbers, start, stop)
for col in data.columns:
print("Data for Column:
for v in col.values:
print (" "ov)

, col.name)

* Get data from specified columns of specified rows with slice

col_numbers = [1]

start = 3
stop = 7
print("\nGet Data for cols: ", col_numbers,

and between rows:
" with slice")
data = open_table.slice(col_numbers, range(start, stop))
for col in data.columns:
print("Data for Column:
for v in col.values:
print (" V)

, Sstart, , stop,

, col.name)

* Query the table for rows where the ‘Uid’ is in a particular range

query_rows = open_table.getWherelList(

"(Uid > 2) & (Uid <= 8)", variables={}, start=0, stop=rowCount, step=0)
data = open_table.readCoordinates(query_rows)
for col in data.columns:

print("Query Results for Column: ", col.name)
for v in col.values:
print (" V)
open_table.close() # we're done

¢ In future, to get the table back from Original File

orig_table_file = conn.getObject(

"OriginalFile", attributes={'name': table_name}) # 1if name is unique
saved_table = resources.openTable(orig_table_file._obj)
print ("Opened table with row-count:", saved_table.getNumberOfRows())

saved_table.close()

3.2. Using the OMERO API 377

OMERO

ROIs

« Initialize service

updateService = conn.getUpdateService()
from omero.rtypes import rdouble, rint, rstring

¢ Create ROI

We are using the core Python API and omero.model objects here, since ROIs
are not yet supported in the Python Blitz Gateway.

#

First we load our image and pick some parameters for shapes
x = 50

y = 200

width = 100

height = 50

image = conn.getObject(''Image", imageId)
z = image.getSizeZ() / 2
t=20

We have a helper function for creating an ROI and linking it to new shapes
def create_roi(img, shapes):

create an ROI, link it to Image

roi = omero.model.RoiI()

use the omero.model.Imagel that underlies the 'image' wrapper

roi.setImage(img._obj)

for shape in shapes:

roi.addShape (shape)
Save the ROI (saves any linked shapes too)
return updateService.saveAndReturnObject(roi)

Another helper for generating the color integers for shapes
see https://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.
—html#Color for background
def rgba_to_int(red, green, blue, alpha=255):
""" Return the color as an Integer in RGBA encoding
return int.from_bytes([red, green, blue, alpha],
byteorder="big', signed=True)

o

create a rectangle shape (added to ROI below)

print(("Adding a rectangle at theZ: %s, theT: %s, X: %s, Y: %s, width: %s, " +
"height: %s") % (z, t, x, y, width, height))

rect = omero.model.RectangleI()

rect.x = rdouble(x)

rect.y = rdouble(y)

rect.width = rdouble(width)

rect.height = rdouble(height)

rect.theZ = rint(z)

rect.theT = rint(t)

rect.textValue = rstring("test-Rectangle")

rect.fillColor = rint(rgba_to_int(255, 255, 255, 255))

rect.strokeColor = rint(rgba_to_int(255, 255, 0, 255))

378 Chapter 3. Developer Documentation

OMERO

create an Ellipse shape (added to ROI below)
ellipse = omero.model.EllipseI()

ellipse.x = rdouble(y)

ellipse.y = rdouble(x)

ellipse.radiusX = rdouble(width)
ellipse.radiusY = rdouble(height)

ellipse.theZ = rint(z)

ellipse.theT = rint(t)

ellipse.textValue = rstring("test-Ellipse")

Create an ROI containing 2 shapes on same plane

NB: OMERO.insight client doesn't support display

of multiple shapes on a single plane.

Therefore the ellipse is removed later (see below)
create_roi(image, [rect, ellipse])

create an ROI with single line shape
line = omero.model.LineI()

line.x1 = rdouble(x)

line.x2 = rdouble(x+width)

line.yl = rdouble(y)

line.y2 = rdouble(y+height)

line.theZ = rint(z)

line.theT = rint(t)

line.textValue = rstring("test-Line")
create_roi(image, [line])

def create_mask(mask_bytes, bytes_per_pixel=1):
if bytes_per_pixel == 2:
divider = 16.0
format_string = "H" # Unsigned short
byte_factor = 0.5
elif bytes_per_pixel == 1:
divider = 8.0
format_string =
byte_factor = 1
else:
message = "Format not supported"
raise ValueError(message)
steps = math.ceil(len(mask_bytes) / divider)
mask = []
for i in range(int(steps)):
binary = mask_bytes[
i * int(divider):i * int(divider) + int(divider)]
format = str(int(byte_factor * len(binary))) + format_string
binary = struct.unpack(format, binary)
g = "n
for bit in binary:
s += str(bit)
mask.append(int(s, 2))
return bytearray(mask)

"B" # Unsigned char

3.2. Using the OMERO API 379

OMERO

mask_x = 50
mask_y = 50
mask_h = 100
mask_w = 100

Create [0, 1] mask
mask_array = numpy.fromfunction(
lambda x, y: (x * y) % 2, (mask_w, mask_h))
Set correct number of bytes per value
mask_array = mask_array.astype(numpy.uint8)
Convert the mask to bytes
mask_array = mask_array.tostring()
Pack the bytes to a bit mask
mask_packed = create_mask(mask_array, 1)

Define mask's fill color

from omero.gateway import ColorHolder
mask_color = ColorHolder()
mask_color.setRed(255)
mask_color.setBlue(0)
mask_color.setGreen(0)
mask_color.setAlpha(100)

create an ROI with a single mask
mask = omero.model.MaskI()
mask.setTheC(rint (0))
mask.setTheZ(rint(0))

mask.setTheT (rint(0))

mask.setX(rdouble (mask_x))
mask.setY(rdouble (mask_y))
mask.setWidth(rdouble (mask_w))
mask.setHeight (rdouble(mask_h))
mask.setFillColor(rint (mask_color.getInt()))
mask.setTextValue(rstring('test-Mask'))
mask.setBytes(mask_packed)
create_roi(image, [mask])

create an ROI with single point shape
point = omero.model.PointI()

point.x = rdouble(x)

point.y = rdouble(y)

point.theZ = rint(z)

point.theT = rint(t)

point.textValue = rstring("test-Point")
create_roi(image, [point])

create an ROI with a single polygon, setting colors and lineWidth
polygon = omero.model.PolygonI()

polygon.theZ = rint(z)

polygon.theT = rint(t)

polygon.fillColor = rint(rgba_to_int(255, ®, 255, 50))
polygon.strokeColor = rint(rgba_to_int(255, 255, 0))
polygon.strokeWidth = omero.model.LengthI(10, UnitsLength.PIXEL)

(continues on next page)

380 Chapter 3. Developer Documentation

OMERO

points = "10,20 50,150 200,200 250,75"
polygon.points = rstring(points)
polygon.textValue = rstring('test-Polygon")
create_roi(image, [polygon])

(continued from previous page)

¢ Retrieve ROISs linked to an Image

roi_service = conn.getRoiService()
result = roi_service.findByImage(imageId, None)
for roi in result.rois:
print("ROI: ID:", roi.getId().getValue())
for s in roi.copyShapes():
shape = {}
shape['id'] = s.getId() .getValue()
shape['theT'] s.getTheT() .getValue()
shape['theZ'] = s.getTheZ() .getValue()
if s.getTextValue():
shape['textValue'] = s.getTextValue().getValue()
if type(s) == omero.model.Rectanglel:
shape['type'] = 'Rectangle’
shape['x'] = s.getX().getValue()
shape['y'] = s.getY().getValue()
shape['width'] = s.getWidth() .getValue()
shape['height'] = s.getHeight().getValue()
elif type(s) == omero.model.Ellipsel:
shape['type'] = 'Ellipse'
shape['x"'] s.getX() .getValue()
shape['y"'] s.getY() .getValue()
shape['radiusX'] = s.getRadiusX().getValue()
shape['radiusY'] = s.getRadiusY().getValue()
elif type(s) == omero.model.PointI:
shape['type'] = 'Point'
shape['x'] = s.getX().getValue()
shape['y'] = s.getY().getValue()

n

elif type(s) == omero.model.LineI:
shape['type'] = 'Line'
shape['x1'] = s.getX1() .getValue()
shape['x2'] = s.getX2() .getValue()
shape['y1'] = s.getY1() .getValue()
shape['y2'] = s.getY2() .getValue()

elif type(s) == omero.model.MaskI:
shape['type'] = 'Mask'
shape['x'] = s.getX().getValue()
shape['y'] = s.getY().getValue()
shape['width'] = s.getWidth().getValue()
shape['height'] = s.getHeight().getValue()
elif type(s) in (
omero.model.LabelI, omero.model.PolygonI):
print(type(s), " Not supported by this code")
Do some processing here, or just print:
print (" Shape:",)
for key, value in shape.items():

(continues on next page)

3.2. Using the OMERO API

381

OMERO

(continued from previous page)

print(" , key, value,)

print("")

¢ Get Pixel Intensities for ROIs

result = roi_service.findByImage(imageId, None)
shape_ids = []
for roi in result.rois:
for s in roi.copyShapes():
shape_ids.append(s.id.val)
ch_index = 0
Z/T will only be used if a shape doesn't have Z/T set
the_z = 0
the_t = 0
stats = roi_service.getShapeStatsRestricted(shape_ids, the_z, the_t, [ch_index])
for s in stats:
print("Points", s.pointsCount[ch_index])
print("Min", s.min[ch_index])
print("Mean", s.mean[ch_index])
print("Max", s.max[ch_index])
print("Sum", s.max[ch_index])
print("StdDev'", s.stdDev[ch_index])

* Remove shape from ROI

result = roi_service.findByImage(imageId, None)
for roi in result.rois:
for s in roi.copyShapes():
Find and remove the Shape we added above
if s.getTextValue() and s.getTextValue().getValue() == "test-Ellipse":
print("Removing Shape from ROI...")
roi.removeShape(s)
roi = updateService.saveAndReturnObject(roi)

Delete data

* Delete Project

You can delete a number of objects of the same type at the same
time. In this case Project'. Use deleteChildren=True if you are
deleting a Project and you want to delete Datasets and Images.
obj_ids = [project_id]
delete_children = False
conn.deleteObjects(
"Project", obj_ids, deleteAnns=True,
deleteChildren=delete_children, wait=True)

* Retrieve callback and wait until delete completes

This is not necessary for the Delete to complete. Can be used
if you want to know when delete is finished or if there were any errors

(continues on next page)

382 Chapter 3. Developer Documentation

OMERO

(continued from previous page)

handle = conn.deleteObjects("Project", [project_id])
cb = omero.callbacks.CmdCallbackI(conn.c, handle)
print("Deleting, please wait.")
while not cb.block(500):

print(".")
err = isinstance(cb.getResponse(), omero.cmd.ERR)
print("Error?", err)

if err:
print(cb.getResponse())
cb.close(True) # close handle too

* Delete Annotations on an Object

i = conn.getObject("Image", image_id)

to_delete = []

Optionally to filter by namespace

for ann in i.listAnnotations(ns=namespace):
to_delete.append(ann.id)

conn.deleteObjects('Annotation', to_delete, wait=True)

¢ Remove Annotations from an Object (unlink but don’t delete)

i = conn.getObject("Image", image_id)
to_delete = []
for ann in i.listAnnotations():
to_delete.append(ann.link.id)
conn.deleteObjects('ImageAnnotationLink", to_delete, wait=True)

Render Images

¢ Get thumbnail

from PIL import Image from io import BytesIO # Thumbnail is created using the current render-
ing settings on the image image = conn.getObject(“Image”, imageld) img_data = image.getThumbnail()
rendered_thumb = Image.open(BytesIO(img_data)) # rendered_thumb.show() # shows a pop-up ren-
dered_thumb.save(“thumbnail.jpg”)

* Get current settings

print("Channel rendering settings:")
for ch in image.getChannels():
1f no name, get emission wavelength or index

print("Name: ", ch.getLabel())

print(" Color:", ch.getColor().getHtml())

print(" Active:", ch.isActive())

print(" Levels:", ch.getWindowStart(), "-", ch.getWindowEnd())
print("isGreyscaleRenderingModel:", image.isGreyscaleRenderingModel())
print("Default Z/T positions:")
print (" 7 = , T = " % (image.getDefaultZ(), image.getDefaultT()))

¢ Show the saved rendering settings on this image

3.2. Using the OMERO API 383

OMERO

print("Rendering Defs on Image:")
for rdef in image.getAllRenderingDefs():
img_data = image.getThumbnail (rdefId=rdef['id'])
print (" ID: (owner:)" % (
rdef['id'], rdef['owner']['firstName'], rdef['owner']['lastName']))

* Render each channel as a separate grayscale image

image.setGreyscaleRenderingModel ()
size_c = image.getSizeC()
z = image.getSizeZ() / 2

t=0
for c in range(l, size_c + 1): # Channel index starts at 1
channels = [c] # Turn on a single channel at a time

image.setActiveChannels(channels)

rendered_image = image.renderImage(z, t)

renderedImage.show() # popup (use for debug only)
rendered_image.save('channel%s.jpg" % c) # save in the current folder

¢ Turn 3 channels on, setting their colors

image.setColorRenderingModel ()

channels = [1, 2, 3]

color_list = ['FOO', None, 'FFFFO0'] # do not change color of 2nd channel
image.setActiveChannels(channels, colors=color_list)

max intensity projection 'intmean' for mean-intensity
image.setProjection('intmax"')

rendered_image = image.renderImage(z, t) # z and t are ignored for projections
renderedImage.show()

rendered_image.save("all_channels. jpg")

image.setProjection('normal") # turn off projection

e Turn 2 channels on, setting levels of the first one

channels = [1, 2]

range_list = [[100.0, 120.2], [None, None]]
image.setActiveChannels(channels, windows=range_list)

Set default Z and T. These will be used as defaults for further rendering
image.setDefaultZ(0)

image.setDefaultT(0)

default compression is 0.9

rendered_image = image.renderImage(z=None, t=None, compression=0.5)
rendered_image.show()

rendered_image.save("two_channels. jpg")

 Save the current rendering settings & default Z/T

[image.saveDefaults()

* Reset to settings at import time, and optionally save

{image.resetDefaults(save:True)

384 Chapter 3. Developer Documentation

OMERO

Create Image

¢ Create an image from scratch

This example demonstrates the usage of the convenience method

createImageFromNumpySeq() Here we create a multi-dimensional image from a

hard-coded array of data.

from numpy import array, int8

import omero

size_x, size_y, size_z, size_c, size_t =5, 4, 1, 2, 1

planel = array(
(e, 1, 2, 3, 41, [5, 6, 7, 8, 91, [o, 1, 2, 3, 4], [5, 6, 7, 8, 911,
dtype=int8)

plane2 = array(
(es, 6, 7, 8, 91, [0, 1, 2, 3, 41, [5, 6, 7, 8, 9], [0, 1, 2, 3, 4]],
dtype=int8)

planes = [planel, plane2]

def plane_gen():
"""generator will yield planes
for p in planes:
yield p

i

desc = "Image created from a hard-coded arrays"

i = conn.createImageFromNumpySeq(
plane_gen(), "numpy image", size_z, size_c, size_t, description=desc,
dataset=None)

print('Created new Image:%s Name:"%s"' % (i.getId(), i.getName()))

¢ Set the pixel size using units (added in 5.1.0)

Lengths are specified by value and a unit enumeration Here we set the pixel size X and Y to be 9.8 Angstroms

from omero.model.enums import UnitsLength

Re-load the image to avoid update conflicts

i = conn.getObject("Image", i.getId())

u = omero.model.LengthI(9.8, UnitsLength.ANGSTROM)
p = i.getPrimaryPixels()._obj
p.setPhysicalSizeX(u)

p.setPhysicalSizeY(u)

conn.getUpdateService() .saveObject(p)

¢ Create an Image from an existing image

We are going to create a new image by passing the method a 'generator' of 2D
planes This will come from an existing image, by taking the average of 2

channels.

zct_list = []

image = conn.getObject('Image', imageId)

size_z, size_c, size_t = image.getSizeZ(), image.getSizeC(), image.getSizeT()
dataset = image.getParent()

pixels = image.getPrimaryPixels()

new_size_c = 1

3.2. Using the OMERO API 385

OMERO

def plane_gen(Q):

e

set up a generator of 2D numpy arrays.

The createImage method below expects planes in the order specified here
(for z.. for c.. for t..)
for z in range(size_z): # all Z sections
Illustrative purposes only, since we only have 1 channel
for c in range(new_size_c):
for t in range(size_t): # all time-points
channel® = pixels.getPlane(z, 0, t)
channell = pixels.getPlane(z, 1, t)
Here we can manipulate the data in many different ways. As
an example we are doing "average"
average of 2 channels
new_plane = (channel® + channell) / 2
print("newPlane for z,t:", z, t, new_plane.dtype, \
new_plane.min(), new_plane.max())
yield new_plane

desc = ("Image created from Image ID: %s by averaging Channel 1 and Channel 2"
% imageId)

i = conn.createImageFromNumpySeq(
plane_gen(), "new image", size_z, new_size_c, size_t, description=desc,
dataset=dataset)

Filesets - added in OMERO 5.0

¢ Get the ‘Fileset’ for an Image

A Fileset is a collection of the original files imported to
create an image or set of images in OMERO.
image = conn.getObject(''Image", imageId)
fileset = image.getFileset() # will be None for pre-FS images
fs_id = fileset.getId(Q)
List all images that are in this fileset
for fs_image in fileset.copyImages():
print (fs_image.getId(), fs_image.getName())
List original imported files
for orig_file in fileset.listFiles():
name = orig_file.getName()
path = orig_file.getPath()
print(path, name)

¢ Get Original Imported Files directly from the image

this will include pre-FS data IF images were archived on import
print(image.countImportedImageFiles())

specifically count Fileset files

file_count = image.countFilesetFiles()

(continues on next page)

386 Chapter 3. Developer Documentation

OMERO

(continued from previous page)

list files
if file_count > 0:
for orig_file in image.getImportedImageFiles():
name = orig_file.getName()
path = orig_file.getPath()
print(path, name)

¢ Can get the Fileset using conn.getObject()

[fileset = conn.getObject("Fileset", fs_id)

Python OMERO.scripts

It is relatively straightforward to take the code samples above and re-use them in OMERO.scripts. This allows the code
to be run on the OMERO server and called from either the OMERO.insight client or OMERO.web by any users of the
server. See OMERQ.scripts user guide.

3.2.2 Blitz Gateway documentation

This page provides some background information on the OMERO Python client ‘gateway’ (omero.gateway module).

The Blitz Gateway is a Python client-side library that facilitates working with the OMERO API, handling connection to
the server, loading of data objects and providing convenience methods to access the data. It was originally designed as
part of the OMERO.web framework, to provide connection and data retrieval services to various web clients. However,
we encourage its use for all access to the OMERO Python API.

Connection wrapper

The BlitzGateway class (see API of development code) is a wrapper for the OMERO client and session objects. It
provides various methods for connecting to the OMERO server, querying the status or context of the current connection
and retrieving data objects from OMERO.

BlitzGateway can be used as a context manager to ensure the underlying client connection is automatically closed.

For examples see Code samples.

Model object wrappers

OMERO model objects, e.g. omero.model.Project, omero.model.Pixels etc. (see full list) are code-generated and
mapped to the OMERO database schema. They are language agnostic and their data is in the form of omero.rtypes as
described in about model objects.

To facilitate work in Python, particularly in web page templates, these Python model objects are wrapped in Blitz Object
Wrappers. This hides the use of rtypes.

import omero

from omero.model import ProjectI

from omero.rtypes import rstring

p = ProjectI(Q)

p.setName(rstring("Omero Model Project")) # attributes are all rtypes
print(p.getName() .getValue()) # getValue() to unwrap the rtype

(continues on next page)

3.2. Using the OMERO API 387

https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html#omero.gateway._BlitzGateway
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/model.html

OMERO

(continued from previous page)

print(p.name.val) # short-hand

from omero.gateway import ProjectWrapper

project = ProjectlWrapper(obj=p) # wrap the model.object
project.setName("'Project Wrapper") # Don't need to use rtypes
print(project.getName())

print(project.name)

print(project._obj) # access the wrapped object with ._obj

These wrappers also have a reference to the BlitzGateway connection wrapper, so they can make calls to the server and
load more data when needed (lazy loading).

>>> from omero.gateway import BlitzGateway

>>> conn = BlitzGateway("username", "password", host="localhost", port=4064)
>>> conn.connect()

>>> for p in conn.listProjects(): # Initially we just load Projects
print(p.getName())
for dataset in p.listChildren(): # lazy-loading of Datasets here
print(" ", dataset.getName())

TestProject
Aurora-B

tiff stacks
newTimeStack
test

SiRNAi
CENP
live-cell
survivin

>>> conn.close()

Wrapper coverage

The OMERO data model has a large number of objects, not all of which are used by the OMERO.web framework.
Therefore, the Blitz gateway (which was originally built for this framework) has not yet been extended to wrap every
omero.model object with a specific Blitz Object Wrapper. The current list of object wrappers can be found in the
omero.gateway module API. As more functionality is provided by the Blitz Gateway, the coverage of object wrappers
will increase accordingly.

388 Chapter 3. Developer Documentation

https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html

OMERO

Access to the OMERO API services

If you need access to API methods that are not provided by the gateway library, you can get hold of the OMERO
Application Programming Interface.

Note: These services will always work with omero.model objects and not the gateway wrapper objects.

The gateway handles creation and reuse of the API services, so that new ones are not created unnecessarily. Services
can be accessed using the methods of the underlying Service Factory with the Gateway handling reuse as needed.
Stateless services (those retrieved with getXXX methods e.g. getQueryService) are always reused for each call, e.g.
conn.getQueryService() whereas stateful services e.g. createRenderingEngine may be created each time.

Not all methods of the service factory are currently supported in the gateway. You can get an idea of the currently
supported services by looking at the source code under the _createProxies method.

Example: ContainerService can load Projects and Datasets in a single call to server (no lazy loading)

cs = conn.getContainerService()
projects = cs.loadContainerHierarchy("Project"”, None, None)
for p in projects: # omero.model.ProjectI
print(p.getName() .getValue()) # need to 'unwrap' rstring
for d in p.linkedDatasetList():
print(d.getName() .getValue())

Stateful services, reconnection, error handling etc.

The Blitz gateway was designed for use in the OMERO.web framework and it is not expected that stateful services will
be maintained on the client for significant time. There are various error-handling functionalities in the Blitz gateway
that will close existing services and recreate them in order to maintain a working connection. If this happens then any
stateful services that you have on the client-side will become stale. Our general advice is to create, use and close the
stateful services in the shortest practicable time.

try:
image = conn.getObject("Image", image_id)
Initializes the Rendering engine and sets rendering settings
image.setActiveChannels([1, 2], [[20, 300], [50, 500]], ['OOFFO0', 'FFOO00'])
pil_image = image.renderImage(0®, 0)
Now we close the rendering engine
image._re.close

Can continue to use the connection until done,
then close ALL services:
finally:

conn.close()

3.2. Using the OMERO API 389

https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/api/ServiceFactory.html
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/api/ServiceFactory.html#getQueryService
https://docs.openmicroscopy.org/omero-blitz/5.7.1/slice2html/omero/api/ServiceFactory.html#createRenderingEngine
https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html#omero.gateway._BlitzGateway._createProxies

OMERO

Overwriting and extending omero.gateway classes

When working with omero.gateway or wrapper classes such as omero.gateway.ImageWrapper you might want to add
your own functionality or customize an existing one. N.B. The call to omero.gateway.refreshiWrappers() is
important to update the dictionary of classes used by conn.getObjects(). This will ensure that instances of your class
are returned by conn.getObjects().

class MyBlitzGateway (omero.gateway.BlitzGateway):

def __init__ (self, *args, **kwargs):
super (MyBlitzGateway, self).__init__(*args, **kwargs)

...do something, e.g. add new field...
self.new_field = 'foo'

def connect (self, *args, **kwargs):

rv = super(MyBlitzGateway, self).connect(*args, **kwargs)
if rv:
...do something, e.g. modify new field...
self.new_field = 'bla’

return rv

omero.gateway.BlitzGateway = MyBlitzGateway
class MyBlitzObjectWrapper (object):
annotation_counter = None

def countAnnotations (self):
Count on annotations linked to the object and set the value
on the custom field 'annotation_counter'.

@return Counter

e

if self.annotation_counter is not None:
return self.annotation_counter
else:
container = self._conn.getContainerService()
m = container.getCollectionCount(self. _obj.__class__._ _name__, type(self._
<»0bj) .ANNOTATIONLINKS, [self._oid], None)
if m[self._oid] > O:
self.annotation_counter = m[self._oid]
return self.annotation_counter
else:
return None

class ImageWrapper (MyBlitzObjectWrapper, omero.gateway.ImageWrapper):

e

omero_model_Imagel class wrapper overwrite omero.gateway.ImageWrapper

(continues on next page)

390 Chapter 3. Developer Documentation

https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html
https://downloads.openmicroscopy.org/latest/omero5.5/api/python/omero/omero.gateway.html#omero.gateway.ImageWrapper

OMERO

(continued from previous page)

and extends MyBlitzObjectWrapper.

o

def __prepare__ (self, **kwargs):
if kwargs.has_key('annotation_counter'):
self.annotation_counter = kwargs['annotation_counter']

omero.gateway.ImageWWrapper = ImageWrapper

IMPORTANT to update the map of wrappers for 'Image' etc. returned by getObjects("Image")
omero.gateway.refreshWrappers()

3.2.3 Command Line Interface as an OMERO development tool

Working with objects

The omero obj command allows to create and update OMERO objects. More information can be displayed using
omero obj -h.

A complete Glossary of all OMERO Model Objects is available for reference.

Object creation

The omero obj new subcommand allows to create new objects:

[$ omero obj new Object field=value]

where Object is the type of object to create, e.g2. Dataset or ProjectDatasetLink and field/value is a valid key/value pair
for the type of object. For example, the following command creates a new screen with a name and a description:

[$ omero obj new Screen name=Screen0®01 description="screen description" }

Object update

The omero obj update subcommand allows to update existing objects:

[$ omero obj update Object:ID field=value]

where Object:ID is the type and the ID of object to update, e.g. Image:1 or PlateDatasetLink:10 and field/value is a
valid key/value pair to update for the specified object.

For example, the following command updates the existing screen of ID 2 with a name and a description:

[$ omero obj update Screen:2 name=Screen@01 description="screen description"]

3.2. Using the OMERO API 391

OMERO

Piping output

The output of each omero obj command is formatted as Object:ID so that the CLI commands can be redirected and
piped together. For example, the following set of commands creates a dataset and a project and links them together:

$ dataset=$(omero obj new Dataset name=dataset-1)
$ project=$(omero obj new Project name=project-1)
$ omero obj new ProjectDatasetLink parent=$project child=$dataset

Extensions

Plugins can be written and put in the 1ib/python/omero/plugins directory. On execution, all plugins in that direc-
tory are registered with the CLIL.

For testing purposes the --path argument can be used to point to other plugin files or directories, too.

Alternatively, plugins can be added to any directory ending with omero/plugins. If this directory is part of the
PYTHONPATH the CLI will automatically include them. An example of such a plugin is omero-cli-render.

Team-supported CLI plugins will be pip-installable. Search for “omero cli” on PyPI.

Thread-safety

The omero.cli.CLI should be considered not thread-safe. A single connection object is accessible from all plugins
via self.ctx.conn(args), and it is assumed that changes to this object will only take place in the current thread.
The CLI instance itself, however, can be passed between multiple threads, as long as only one accesses it sequentially,
possibly via locking.

See also:

Extending OMERO.server
Other extensions to OMERO

Help for any specific CLI command can be displayed using the -h argument. See Command line help for more infor-
mation.

General notes

¢ For installation notes see Installation.

* Any command can be produced by symlinking bin/omero to a file of the form “omero-command-argl-arg2”.
This is useful under /etc/rc.d to have a startup script.

* All commands respond to omero help.
See also:

Command Line Interface as an OMERQO client
User documentation on the Command Line Interface

OMERQO.cli as an OMERQO admin tool
System Administrator documentation for the Command Line Interface

392 Chapter 3. Developer Documentation

https://github.com/ome/omero-cli-render/
https://pypi.org/search/?q=omero+cli
https://pypi.org

OMERO

3.2.4 OMERO Java language bindings

Using the Ice Java language mapping from ZeroC, OMERO provides access to your data within an OMERQO.blitz server
from Java code.

All the code examples below can be found at https://github.com/ome/openmicroscopy/tree/develop/examples/Training/
java/src/training.

Writing client apps
To make use of the OMERO Java API and interact with OMERO.blitz from your code, a client application needs the
Java bindings available on the classpath.
The required . jar files can be obtained in a number of ways:
 from the OME artifactory where all available artifacts and their POM files can be searched using the Web interface

e using the OMERO. java ZIP file downloaded from the Java section of the OMERO download page. The 1libs
directory can then be used on the Java classpath (or attached to a project in Eclipse).

* following the example in minimal-omero-client. Please make sure you are using the proper branch of the repos-
itory, as that influences the versions of dependencies defined in the Maven POM file.

Extended classpath

To use the importer, you will need more jar files. To see all the current requirements, take a look at the builds on Jenkins,
or alternatively examine the dependencies in the build.gradle files (e.g. https://github.com/ome/omero-insight/
blob/master/build.gradle).

Java Gateway

The Java Gateway is a wrapper around the Ice Java language mapping and the OMERO Application Programming
Interface which makes it easier to interact with an OMERO server in Java.

The Gateway is the central object for maintaining the connection to the server, see Connect to OMERO

Functionality for interacting with the server is encapsulated into different facilities. For an example using the Browse-
Facility to access Projects, Datasets, etc. see Read data.

As the plain Ice objects can be a bit ‘bulky’ to handle, they are usually wrapped into Java DataObjects.

All the code examples below can be found at https://github.com/ome/openmicroscopy/tree/develop/examples/Training/
java/src/training.

Connect to OMERO

¢ Connect to the server. Remember to close the session.

LoginCredentials cred = new LoginCredentials(userName, password, host, port);

// Alternative using args array:

// args = new String[] { "--omero.host= '——omero.port=" + port,
// "--omero.user=" + userName, "--omero.pass=" + password };
// LoginCredentials cred = new LoginCredentials(args);

+ hostName,

(continues on next page)

3.2. Using the OMERO API 393

https://doc.zeroc.com/display/Ice/Hello+World+Application
https://zeroc.com
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/java/src/training
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/java/src/training
https://artifacts.openmicroscopy.org
https://downloads.openmicroscopy.org/latest/omero5.5/
https://github.com/ome/minimal-omero-client
https://ci.openmicroscopy.org/
https://github.com/ome/omero-insight/blob/master/build.gradle
https://github.com/ome/omero-insight/blob/master/build.gradle
https://docs.openmicroscopy.org/omero-gateway/5.8.2/javadoc/omero/gateway/Gateway.html
https://doc.zeroc.com/display/Ice/Hello+World+Application
https://docs.openmicroscopy.org/omero-gateway/5.8.2/javadoc/omero/gateway/Gateway.html
https://docs.openmicroscopy.org/omero-gateway/5.8.2/javadoc//omero/gateway/facility/package-summary.html
https://docs.openmicroscopy.org/omero-gateway/5.8.2/javadoc/omero/gateway/facility/BrowseFacility.html
https://docs.openmicroscopy.org/omero-gateway/5.8.2/javadoc/omero/gateway/facility/BrowseFacility.html
https://docs.openmicroscopy.org/omero-gateway/5.8.2/javadoc/omero/gateway/model/DataObject.html
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/java/src/training
https://github.com/ome/openmicroscopy/tree/develop/examples/Training/java/src/training

OMERO

(continued from previous page)

// If you want to join an existing session you can use the session ID as
// user name and a 'null' password:
// LoginCredentials cred = new LoginCredentials(sessionID, null, host, port);

//Create a simple Logger object which just writes
//to System.out or System.err
Logger simplelLogger = new SimpleLogger();

Gateway gateway = new Gateway(simpleLogger);
ExperimenterData user = gateway.connect(cred);

//for every subsequent call to the server you'll need the
//SecurityContext for a certain group; in this case create
//a SecurityContext for the user's default group.
SecurityContext ctx = new SecurityContext(user.getGroupId());

¢ Close connection. IMPORTANT

[gateway.disconnect();

Read data
The BrowseFacility offers methods for browsing within the data hierarchy. A list of examples follows, indicating how
to load Project, Dataset, Screen, etc.

* Retrieve the projects owned by the user currently logged in.

If a Project contains Datasets, the Datasets will automatically be loaded.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<ProjectData> projects = browse.getProjects(ctx);

Iterator<ProjectData> i = projects.iterator();
ProjectData project;
Set<DatasetData> datasets;
Iterator<DatasetData> j;
DatasetData dataset;
while (i.hasNext()) {
project = i.next();
String name = projet.getName();
long id = project.getId(Q);
datasets = project.getDatasets();
j = datasets.iterator();
while (j.hasNext()) {
dataset = j.next(Q);
// Do something here
// If images loaded.
// dataset.getImages();

* Retrieve the Datasets owned by the user currently logged in.

394 Chapter 3. Developer Documentation

OMERO

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<DatasetData> datasets = browse.getDatasets(ctx);

Iterator<DatasetData> i = datasets.iterator();
DatasetData dataset;
Set<ImageData> images;
Iterator<ImageData> j;
ImageData image;
while (i.hasNext()) {
dataset = i.next();
images = dataset.getImages();
j = images.iterator();
while (j.hasNext()) {
image = j.next(Q);
//Do something

* Retrieve the Images contained in a Dataset.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<ImageData> images = browse.getImagesForDatasets(ctx, Arrays.
—asList(datasetId));

Iterator<ImageData> j = images.iterator();
ImageData image;
while (j.hasNext()) {

image = j.next(Q);

// Do something

¢ Retrieve an Image if the identifier is known.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
ImageData image = browse.getImage(ctx, imageId);

¢ Access information about the image for example to draw it.

The model is as follows: Image-Pixels i.e. to access valuable data about the image you need to use the pixels object.
We now only support one set of pixels per image (it used to be more!).

PixelsData pixels = image.getDefaultPixels();

int sizeZ = pixels.getSizeZ(); // The number of z-sections.

int sizeT = pixels.getSizeT(); // The number of timepoints.

int sizeC = pixels.getSizeC(); // The number of channels.

int sizeX = pixels.getSizeX(); // The number of pixels along the X-axis.
int sizeY = pixels.getSizeY(); // The number of pixels along the Y-axis.

* Retrieve Screening data owned by the user currently logged in.

Note that the wells are not loaded.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<ScreenData> screens = browse.getScreens(ctx);
(continues on next page)

3.2. Using the OMERO API 395

OMERO

(continued from previous page)

Iterator<ScreenData> i = screens.iterator();
ScreenData screen;
Set<PlateData> plates;
Iterator<PlateData> j;
PlateData plate;
while (i.hasNext()) {

screen = i.next();

plates = screen.getPlates();

j = plates.iterator();

while (j.hasNext()) {

plate = j.next(Q);
}

¢ Retrieve Wells within a Plate.

Given a plate ID, load the wells.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<WellData> wells = browse.getWells(ctx, plateId);

Iterator<WellData> i = wells.iterator();
WellData well;
while (i.hasNext()) {

well = i.next(Q;

//Do something

¢ Retrieve Annotations.

Load the MapAnnotations (Key-Value pairs) for the logged-in user.

BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
ImageData image = browse.getImage(ctx, imageld);

// load only this user's annotations
List<Long> userIds = new ArrayList<Long>(Q);
userIds.add(this.user.getId());

// load only MapAnnotations

List<Class<? extends AnnotationData>> types = new ArrayList<Class<? extends.
—AnnotationData>>();

types.add(MapAnnotationData.class);

MetadataFacility metadata = gateway.getFacility(MetadataFacility.class);
List<AnnotationData> annotations = metadata.getAnnotations(ctx, image,
types, userlds);
for (AnnotationData annotation : annotations) {
MapAnnotationData mapAnnotation = (MapAnnotationData) annotation;
List<NamedValue> list = (List<NamedValue>) mapAnnotation
.getContent();
System.out.println("\nMapAnnotation ID: "+mapAnnotation.getId());

(continues on next page)

396 Chapter 3. Developer Documentation

OMERO

(continued from previous page)

for (NamedValue namedValue : list)
System.out.println(namedValue.name +

+ namedValue.value);

Raw data access

¢ Retrieve a given plane.

This is useful when you need for example the pixels intensity.

try (RawDataFacility rdf = gateway.getFacility(RawDataFacility.class)) {
PixelsData pixels = image.getDefaultPixels();
int sizeZ = pixels.getSizeZ();
int sizeT = pixels.getSizeT();
int sizeC = pixels.getSizeC(Q);

Plane2D p;
for (int z = 0; z < sizeZ; z++)
for (dnt t = 0; t < sizeT; t++)
for (int ¢ = 0; c < sizeC; c++) {
p = rdf.getPlane(ctx, pixels, z, t, c);
}

* Retrieve a given tile.

try (RawDataFacility rdf = gateway.getFacility(RawDataFacility.class)) {
PixelsData pixels = image.getDefaultPixels();
int sizeZ = pixels.getSizeZ();
int sizeT = pixels.getSizeT();
int sizeC = pixels.getSizeC(Q);
int x = 0;
int y = 0;
int width = pixels.getSizeX()/2;
int height = pixels.getSizeY()/2;
Plane2D p;
for (int z = 0; z < sizeZ; z++) {
for (int t = 0; t < sizeT; t++) {
for (int ¢ = 0; c < sizeC; c++) {
p = rdf.getTile(ctx, pixels, z, t, c, x, y, width, height);
}

* Retrieve a given stack.

This is useful when you need the pixels intensity.

PixelsData pixels = image.getDefaultPixels();
int sizeT = pixels.getSizeT();
int sizeC = pixels.getSizeC(Q);
(continues on next page)

3.2. Using the OMERO API 397

OMERO

long pixelsId = pixels.getId();
RawPixelsStorePrx store = null;
try{
store = gateway.getPixelsStore(ctx);
store.setPixelsId(pixelsId, false);
for (int t = 0; t < sizeT; t++) {
for (int ¢ = 0; c < sizeC; c++) {
byte[] plane = store.getStack(c, t);
//Do something
}
}
} finally {
store.close();

}

(continued from previous page)

* Retrieve a given hypercube.

This is useful when you need the pixels intensity.

PixelsData pixels = image.getDefaultPixels();
long pixelsId = pixels.getId();
//offset values in each dimension XYZCT
List<Integer> offset = new ArrayList<Integer>();
int n = 5;
for (dnt i = 0; 1 < n; i++) {

offset.add(i, 0);
}

List<Integer> size = new ArraylList<Integer>(Q);
size.add(pixels.getSizeX());
size.add(pixels.getSizeY());
size.add(pixels.getSizeZ());
size.add(pixels.getSizeC(Q));
size.add(pixels.getSizeT());

//indicate the step in each direction, step = 1,
//will return values at index 0, 1, 2.
//step = 2, values at index 0, 2, 4 etc.
List<Integer> step = new ArraylList<Integer>(Q);
for (dnt i = 0; 1 < n; i++) {
step.add(i, 1);
}
RawPixelsStorePrx store = null;
try {
store = gateway.getPixelsStore(ctx);
store.setPixelsId(pixelsId, false);

byte[] values = store.getHypercube(offset, size, step);

//Do something
} finally {
store.close();

}

* Retrieve a histogram.

398

Chapter 3.

Developer Documentation

OMERO

try (RawDataFacility rdf = gateway.getFacility(RawDataFacility.class)) {
PixelsData pixels = image.getDefaultPixels();
int[] channels = new int[] { 0 };
int binCount = 256;
Map<Integer, int[]> histdata = rdf.getHistogram(ctx, pixels,
channels, binCount, false, null);
int[] histogram = histdata.get(0);
//Do something with the histogram data

Write data

* Create a dataset and link it to an existing project.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

//Using IObject directly

Dataset dataset = new DatasetI();

dataset.setName (omero.rtypes.rstring('new Name 1"));
dataset.setDescription(omero.rtypes.rstring(''new description 1"));
ProjectDatasetLink link = new ProjectDatasetLinkI();
link.setChild(dataset);

link.setParent (new ProjectI(projectId, false));

IObject r = dm.saveAndReturnObject(ctx, link);

//Using the pojo

DatasetData datasetData = new DatasetData();

datasetData.setName('new Name 2");

datasetData.setDescription(''new description 2");

BrowseFacility b = gateway.getFacility(BrowseFacility.class);

ProjectData projectData = b.getProjects(ctx, Collections.singleton(projectId)).
—iterator().next(Q;
datasetData.setProjects(Collections.singleton(projectData));

DataObject r2 = dm.saveAndReturnObject(ctx, datasetData);

» Import images into a dataset.

Using the Java API directly:

String[] paths = new String[] {"/pathTo/imagel.dv", "/pathTo/image2.dv"};
ImportConfig config = new ome.formats.importer.ImportConfig(Q);

config.email.set("");
config.sendFiles.set(true);
config.sendReport.set(false);
config.contOnError.set(false);
config.debug.set(false);

config.hostname.set("localhost™);
config.port.set(4064);
config.username.set("root");
(continues on next page)

3.2. Using the OMERO API 399

OMERO

(continued from previous page)

config.password.set("omero");

// the imported image will go into 'orphaned images' unless
// you specify a particular existing dataset like this:
// config.target.set("Dataset:123");

OMEROMetadataStoreClient store;

try {
store = config.createStore(Q);
store.logVersionInfo(config.getIniVersionNumber());
OMEROWrapper reader = new OMEROWrapper(config);
ImportLibrary library = new ImportLibrary(store, reader);

ErrorHandler handler = new ErrorHandler(config);
library.addObserver(new LoggingImportMonitor());

ImportCandidates candidates = new ImportCandidates(reader, paths, handler);
reader.setMetadataOptions(new DynamicMetadataOptions(MetadatalLevel.ALL));
library.importCandidates(config, candidates);

store.logout();
} catch (Exception e) {

e.printStackTrace();

}

¢ Create a tag (tag annotation) and link it to an existing project.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

TagAnnotation tag = new TagAnnotationI();
tag.setTextValue(omero.rtypes.rstring('"'new tag 1"));
tag.setDescription(omero.rtypes.rstring('new tag 1"));

//Using the model object (recommended)
TagAnnotationData tagData = new TagAnnotationData(''new tag 2");
tagData.setTagDescription('"new tag 2");

ProjectAnnotationLink link = new ProjectAnnotationLinkI();
link.setChild(tag);

link.setParent(new ProjectI(info.getProjectId(), false));
IObject r = dm.saveAndReturnObject(ctx, link);

//With model object

link = new ProjectAnnotationLinkI();
link.setChild(tagData.asAnnotation());

link.setParent (new ProjectI(info.getProjectId(), false));
r = dm.saveAndReturnObject(ctx, link);

¢ Create a map annotation (list of key: value pairs) and link it to an existing project.

List<NamedValue> result = new ArrayList<NamedValue>();
result.add(new NamedValue('mitomycin-A", "20mM"));

(continues on next page)

400 Chapter 3. Developer Documentation

OMERO

(continued from previous page)

result.add(new NamedValue("PBS", "10mM"));

result.add(new NamedValue("incubation", "5min"));
result.add(new NamedValue('temperature", "37"));
result.add(new NamedValue("Organism", "Homo sapiens'));

MapAnnotationData data = new MapAnnotationData();

data.setContent (result);

data.setDescription('Training Example");

//Use the following namespace if you want the annotation to be editable

//in the webclient and insight
data.setNameSpace(MapAnnotationData.NS_CLIENT_CREATED);

DataManagerFacility fac = gateway.getFacility(DataManagerFacility.class);
fac.attachAnnotation(ctx, data, new ProjectData(new ProjectI(projectId, false)));

¢ Create a file annotation and link to an image.

To attach a file to an object e.g. an image, few objects need to be created:
1. anOriginalFile
2. aFileAnnotation

3. alink between the Image and the FileAnnotation.

int INC = 262144;
DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

//To retrieve the image see above.

File file = File.createTempFile("temp-file-name_", ".tmp");

String name = file.getName();

String absolutePath = file.getAbsolutePath();

String path = absolutePath.substring(0,
absolutePath.length()-name.length());

//create the original file object.

OriginalFile originalFile = new OriginalFileI();
originalFile.setName(omero.rtypes.rstring(name)) ;
originalFile.setPath(omero.rtypes.rstring(path));
originalFile.setSize(omero.rtypes.rlong(file.length()));

final ChecksumAlgorithm checksumAlgorithm = new ChecksumAlgorithmI();
checksumAlgorithm.setValue(omero.rtypes.rstring(ChecksumAlgorithmSHA1160.value));
originalFile.setHasher(checksumAlgorithm) ;
originalFile.setMimetype(omero.rtypes.rstring(fileMimeType)); // or "application/octet-
—stream"

//Now we save the originalFile object

originalFile = (OriginalFile) dm.saveAndReturnObject(ctx, originalFile);

//Initialize the service to load the raw data
RawFileStorePrx rawFileStore = gateway.getRawFileService(ctx);

long pos = 0;

int rlen;

byte[] buf = new byte[INC];
ByteBuffer bbuf;

//Open file and read stream

(continues on next page)

3.2. Using the OMERO API 401

OMERO

(continued from previous page)

try (FileInputStream stream = new FileInputStream(file)) {
rawFileStore.setFileId(originalFile.getId() .getValue());
while ((rlen = stream.read(buf)) > 0) {
rawFileStore.write(buf, pos, rlen);
pos += rlen;
bbuf = ByteBuffer.wrap(buf);
bbuf.limit(rlen);
}
originalFile = rawFileStore.save();
} finally {
rawFileStore.close();
}
//now we have an original File in DB and raw data uploaded.
//We now need to link the Original file to the image using
//the File annotation object. That's the way to do it.
FileAnnotation fa = new FileAnnotationI();
fa.setFile(originalFile);
fa.setDescription(omero.rtypes.rstring(description)); // The description set above e.g..
—PointsModel
fa.setNs(omero.rtypes.rstring (NAME_SPACE_TO_SET)); // The name space you have set to.
—identify the file annotation.

//save the file annotation.
fa = (FileAnnotation) dm.saveAndReturnObject(ctx, fa);

//now link the image and the annotation

ImageAnnotationLink link = new ImageAnnotationLinkI();
link.setChild(fa);

link.setParent(image.asImage());

//save the link back to the server.

link = (ImageAnnotationLink) dm.saveAndReturnObject(ctx, link);
// o attach to a Dataset use DatasetAnnotationLink;

¢ Load all the file annotations with a given namespace.

long userId = gateway.getLoggedInUser().getId();

List<String> nsToInclude = new ArrayList<String>Q);

nsToInclude.add (NAME_SPACE_TO_SET);

List<String> nsToExclude = new ArrayList<String>(Q);

ParametersI param = new ParametersI();

param.exp(omero.rtypes.rlong(userId)); //load the annotation for a given user.

IMetadataPrx proxy = gateway.getMetadataService(ctx);

List<Annotation> annotations = proxy.loadSpecifiedAnnotations(
FileAnnotation.class.getName(), nsToInclude, nsToExclude, param);

//Do something with annotations.

¢ Read the attachment.

First load the annotations, cf. above.

Iterator<Annotation> j = annotations.iterator();
Annotation annotation;
FileAnnotationData fa;
(continues on next page)

402 Chapter 3. Developer Documentation

OMERO

(continued from previous page)
RawFileStorePrx store = gateway.getRawFileService(ctx);
File file = File.createTempFile("temp-file-name_", ".tmp");
int index = 0;

OriginalFile of;
IQueryPrx svc = gateway.getQueryService(ctx);

try (FileOutputStream stream = new FileOutputStream(file)) {
while (j.hasNext()) {
annotation = j.next();
if (annotation instanceof FileAnnotation && index == 0) {
fa = new FileAnnotationData((FileAnnotation) annotation);
//Load the original file
of = (OriginalFile) svc.get("OriginalFile", fa.getFileID());
store.setFileId(fa.getFileID());
int offset = 0;
long size = of.getSize().getValue();
//name of the file
String fileName = of.getName().getValue();
try {
for (offset = 0; (offset+INC) < size;) {
stream.write(store.read(offset, INC));
offset += INC;

}

} finally {
stream.write(store.read(offset, (int) (size-offset)));

}

index++;

}
}
} finally {

store.close();

}
file.delete();

How to use OMERO tables

¢ Create and read a table.

In the following example, we create a table with 2 columns.

TableDataColumn[] columns = new TableDataColumn[3];

columns[0] = new TableDataColumn("ID", 0, Long.class);
columns[1] = new TableDataColumn('Name", 1, String.class);
columns[2] = new TableDataColumn("Value", 2, Double.class);

Object[][] data = new Object[3][5];

data[0] = new Long[] {11, 21, 31, 41, 51};
data[1] new String[] {"one", "two", "three", "four", "five"};
datal[2]

new Double[] {1d, 2d, 3d, 4d, 5d};

(continues on next page)

3.2. Using the OMERO API 403

OMERO

(continued from previous page)

TableData tableData = new TableData(columns, data);
TablesFacility fac = gateway.getFacility(TablesFacility.class);

// Attach the table to the image
tableData = fac.addTable(ctx, image, "My Data", tableData);

// Find the table again
Collection<FileAnnotationData> tables = fac.getAvailableTables(ctx, image);
long fileId = tables.iterator().next().getFileID();

// Request second and third column of the first three rows
TableData tableData2 = fac.getTable(ctx, fileld, 0, 2, 1, 2);

// do something, e.g. print to System.out
int nRows = tableData2.getData() [0].length;
for (int row = 0; row < nRows; row++) {
for (int col = 0; col < tableData2.getColumns().length; col++) {
Object o = tableData2.getData() [col][row];
System.out.print(o + " ["
+ tableData2.getColumns() [col].getType() + "J\t");

}
System.out.printlnQ);
}
ROIs

To learn about the model see the ROI Model documentation. Note that annotations can be linked to ROI or shape.
* Create ROL.

In this example, we create an ROI with a rectangular shape and attach it to an image.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);
ROIFacility roifac = gateway.getFacility(ROIFacility.class);

//To retrieve the image see above.

ROIData data = new ROIData();

data.setImage(image);

//Create a rectangle.

RectangleData rectangle = new RectangleData(10, 10, 10, 10);
rectangle.setZ(0);

rectangle.setT(0);

data.addShapeData(rectangle);

//Add a mask
PixelsData pixels = image.getDefaultPixels();
long pixelsId = pixels.getId();
RawPixelsStorePrx store = gateway.getPixelsStore(ctx);
try {
store.setPixelsId(pixelsId, false);
byte[] mask = store.getStack(®, 0);

(continues on next page)

404 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/latest/ome-model/developers/roi.html

OMERO

MaskData maskData = new MaskData(10, 10, 100.0,
maskData.setZ(0);
maskData.setT(0);
data.addShapeData(maskData);
} finally {
store.close();

¥

//Create an ellipse.

(continued from previous page)

100.0, mask);

EllipseData ellipse = new EllipseData(10, 10, 10, 10);
//Not setting the Z and T for this shape object, this is also allowed in the model.

//set angle of rotation
double theta = 10;
//create transform object

AffineTransformI newTform = omero.model.AffineTransformI();

newTform.setA00 (omero.rtypes.rdouble(cos(theta)));
newTform.setA10(omero.rypes.rdouble(-sin(theta)));
newTform.setA®1(omero.rypes.rdouble(sin(theta)));
newTform.setAll(omero.rypes.rdouble(cos(theta)));
newTform.setA®2 (omero.rypes.rdouble(0));
newTform.setAl2(omero.rypes.rdouble(0));

//add transform

ellipse.setTransform(newTform) ;
data.addShapeData(ellipse);

// Save ROI and shape
ROIData roiData = roifac.saveROIs(ctx, image.getId()
—next();

//now check that the shape has been added.
//Retrieve the shape on plane (z, t) = (0, 0)
List<ShapeData> shapes = roiData.getShapes(0, 0);
Iterator<ShapeData> i = shapes.iterator();
while (i.hasNext()) {
ShapeData shape = i.next();
// plane info
int z = shape.getZ();
int t = shape.getT();
long id = shape.getId(Q);
if (shape instanceof RectangleData) {
RectangleData rectData = (RectangleData) shape;
//Insert code to handle rectangle
} else if (shape instanceof EllipseData) {
EllipseData ellipseData = (EllipseData) shape;
//Insert code to handle ellipse
} else if (shape instanceof LineData) {
LineData lineData = (LineData) shape;
//Insert code to handle line
} else if (shape instanceof PointData) {
PointData pointData = (PointData) shape;
//Insert code to handle point
} else if (shape instanceof MaskData) {

, Arrays.asList(data)).iterator().

(continues on next page)

3.2. Using the OMERO API

405

OMERO

(continued from previous page)

MaskData maskDatal = (MaskData) shape;
//Insert code to handle mask

}

//Check if the shape has transform
//https://blog.openmicroscopy.org/data-model/future-plans/2016/06/20/shape-transforms/
AffineTransformI transform = shape.getTransform();

if (transform != null){

double xScaling = transform.getA00.getValue();
double xShearing = transform.getA01l.getValue(Q);
double xTranslation = transform.getA02.getValue();

double yScaling = transform.getAll.getValue(Q);
double yShearing = transform.getAl®.getValueQ);
double yTranslation = transform.getAl2.getValue();
//Insert code to handle transforms

¢ Retrieve ROISs linked to an Image.

ROIFacility roifac = gateway.getFacility(ROIFacility.class);

//Retrieve the roi linked to an image
List<ROIResult> roiresults = roifac.loadROIs(ctx, image.getId());
ROIResult r = roiresults.iterator() .next();
if (r == null) return;
Collection<ROIData> rois = r.getROIs();
List<Shape> list;
Iterator<Roi> j = rois.iterator();
while (j.hasNext()) {

roi = j.next(Q);

list = roi.copyShapes();

// Do something
}

* Remove a shape from ROIL.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);
ROIFacility roifac = gateway.getFacility(ROIFacility.class);

//Retrieve the roi linked to an image
List<ROIResult> roiresults = roifac.loadROIs(ctx, image.getId());
ROIResult r = roiresults.iterator().next();
List<Roi> rois = r.rois;
List<Shape> list;
Iterator<Roi> j = rois.iterator();
while (j.hasNext(Q)) {
roi = j.next(Q;
list = roi.copyShapes();
// remove the first shape.

(continues on next page)

406 Chapter 3. Developer Documentation

OMERO

(continued from previous page)
if (list.size() > 0) {
roi.removeShape(list.get(0));
// update the roi.
dm.saveAndReturnObject(ctx, roi).saveAndReturnObject(roi);
}
}

¢ Organize ROIs in Folders.

ROIFacility roifac = gateway.getFacility(ROIFacility.class);
Collection<ROIData> rois = ...

// Add each ROI to a different folder
for (ROIData r : rois) {
FolderData folder = new FolderData();
folder.setName("Folder for ROI " + r.getId());
roifac.addRoisToFolders(ctx, image.getId(), Arrays.asList(r),
Arrays.asList(folder));
}

// Get the ROI folders associated with an image
Collection<FolderData> folders = roifac.getROIFolders(ctx, image.getId());
for (FolderData folder : folders) {
Collection<ROIResult> result = roifac.loadROIsForFolder(ctx,
image.getId(), folder.getId());
Collection<ROIData> folderRois = result.iterator().next().getROIs();
// Do something with the ROIs

Delete data
It is possible to delete Projects, datasets, images, ROIs etc. and objects linked to them depending on the specified
options (see Deleting in OMERO).

* Delete Image.

In the following example, we create an image and delete it.

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

//First create an image.

ImageData image = new ImageData();

image.setName("imagel");
image.setDescription('descriptionImagel™);

IObject object = dm.saveAndReturnObject(ctx, image.asIObject());

Response rsp = dm.delete(ctx, object).loop(10, 500);

3.2. Using the OMERO API 407

OMERO

Render Images

* Initialize the rendering engine and render an image.

PixelsData pixels = image.getDefaultPixels();
long pixelsId = pixels.getId();
RenderingEnginePrx proxy = null;
proxy = gateway.getRenderingService(ctx, pixelsId);
ByteArrayInputStream stream = bull;
try {
proxy.lookupPixels(pixelsId);
if (!(proxy.lookupRenderingDef(pixelsId))) {
proxy.resetDefaultSettings(true);
proxy.lookupRenderingDef(pixelsId);
}
proxy.load(Q);
//Now can interact with the rendering engine.
proxy.setActive(®, Boolean.valueOf(false));
PlaneDef pDef = new PlaneDef();
pDef.z = 0;
pDef.t = 0;
pDef.slice = omero.romio.XY.value;
//render the data uncompressed.
int[] uncompressed = proxy.renderAsPackedInt(pDef);
byte[] compressed = proxy.renderCompressed(pDef);
//Create a buffered image
stream = new ByteArrayInputStream(compressed);
BufferedImage image = ImageIO.read(stream);

} finally {

proxy.close();

if (stream != null) stream.close();
3

¢ Retrieve thumbnails.

ThumbnailStorePrx store = gateway.getThumbnailService(ctx);
ByteArrayInputStream stream = null;
try {
PixelsData pixels = image.getDefaultPixels();
store.setPixelsId(pixels.getId())
//retrieve a 96x96 thumbnail.
byte[] array = store.getThumbnail(
omero.rtypes.rint(96), omero.rtypes.rint(96));
stream = new ByteArrayInputStream(array);
//Create a buffered image to display
ImageIO.read(stream);

} finally {

store.close();

if (stream != null) stream.close();
}

408 Chapter 3. Developer Documentation

OMERO

Create Image

The following example shows how to create an Image from an Image already in OMERO. Similar approach can be
applied when uploading an image.

//See above how to load an image.

PixelsData pixels = image.getDefaultPixels();
int sizeZ = pixels.getSizeZ();

int sizeT = pixels.getSizeT();

int sizeC = pixels.getSizeC(Q);

int sizeX = pixels.getSizeX();

int sizeY = pixels.getSizeY();

long pixelsId = pixels.getId();

//Read the pixels from the source image.
RawPixelsStorePrx store = gateway.getPixelsStore(ctx);
try{

store.setPixelsId(pixelsId, false);

List<byte[]> planes = new ArrayList<byte[]>Q);

for (int z = 0; z < sizeZ; z++) {

for (int t = 0; t < sizeT; t++) {
planes.add(store.getPlane(z, 0, t));

}

}

} finally {
//Better to close to free space.
store.close();

¥

//Now we are going to create the new image.
IPixelsPrx proxy = gateway.getPixelsService(ctx);

//Search for PixelsType object matching the source image.
List<IObject> 1 = proxy.getAllEnumerations(PixelsType.class.getName());
Iterator<IObject> i = l.iterator();
PixelsType type = null;
String original = pixels.getPixelType();
while (i.hasNext()) {
PixelsType o = (PixelsType) i.next();
String value = o.getValue().getValue();
if (value.equals(original)) {
type = 0;
break;
}
}
if (type == null)
throw new Exception("Pixels Type not valid.");

//Create new image.

String name = "newImageFrom"+image.getId();

RLong idNew = proxy.createlmage(sizeX, sizeY, sizeZ, sizeT, Arrays.asList(0), type, name,
(continues on next page)

3.2. Using the OMERO API 409

OMERO

(continued from previous page)

"From Image ID: "+image.getId());
if (idNew == null)
throw new Exception("New image could not be created.");
IContainerPrx proxyCS = entryUnencrypted.getContainerService();
List<Image> results = proxyCS.getImages(Image.class.getName(),
Arrays.asList(idNew.getValue()), new ParametersI());
ImageData newImage = new ImageData(results.get(0));

//Link the new image and the dataset hosting the source image.
DatasetImagelLink link = new DatasetImageLinkI();
link.setParent (new DatasetI(datasetId, false));
link.setChild(new ImageI(newImage.getId(), false));
gateway.getUpdateService(ctx) .saveAndReturnObject(link);

//Write the data.
try {
store = gateway.getPixelsStore(ctx);
store.setPixelsId(newImage.getDefaultPixels().getId(), false);
int index = 0;
for (int z = 0; z < sizeZ; z++) {
for (int t = 0; t < sizeT; t++) {
store.setPlane(planes.get(index++), z, 0, t);
}
}

//Save the data.
store.save();

} finally {
store.close();

}

Sudo (working within another user’s context)

The next code snippet shows how you can work within another user’s context. This could for example be a data analyst
doing some analysis on behalf of a user and attaching the results to the user’s data. The important point is that the user
will be the owner of these results and can work with them as usual. The user and ‘analyst” do not have to be member
of a read-annotate group (see OMERO permissions querying, usage and history), but the ‘analyst’ has to be a ‘light
administrator’ with ‘sudo’ permission, see The server’s view of administrator restrictions.

AdminFacility admin = gateway.getFacility(AdminFacility.class);

// Look up the experimenter to sudo for
ExperimenterData sudoUser = admin.lookupExperimenter(ctx, sudoUsername) ;

// Create a SecurityContext for this user within the user's default group
// and set the 'sudo' flag (i.e. all operations using this context will
// be performed as this user)

SecurityContext sudoCtx = new SecurityContext(sudoUser.getGroupId());
sudoCtx.setExperimenter (sudoUser) ;

sudoCtx.sudo();

(continues on next page)

410 Chapter 3. Developer Documentation

OMERO

(continued from previous page)

// Get a sudouser's dataset (assume the user has at least one dataset)
BrowseFacility browse = gateway.getFacility(BrowseFacility.class);
Collection<DatasetData> datasets = browse.getDatasets(sudoCtx, sudoUser.getId());
DatasetData sudoDataset = datasets.iterator().next();

// Add a tag to the dataset on behalf of the sudouser (i.e. the sudouser will be

// the owner of tag).

DataManagerFacility dm = gateway.getFacility(DataManagerFacility.class);

TagAnnotationData sudoUserTag = new TagAnnotationData(sudoUsername+"'s tag");

dm.attachAnnotation(sudoCtx, sudoUserTag, sudoDataset);

System.out.println("Added '"+sudoUserTag.getContentAsString()+
+ "to dataset "+sudoDataset.getName()+" on behalf of "+sudoUsername);

nr o

// Add a tag to the same dataset as logged in user (i. e. the logged in user will be

// the owner of the tag). Note: This only works in a read-annotate group where the

// logged in user is allowed to annotate the sudouser's data, or the logged in user has
// write permission.

TagAnnotationData adminTag = new TagAnnotationData(user.getUserName()+"'s tag");

// Have to use a SecurityContext for the correct group, otherwise this would fail

// with a security violation

SecurityContext groupContext = new SecurityContext(sudoUser.getGroupId());
dm.attachAnnotation(groupContext, adminTag, sudoDataset);
System.out.println("Added '"+adminTag.getContentAsString()+

+ to dataset "+sudoDataset.getName()+" as admin.");

Further information

For the details behind writing, configuring, and executing a client, please see Working with OMERO.

See also:

ZeroC, OMERO.grid, OmeroTools, OMERQO Application Programming Interface

3.2.5 OMERO MATLAB language bindings

See Developing OMERO clients and OME-Remote Objects, for an introduction to Object.

Installing the OMERO.matlab toolbox

* Download the latest released version from the Downloads page.
* Unzip the directory anywhere on your system.
* In MATLAB, move to the newly unzipped directory and run loadOmero;.

* The MATLAB files are now on your path, and the necessary jars are on your Java classpath. You can change
directories and still have access to OMERO.

Once OMERO.matlab is installed, the typical workflow is:

1. Creating a connection

3.2. Using the OMERO API 411

https://zeroc.com
https://www.openmicroscopy.org/omero/downloads/

OMERO

2. Keeping your session alive

3. Creating an unencrypted session (optional)

4. Do some work (load objects, work with them, upload to the server, etc.)
5. Closing your connection

6. Unloading OMERO (optional)

As a quickstart example, the following lines create a secure connection to a server, read a series of images and close
the connection.

client = loadOmero(servername);

session = client.createSession(user, password);
client.enableKeepAlive(60);

images = getImages(session, ids);
client.closeSession();

Examples of usage of the OMERO.matlab toolbox are provided in the training examples directory.

Configuring the OMERO.matlab connection

Creating a connection

As described under Working with OMERQO, there are several ways to configure your connection to an OMERO server.
OMERO.matlab comes with a few conveniences for making this work.

If you run client = loadOmero(); (i.e. loadOmero without an input argument), then OMERO.matlab will try to
configure the omero.client object for you. First, it checks the ICE_CONFIG environment variable. If set, it will let
the omero.client constructor initialize itself. Otherwise, it looks for the file ice.config in the current directory.
The OMERO.matlab toolbox comes with a default ice.config file pointing at localhost. To use this configuration
file, you should replace localhost by your server address.

Alternatively, you can pass the server address to 1oadOmero; to create a client:

[>> client = loadOmero(servername);

Or, if you want a session created directly using the configuration ice.config file:

[>> [client, session] = loadOmero('ice.config');

This is equivalent to:

>> client = loadOmero(servername, port);
>> session = client.createSession(username, password)

where the variables servername, port, username and password are the values set in ice.config for the previous
example. The default port will be used if not specified.

412 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/tree/v5.5.6/examples

OMERO

Keeping your session alive

For executing any long running task, you will need a background thread which keeps your session alive. If you are
familiar with MATLAB Timers you can use omeroKeepAlive.m directly or modify it to your liking. By default the
function creates a default 60-second timer.

>> [client, session] = loadOmero('ice.config');

>> timer = omeroKeepAlive(client); % Create timer and starts it.
>> ...

>> delete(timer); % Disable the keep-alive

Alternatively, you can use the Java-based enableKeepAlive method, but it is not configurable from within MATLAB.
In that case, you will need to specify the time interval:

client.enableKeepAlive(60); % Call session.keepAlive() every 60 seconds
client.closeSession(); % Close session to end the keep-alive

Working in a different group

Each session is created within a given context, defining not only the session user but also the session group. The session
context can be retrieved using the administration service:

eventContext = session.getAdminService().getEventContext();
groupId = eventContext.groupld;

Most read and write operations described below are performed in the context of the session group when using the default
parameters. Since OMERO 5.1.4, it is possible to specify a different context than the session group for reading and
writing data using the group parameter/key value in the OMERO.matlab functions. Retrieving objects by identifiers
is also done across all groups by default.

See also:

OMERQO permissions querying, usage and history
Developer documentation about the OMERO permissions system

Creating an unencrypted session

Once a session has been created, if you want to speed up the data transfer, you can create and use an unencrypted
session as:

unsecureClient = client.createClient(false);
sessionUnencrypted = unsecureClient.getSession();

3.2. Using the OMERO API 413

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/omeroKeepAlive.m

OMERO

Closing your connection

When you are done with OMERO, it is critical that you close your connection to save resources:

client.closeSession();
clear client;
clear session;

If you created an unencrypted session, you will need to close the unsecure session as well:

client.closeSession();
unsecureClient.closeSession();
clear client;

clear unsecureClient;

clear session;

clear sessionUnencrypted;

Unloading OMERO

Then if you would like, you can unload OMERO as well:

[unloadOmero();

You may see the following warning when unloading OMERO:

>> unloadOmero()
Warning: Objects of omero/client class exist - not clearing java
> In javaclasspath>doclear at 377

In javaclasspath>local_javapath at 194

In javaclasspath at 105

In javarmpath at 48

In unloadOmero at 75

While unloading OMERO, found java objects left in workspace.
Please remove with 'clear <name>' and then run 'unloadOmero'
again. Printing all objects...

Name Size Bytes C(lass Attributes
C 1x1 omero.client

Closing session(s) for 1 found client(s): c

This means that there is still an OMERO.matlab object in your workspace. If not listed, use whos to find such objects,
and clear to remove them. After that, run unloadOmero () again:

>> clear c
>> unloadOmero ()

414 Chapter 3. Developer Documentation

OMERO

Warning: You should also unload OMERO before installing a new version of OMERO.matlab or calling
loadOmero again.

If you need to create another session without unloading/loading OMERO again, use the omero.client object directly:

>> client loadOmero(servername,port) ;
>> client = omero.client(username_1, password_1);
>> session = c.createSession();

Reading data
The IContainer service provides methods to load the data management hierarchy in OMERO - projects, datasets,
etc.. A list of examples follows indicating how to load projects, datasets, screens.

* Projects

The projects owned by the session user in the context of the session group can be retrieved using the getProjects function:

[projects = getProjects(session)]

If the project identifiers are known, they can be retrieved independently of their owner or group using:

[projects = getProjects(session, ids)]

If the projects contain datasets, the datasets will automatically be loaded:

for j = 1 : numel(projects) % MATLAB list, index starts at 1
% Get all the datasets in the Project
datasetsList = projects(j).linkedDatasetList; % Java List
% convert it to a MATLAB list for convenience
datasets = toMatlabList(datasetsList);
% Iterate through datasets
for i = 1 : numel(datasets)
d = datasets(i);
end
end

If the datasets contain images, the images are not automatically loaded. To load the whole graph (projects, datasets,
images), pass frue as an optional argument:

% Load the specified Projects and the whole graph
loadedProjects = getProjects(session, ids, true)

% Get the first project

project_1 = loadedProjects(l) % MATLAB array, index starts at 1
% Get all the datasets in the Project

datasets = project_1.linkedDatasetList;

% Get the first dataset in the Java list, index starts at 0
dataset_1 = datasets.get(0);

dataset_name = dataset_1l.getName().getValue(); % dataset's name
dataset_id = dataset_l.getId().getValue(); % dataset's id

% Retrieve all the images in the datasets as a Java List (index will start at 0)
imagelList = dataset_1l.linkedImagelList;

% convert it to a MATLAB list for convenience

(continues on next page)

3.2. Using the OMERO API 415

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/getProjects.m

OMERO

(continued from previous page)

images = toMatlabList(imageList);
% Iterate through the images
for i = 1 : numel(images)

image = images(i);

image_name = image.getName().getValue(); % image's name

image_id = image.getId().getValue(); % image's id
end

Warning: Loading the entire projects/datasets/images graph can be time-consuming and memory-consuming
depending on the amount of data.

To return the orphaned datasets i.e. datasets not in a project, as well as the projects, you can query the second output
argument of getProjects:

[[projects, orphanedDatasets] = getProjects(session)]

To filter projects by owner, use the owner parameter/key value. A value of -1 means projects are retrieved indepen-
dently of their owner:

% Returns all projects owned by the specified user in the context of the
% session group

projects = getProjects(session, 'owner', ownerId);

% Returns all projects with the input identifiers owned by the specified
% user

projects = getProjects(session, ids, 'owner', ownerId);

% Returns all projects owned by any user in the context of the session
% group

projects = getProjects(session, 'owner', -1);

To filter projects by group, use the group parameter/key value. A value of -1 means projects are retrieved independently
of their group:

% Returns all projects owned by the session user in the specified group
projects = getProjects(session, 'group', groupId);

% Returns all projects with the input identifiers in the specified group
projects = getProjects(session, ids, 'group', groupId);

% Returns all projects owned by the session user across groups

projects = getProjects(session, 'group', -1);

¢ Datasets

The datasets owned by the session user in the context of the session group can be retrieved using the getDatasets
function:

[datasets = getDatasets(session)]

If the dataset identifiers are known, they can be retrieved independently of their owner or group using:

[datasets = getDatasets(session, ids)]

If the datasets contain images, the images are not automatically loaded. To load the whole graph (datasets, images),
pass true as an optional argument:

416 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/getProjects.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/getDatasets.m

OMERO

loadedDatasets = getDatasets(session, ids, true);

% Get the first dataset

dataset_1 = loadedDatasets(1); % MATLAB array, index starts at 1

% Get the all the images in the dataset as the Java list, index starts at 0
imagelList = dataset_1l.linkedImageList;

To filter datasets by owner, use the owner parameter/key value. A value of -1 means datasets are retrieved indepen-
dently of their owner:

% Returns all datasets owned by the specified user in the context of the
% session group

datasets = getDatasets(session, 'owner', ownerId);

% Returns all datasets with the input identifiers owned by the specified
% user

datasets = getDatasets(session, ids, 'owner', ownerId);

% Returns all datasets owned by any user in the context of the session
% group

datasets = getDatasets(session, 'owner', -1);

To filter datasets by group, use the group parameter/key value. A value of -1 means datasets are retrieved independently
of their group:

% Returns all datasets owned by the session user in the specified group
datasets = getDatasets(session, 'group', groupId);

% Returns all datasets with the input identifiers in the specified group
datasets = getDatasets(session, ids, 'group', groupId);

% Returns all datasets owned by the session user across groups

datasets = getDatasets(session, 'group', -1);

* Images

The images owned by the session user in the context of the session group can be retrieved using the getimages function:

[images = getImages(session)]

If the image identifiers are known, they can be retrieved independently of their owner or group using:

[images = getImages(session, ids)]

All the images contained in a subset of datasets of known identifiers datasetsIds can be returned independently of
their owner or group using:

[datasetImages = getImages(session, 'dataset', datasetsIds) }

All the images contained in all the datasets under a subset of projects of known identifiers projectIds can be returned
independently of their owner or group using:

[projectlmages = getImages(session, 'project', projectIds)]

To filter images by owner, use the owner parameter/key value. A value of -1 means images are retrieved independently
of their owner:

% Returns all images owned by the specified user in the context of the
% session group
images = getImages(session, 'owner', ownerId);
(continues on next page)

3.2. Using the OMERO API 417

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/getImages.m

OMERO

(continued from previous page)
% Returns all images with the input identifiers owned by the specified user
images = getImages(session, ids, 'owner', ownerId);
% Returns all images owned by any user in the context of the session
% group
images = getImages(session, 'owner', -1);

To filter images by group, use the group parameter/key value. A value of -1 means images are retrieved independently
of their group:

% Returns all images owned by the session user in the specified group
images = getImages(session, 'group', groupld);

% Returns all images with the input identifiers in the specified group
images = getImages(session, ids, 'group', groupIld);

% Returns all images owned by the session user across groups

images = getImages(session, 'group', -1);

The Image-Pixels model (see OME-Remote Objects) implies you need to use the Pixels objects to access valuable
data about the Image:

pixels = image.getPrimaryPixels();
sizeZ = pixels.getSizeZ() .getValue(); % The number of z-sections.

sizeT = pixels.getSizeT().getValue(); % The number of timepoints.
sizeC = pixels.getSizeC().getValue(); % The number of channels.
sizeX = pixels.getSizeX().getValue(); % The number of pixels along the X-axis.

sizeY = pixels.getSizeY().getValue(); % The number of pixels along the Y-axis.

¢ Screens

The screens owned by the session user in the context of the session group can be retrieved using the getScreens function:

[screens = getScreens(session) J

If the screen identifiers are known, they can be retrieved independently of their owner or group using:

[screens = getScreens(session, ids)]

Note that the wells are not loaded. The plate objects can be accessed using:

for j = 1 : numel(screens), % MATLAB array, index start at 1
platesList = screens(j).linkedPlatelist; % Java List, index start at 0
for i = 0 : platesList.size()-1,
plate = platesList.get(i);
plateAcquisitionList = plate.copyPlateAcquisitions(); % Java List
for k = 0 : plateAcquisitionList.size()-1,
pa = plateAcquisitionlList.get(i);
end
end

To return the orphaned plates as well as the screens, you can query the second output argument of getScreens:

[[screens, orphanedPlates] = getScreens(session)]

To filter screens by owner, use the owner parameter/key value. A value of -1 means screens are retrieved independently
of their owner:

418 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/getScreens.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/getScreens.m

OMERO

% Returns all screens owned by the specified user in the context of the
% session group

screens = getScreens(session, 'owner', ownerId);

% Returns all screens with the input identifiers owned by the specified
% user

screens = getScreens(session, ids, 'owner', ownerId);

% Returns all screens owned by any user in the context of the session
% group

screens = getScreens(session, 'owner', -1);

To filter screens by group, use the group parameter/key value. A value of -1 means screens are retrieved independently
of their group:

% Returns all screens owned by the session user in the specified group
screens = getScreens(session, 'group', groupId);

% Returns all screens with the input identifiers in the specified group
screens = getScreens(session, ids, 'group', groupld);

% Returns all screens owned by the session user across groups

screens = getScreens(session, 'group', -1);

¢ Plates

The screens owned by the session user in the context of the session group can be retrieved using the getPlates function:

[plates = getPlates(session)]

If the plate identifiers are known, they can be retrieved independently of their owner or group using:

[plates = getPlates(session, ids)]

To filter plates by owner, use the owner parameter/key value. A value of -1 means plates are retrieved independently
of their owner:

% Returns all plates owned by the specified user in the context of the

% session group

plates = getPlates(session, 'owner', ownerId);

% Returns all plates with the input identifiers owned by the specified user
plates = getPlates(session, ids, 'owner', ownerId);

% Returns all plates owned by any user in the context of the session

% group

plates = getPlates(session, 'owner', -1);

To filter plates by group, use the group parameter/key value. A value of -1 means plates are retrieved independently
of their group:

% Returns all plates owned by the session user in the specified group
plates = getPlates(session, 'group', groupld);

% Returns all plates with the input identifiers in the specified group
plates = getPlates(session, ids, 'group', groupId);

% Returns all plates owned by the session user across groups

plates = getPlates(session, 'group', -1);

e Wells

Given a plate identifier, the wells can be loaded using the £indA11ByQuery method:

3.2. Using the OMERO API 419

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/getPlates.m

OMERO

welllList = session.getQueryService().findA11ByQuery(
['select well from Well as well '...
'left outer join fetch well.plate as pt
'left outer join fetch well.wellSamples as ws
'left outer join fetch ws.plateAcquisition as pa
'left outer join fetch ws.image as img '
'left outer join fetch img.pixels as pix '
'left outer join fetch pix.pixelsType as pt
'where well.plate.id = ', num2str(plateId)], []1);
% wellList is a Java List, index starts at 0
for j = 0 : wellList.size()-1,
well = wellList.get(j);
wellsSampleList = well.copyWellSamples();
well.getId() .getValue()
% The welllList returned from the server is not sorted by welllds,
% please extract the wellRow and wellColumn for every well,
% to populate your results appropriately
wellRow = well.getRow().getValue(Q);
wellColumn = well.getColumn().getValue(Q);
for i = 0 : wellsSampleList.size()-1,
ws = wellsSampleList.get(i);
ws.getId().getValue()
pa = ws.getPlateAcquisition();

end
end

¢ Channel

A channel associated to an image has an object called a logicalChannel associated to it. That entity contains valuable
information e.g. emission wavelength, name, etc. Given an Image, retrieve channels associated to an image on the
OMERO server and the name of the channel:

channels = loadChannels(session, image);
for j = 1 : numel(channels) % MATLAB array
channel = channels(j);
channelId = channel.getId().getValue();
lc = channel.getLogicalChannel();
channelName = lc.getName().getValue();
end

Raw data access
You can retrieve data, plane by plane or retrieve a stack. The values are zin [0, sizeZ - 1],cin [0, sizeC - 1]
and tin [0, sizeT - 1].

¢ Plane

The plane of an input image at coordinates (z, c, t) can be retrieved using the getPlane function:

{plane = getPlane(session, image, z, c, t);

Alternatively, the image identifier can be passed to the function:

420 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/image/getPlane.m

OMERO

[plane = getPlane(session, imageld, z, c, t);

* Tile

The tile of an input image at coordinates (z, c, t) originated at (x, y) (where x in [0, sizeX - 1],y in [0,
sizeY - 1]) and of dimensions (w, h) can be retrieved using the getTile function:

[tile = getTile(session, image, z, c, t, X, y, w, h);

Alternatively, the image identifier can be passed to the function:

[tile = getTile(session, imageld, z, c, t, x, y, w, h);

e Stack

The stack of an input image at coordinates (c, t) can be retrieved using the getStack function:

[stack = getStack(session, image, c, t);

Alternatively, the image identifier can be passed to the function:

[stack = getStack(session, imageld, c, t);

All the methods described above will internally initialize a raw pixels store to retrieve the pixels data and close this
store at the end of the call. This is inefficient when multiple planes/tiles/stacks need to be retrieved. For each function,
it is possible to initialize a pixels store and pass this store directly to the pixel retrieval function, e.g.:

[store, pixels] = getRawPixelsStore(session, image);
for z = 0 : sizeZ - 1
for c = 0 : sizeC - 1
for t = 0 : sizeT - 1
plane = getPlane(pixels, store, z, c, t);
end
end
end
store.close();

* Hypercube

This is useful when you need the Pixels intensity.

% Create the store to load the stack. No access via the gateway
store = session.createRawPixelsStore();

% Indicate the pixels set you are working on
store.setPixelsId(pixelsId, false);

% Offset values in each dimension XYZCT
offset = java.util.Arraylist;
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));
offset.add(java.lang.Integer(0));

size = java.util.ArrayList;

(continues on next page)

3.2. Using the OMERO API 421

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/image/getTile.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/image/getStack.m

OMERO

step

step

size.
size.
size.
size.
size.

step.
step.
step.
.add(java
step.
% Retrieve the data
store.getHypercube(offset, size, step);
% Close the store

store.close();

add(java
add(java
add(java
add(java
add(java

(continued from previous page)

.lang.Integer(sizeX));
.lang.Integer(sizeY));
.lang.Integer(sizeZ));
.lang.Integer(sizeC));
.lang.Integer(sizeT));

% Indicate the step in each direction,
% step = 1, will return values at index 0, 1, 2.
% step = 2, values at index 0, 2, 4, etc.

= java.util.ArrayList;

.lang.Integer(1));
.lang.Integer(1));
.lang.Integer(1));
.lang.Integer(1));
.lang.Integer(1));

add(java
add(java
add(java

add(java

See also:

RawDataAccess.m

Annotations

Example script showing methods to retrieve the pixel data from an image

* Reading annotations by ID

If the identifier of the annotation of a given type is known, the annotation can be retrieved from the server using the
generic getAnnotations function:

[tagAnnotations =

getAnnotations(session, 'tag', taglds);

Shortcut functions are available for the main object and annotation types, e.g. to retrieve tag annotations:

[tagAnnotations =

getTagAnnotations(session, tagIds);

¢ Reading annotations linked to an object

The annotations of a given type linked to a given object can be retrieved using the generic getObjectAnnotations
function:

[tagAnnotations =

getObjectAnnotations(session, 'tag', 'image', imageIlds);

J

Shortcut functions are available for the main object and annotation types, e.g. to retrieve the tag annotations linked to
images:

[tagAnnotations =

getImageTagAnnotations(session, imagelds);

)

Annotations can be filtered by namespace. To include only annotations with a given namespace ns, use the include
parameter/key value:

422

Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.6/examples/RawDataAccess.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/annotations/getAnnotations.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/annotations/getObjectAnnotations.m

OMERO

[tagAn.notations = getImageTagAnnotations(session, imagelds, 'include', ns); J

To exclude all annotations with a given namespace ns, use the exclude parameter/key value:

{tagAn.notations = getImageTagAnnotations(session, imagelds, 'exclude', ns); J

By default, only the annotations owned by the session owner are returned. To specify the owner of the annotations, use
the owner paramter/key value pair. For instance to return all tag annotations owned by user with an identifier equals
to 5:

[tagAn.notations = getImageTagAnnotations(session, imagelds, 'owner', 5);]

To retrieve all annotations independently of their owner, use -1 as the owner identifier:

[tagAn.notations = getImageTagAnnotations(session, imageIlds, 'owner', -1); J

* Reading file annotations

The content of a file annotation can be downloaded to local disk using the getFileAnnotationContent function. If the
file annotation has been retrieved from the server as fileAnnotation, then the content of its OriginalFile can be
downloaded under target_file using:

[getFileAnnotationContent(session, fileAnnotation, target_file);]

Alternatively, if only the identifier of the file annotation faId is known:

[getFileAnnotationContent(session, fald, target_file);]

* Writing and linking annotations

New annotations can be created using the corresponding write*Annotation function:

% Create a comment annotation

commentAnnotation = writeCommentAnnotation(session, 'comment');
% Create a double annotation

doubleAnnotation = writeDoubleAnnotation(session, .5);

% Create a map annotation

mapAnnotation = writeMapAnnotation(session, 'key', value);

% Create a tag annotation

tagAnnotation = writeTagAnnotation(session, 'tag name');

% Create a timestamp annotation

timestampAnnotation = writeTimestampAnnotation(session, now);
% Create an XML annotation

xmlAnnotation = writeXmlAnnotation(session, xmlString);

File annotations can also be created from the content of a local_file_path:

[fileAnnotation = writeFileAnnotation(session, local_file_path);]

Each annotation creation function uses the context of the session group by default. To create the annotation in a different
group, use the group key/value pair:

commentAnnotation = writeCommentAnnotation(session, 'comment', 'group', groupId);
doubleAnnotation = writeDoubleAnnotation(session, .5, 'group', groupId);
mapAnnotation = writeMapAnnotation(session, 'key', value, 'group', groupId);

(continues on next page)

3.2. Using the OMERO API 423

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/annotations/getFileAnnotationContent.m

OMERO

(continued from previous page)

tagAnnotation = writeTagAnnotation(session, 'tag name', 'group', groupld);
timestampAnnotation = writeTimestampAnnotation(session, now, 'group', groupld);
xmlAnnotation = writeXmlAnnotation(session, xmlString, 'group', groupId);
fileAnnotation = writeFileAnnotation(session, local_file_path, 'group', groupId);

Existing annotations can be linked to existing objects on the server using the link Annotation function. For example, to
link a tag annotation and a file annotation to the image image_id:

link1l
link2

linkAnnotation(session, tagAnnotation, 'image', imageld);
linkAnnotation(session, fileAnnotation, 'image', imageId);

For existing file annotations, it is possible to replace the content of the original file without having to recreate a new
file annotation using the updateFileAnnotation function. If the file annotation has been retrieved from the server as
fileAnnotation, then the content of its OriginalFile can be replaced by the content of local_file_path using:

[updateFileAnnotation(session, fileAnnotation, local_file_path);

See also:

WriteData.m
Example script showing methods to write, link and retrieve annotations.

Writing data

¢ Projects/Datasets

Projects and datasets can be created in the context of the session group using the createProject and createDataset
functions:

% Create a new project in the context of the session group
newproject = createProject(session, 'project name');
% Create a new dataset in the context of the session group
newdataset = createDataset(session, 'dataset name');

Writing projects/datasets in a different context than the session group can be achieved by passing the group identifier
using the group parameter:

% Create a new project in the specified group

newproject = createProject(session, 'project name', 'group', groupld);
% Create a new dataset in the specified group
newdataset = createDataset(session, 'dataset name', 'group', groupld);

When creating a dataset, it is possible to link it to an existing project using either the project object or its identifier. In
this case, the group context is determined by the parent project:

% Create two new projects in different groups

projectl = createProject(session, 'project name');

project2 = createProject(session, 'project name', 'group', groupId);

% Create new datasets linked to each project

datasetl = createDataset(session, 'dataset name', projectl);

dataset2 = createDataset(session, 'dataset name', project2.getId().getValue());

¢ Screens/Plates

Screens and plates can be created in the context of the session group using the createScreen and createPlate functions:

424 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/annotations/linkAnnotation.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/annotations/updateFileAnnotation.m
https://github.com/ome/omero-matlab/blob/v5.5.6/examples/WriteData.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/createProject.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/createDataset.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/createScreen.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/io/createPlate.m

OMERO

% Create a new screen in the context of the session group
newscreen = createScreen(session, 'screen name');

% Create a new plate in the context of the session group
newplate = createPlate(session, 'plate name');

Writing screens/plates in a different context than the session group can be achieved by passing the group identifier using
the group parameter:

% Create a new screen in the specified group

newscreen = createScreen(session, 'screen name', 'group', groupId);
% Create a new plate in the specified group
newplate = createPlate(session, 'plate name', 'group', groupld);

When creating a plate, it is possible to link it to an existing screen using either the screen object or its identifier. In this
case, the group context is determined by the parent screen:

% Create two new projects in different groups

screenl = createScreen(session, 'screen name');

screen2 = createScreen(session, 'screen name', 'group', groupld);

% Create new datasets linked to each project

platel = createPlate(session, 'plate name', screenl);

plate2 = createPlate(session, 'plate name', screen2.getId().getValue());

See also:

WriteData.m
Example script showing methods to create projects, datasets, plates and screens.

How to use OMERO tables

* Create a table. In the following example, a table is created with 2 columns and is linked to an Image.

name = char(java.util.UUID.randomUUID());
columns = javaArray('omero.grid.Column', 2);
columns(1l) = omero.grid.LongColumn('Uid', 'testLong', []1);
valuesString = javaArray('java.lang.String', 1);
columns(2) = omero.grid.StringColumn('MyStringColumn',

, 64, valuesString);

% Create a new table.
table = session.sharedResources() .newTable(l, name);

% Initialize the table
table.initialize(columns);

% Create and populate omero.grid (The following java wrapping logic is compatible.
—Matlab2®14b onwards)

data = javaArray('omero.grid.Column', 2);

data(l) = omero.grid.LongColumn('Uid', 'test Long', [2]);

valuesString = javaArray('java.lang.String', 1);
valuesString(l) = java.lang.String('add');

data(2) = omero.grid.StringColumn('MyStringColumn’,

, 64, valuesString);

% Add data to the table.

(continues on next page)

3.2. Using the OMERO API 425

https://github.com/ome/omero-matlab/blob/v5.5.6/examples/WriteData.m

OMERO

(continued from previous page)

table.addData(data);
file = table.getOriginalFile(); % if you need to interact with the table

% link table to an Image

fa = omero.model.FileAnnotationI;

fa.setFile(file);

% Currently OMERO.tables are displayed only in OMERO.web and

% for Screen/plate/wells alone. In all cases the file annotation

% needs to contain a namespace.
fa.setNs(rstring(omero.constants.namespaces.NSBULKANNOTATIONS.value));
link = linkAnnotation(session, fa, 'image', imageld);

¢ Read the contents of the table.

of = omero.model.OriginalFileI(file.getId(), false);
tablePrx = session.sharedResources().openTable(of);

% Read headers

headers = tablePrx.getHeaders();

for i = 1 : sizeCheaders, 1)
headers(i) .name; % name of the header
% Do something

end

% Depending on the size of table, you may only want to read some blocks.
cols = [0:sizeCheaders, 1)-1]; % The number of columns you wish to read.
rows = [0:tablePrx.getNumberOfRows()-1]; % The number of rows you wish to read.
data = tablePrx.slice(cols, rows); % Read the data.
c = data.columns;
for i = 1 : size(c)
column = c(i);
% Do something

end
tablePrx.close(); % Important to close when done.

ROIs

To learn about the model, see the developers guide to the ROI model. Note that annotations can be linked to ROIL.
* Creating ROI

This example creates a ROI with shapes, a rectangle, an ellipse and a polygon, and attaches it to an image:

% First create a rectangular shape.

rectangle = createRectangle(®, 0, 10, 20);

% Indicate on which plane (z, c, t) to attach the shape
setShapeCoordinates(rectangle, 0, 0, 0);

% First create an ellipse shape.

ellipse = createEllipse(®, 0, 10, 20);

% Indicate on which plane (z, c, t) to attach the shape
setShapeCoordinates(ellipse, 0, 0, 0);

(continues on next page)

426 Chapter 3. Developer Documentation

https://docs.openmicroscopy.org/latest/ome-model/developers/roi.html

OMERO

% First create a polygon shape.

% Specify x-coordinates, y-coordinates

polygon = createPolygon([1 5 10 8], [1 5 5 10]);

% Indicate on which plane (z, c, t) to attach the shape
setShapeCoordinates(polygon, 0, 0, 0);

% Create the roi.
roi = omero.model.Roil;

% Attach the shapes to the roi, several shapes can be added.

roi.addShape(rectangle);
roi.addShape(ellipse);
roi.addShape(polygon) ;

% Link the roi and the image
roi.setImage(omero.model.Imagel(imageld, false));
% Save
iUpdate = session.getUpdateService();
roi = iUpdate.saveAndReturnObject(roi);
% Check that the shape has been added.
numShapes = roi.sizeOfShapes;
for ns = 1 : numShapes
shape = roi.getShape(ns-1);
end

(continued from previous page)

See also:

ROI utility functions

OMERO.matlab functions for creating and managing Shape and ROI objects.

* Retrieving ROIs linked to an image

service = session.getRoiService();
roiResult = service.findByImage(imageId, []);
rois = roiResult.rois;
n = rois.size;
shapeType = '';
for thisROI =1 : n
roi = rois.get(thisROI-1);
numShapes = roi.sizeOfShapes;
for ns = 1 : numShapes
shape = roi.getShape(ns-1);
if (isa(shape, 'omero.model.Rectangle'))
rectangle = shape;
rectangle.getX() .getValue(Q);
elseif (isa(shape, 'omero.model.Ellipse'))
ellipse = shape;
ellipse.getX() .getValue(Q);
elseif (isa(shape, 'omero.model.Point'))
point = shape;
point.getX() .getValue(Q);
elseif (isa(shape, 'omero.model.Line'))
line = shape;

(continues on next page)

3.2. Using the OMERO API

427

https://github.com/ome/omero-matlab/tree/v5.5.6/src/main/roi

OMERO

line.getX1() .getValue(Q);
end
end
end

(continued from previous page)

* Adding Transforms to a Shape object

% Apply rotation alone to an ellipse object
% (angle of rotation set to 10 degrees)
% create ellipse (shape object)

ellipse = createEllipse(0, 0, 10, 20);
setShapeCoordinates(ellipse, 0, 0, 0);
% set angle of rotation

theta = 10;

% create transform object

newTform = omero.model.AffineTransformI;
newTform.setA®0 (rdouble(cos(theta)));
newTform.setAl®(rdouble(-sin(theta)));
newTform.setA01l(rdouble(sin(theta)));
newTform.setAll(rdouble(cos(theta)));
newTform.setA02 (rdouble(0));
newTform.setAl12(rdouble(0));

% apply transform
ellipse.setTransform(newTform) ;

% Create the ROI

roi = omero.model.RoiI;
roi.addShape(ellipse);

roi = session.getUpdateService() .saveAndReturnObject(roi);

* Retrieving Transforms linked to an Image

for i = 1 : nShapes
shape = roi.getShape(i - 1);

Xhttp://blog.openmicroscopy.org/data-model/future-plans/2016/06/20/shape-transforms/

transform = shape.getTransform();

xScaling = transform.getA®0() .getValue();
xShearing = transform.getA01().getValue();
xTranslation = transform.getA02().getValue();

yScaling = transform.getAl1() .getValue(Q);
yShearing = transform.getAl®() .getValue();
yTranslation = transform.getAl2().getValue();

%tformMatrix = [A0O0, Al10, 0; A0L1, All, 0; A02, Al2, 1];

tformMatrix = [xScaling, yShearing, 0; xShearing, yScaling, 0; xTranslation,..

—yTranslation, 1];

fprintf£(1, 'Shape Type : %s\n', char(shape.toString));
fprintf£(1, 'xScaling : %s\n', num2str(tformMatrix(1l,1)));
fprint£(1l, 'yScaling : %s\n', num2str(tformMatrix(2,2)));

fprintf(1l, 'xShearing : %s\n', num2str(tformMatrix(2,1)));

(continues on next page)

428 Chapter 3. Developer Documentation

OMERO

(continued from previous page)
fprintf(1, 'yShearing : %s\n', num2str(tformMatrix(1,2)));
fprintf(1, 'xTranslation: %s\n', num2str(tformMatrix(3,1)));
fprintf(1, 'yTranslation: %s\n', num2str(tformMatrix(3,2)));
end

* Removing a shape from ROI

// Retrieve the roi linked to an image
service = session.getRoiService();
roiResult = service.findByImage(imageId, []);
n = rois.size;
for thisROI =1 : n
roi = rois.get(thisROI-1);
numShapes = roi.sizeOfShapes;
for ns = 1:numShapes
shape = roi.getShape(ns-1);
% Remove the shape
roi.removeShape (shape);
end
% Update the roi.
roi = iUpdate.saveAndReturnObject(roi);
end

¢ Analyzing shapes

// Retrieve the roi linked to an image
service = session.getRoiService();
roiResult = service.findByImage(imageId, []);
n = rois.size;
toAnalyse = java.util.ArrayList;
for thisROI =1 : n
roi = rois.get(thisROI-1);
numShapes = roi.sizeOfShapes;
for ns = 1:numShapes
shape = roi.getShape(ns-1);
toAnalyse.add(java.lang.Long(shape.getId().getValue()));
end
end
//For convenience, we assume the shapes are on the first plane
z = 0;
c =0;
t =0;
stats = service.getShapeStatsRestricted(toAnalyse, z, t, [c]);
calculated = stats(l,1);
mean = calculated.mean(1,1);

3.2. Using the OMERO API 429

OMERO

Deleting data

It is possible to delete projects, datasets, images, ROIs, etc. and objects linked to them depending on the specified
options (see Deleting in OMERQ). For example, images of known identifiers can be deleted from the server using the
deletelmages function:

[deleteImages(session, imagelds);

See also:

deleteProjects, deleteDatasets, deleteScreens, deletePlates
Utility functions to delete objects.

Rendering images

The Renderlmages.m example script shows how to initialize the rendering engine and render an image.

Creating Image
The CreateImage.m example script shows how to create an image in OMERO. A similar approach can be applied when

uploading an image. To upload individual planes onto the server, the data must be converted into a byte (int8) array
first. If the Pixels object has been created, this conversion can done using the toByteArray function.

3.2.6 OMERO C++ language bindings

Using the Ice C++ language mapping from ZeroC, OMERO provides native access to your data from C++ code. CMake
is used for building the C++ bindings.

Binaries are not provided, therefore it will be necessary for you to compile your own.

Prerequisites

The OMERO source code
* A C++ compiler
— GCC is recommended for Linux and MacOS X
— Visual Studio or the Platform SDK for Windows
e The ZeroC Ice libraries, headers and slice definitions
* cmake

* Google Test (optional; needed to build the unit and integration tests)

Note: Users of Visual Studio with Ice 3.6 will encounter this error while building OmeroCpp: LINK : fatal
error LNK1189: library limit of 65535 objects exceeded and will be unable to build OMERO C++ lan-
guage bindings for Windows as a result of a 16-bit limitation in the Windows PE-COFF executable format used for
DLLs, even on 64-bit systems. It is hoped that Ice 3.7 will resolve the problem since it generates far fewer symbols
than 3.6.

430 Chapter 3. Developer Documentation

https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/delete/deleteImages.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/delete/deleteProjects.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/delete/deleteDatasets.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/delete/deleteScreens.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/delete/deletePlates.m
https://github.com/ome/omero-matlab/blob/v5.5.6/examples/RenderImages.m
https://github.com/ome/omero-matlab/blob/v5.5.6/examples/CreateImage.m
https://github.com/ome/omero-matlab/blob/v5.5.6/src/main/helper/toByteArray.m
https://doc.zeroc.com/display/Ice/Hello+World+Application
https://zeroc.com
https://www.cmake.org/

OMERO

Restrictions

If you are restricted to a specific version of GCC or Ice, you may need to obtain or build a compatible version of Ice or
GCC, respectively.

Preparing to build
Begin by following the instructions under /nstalling OMERQO from source to acquire the source code. Be sure that the
git branch you are using matches the version of your server!

The location of your Ice installation should be automatically detected if installed into a standard location. If this is not
the case, set the location of your Ice installation using the ICE_HOME environment variable or the cmake -DIce_HOME
or cmake -DIce_SLICE_DIR cmake options for your Ice installation (see below). Some possible locations for the
3.6.5 version of Ice follow. Note these are just examples; you need to adjust them for the Ice installation path and
version in use on your system.

¢ Ice built from source and installed into /opt:
export ICE_HOME=/opt/Ice-3.6.5
* Ice installed on Linux using RPM packages:
export ICE_HOME=/usr/share/Ice-3.6.5
* MacOS X with homebrew:
export ICE_HOME=/usr/local/Cellar/ice/3.6.5
¢ Windows using Visual Studio:

set ICE_HOME=C:\Program Files (x86)\ZeroC\Ice-3.6.5

Note: If the Ice headers and libraries are not automatically discovered, these will need to be specified using appropriate
cmake options (see below).

Building the library

The shared library and examples are always built by default. The unit and integration tests are built if Google test (gtest)
is detected.

On Linux, Unix or MacOS X with make:

export GTEST_ROOT=/path/to/gtest

mkdir omero-build

cd omero-build

cmake [-Dtest=(TRUE|FALSE)] [cmake options] /path/to/openmicroscopy
make

For example:

cmake "-DCMAKE_CXX_FLAGS=$CMAKE_CXX_FLAGS" \
"-DCMAKE_EXE_LINKER_FLAGS=$CMAKE_LD_FLAGS" \
"-DCMAKE_MODULE_LINKER_FLAGS=$CMAKE_LD_FLAGS" \
"-DCMAKE_SHARED_LINKER_FLAGS=$CMAKE_LD_FLAGS" \
-DCMAKE_VERBOSE_MAKEFILE:BOOL=ON /path/to/openmicroscopy
make -3j8

3.2. Using the OMERO API 431

OMERO

If you would like to build the C++ tests, run the above with the GTEST_ROOT environment variable set.

Note: When cmake is run, it will run . /build.py build-default in the openmicroscopy source tree to generate
some of the C++ and Ice sources. If you have previously done a build by running . /build.py, this step will be skipped.
However, if you have recently switched branches without cleaning the source tree, please run . /build.py cleanin
the source tree to clean up all the generated files prior to running cmake.

If the build fails with errors such as

/usr/include/Ice/ProxyHandle.h:176:13: error: ‘upCast’ was not declared in this scope,
and no declarations were found by argument-dependent lookup at the point of
instantiation

this is caused by the Ice headers being buggy, and newer versions of GCC rejecting the invalid code. To compile in
this situation, add -fpermissive to CXXFLAGS to allow the invalid code to be accepted, but do note that this may also
mask other problems so should not be used unless strictly needed.

cmake build configuration

cmake supports configuration of the build using many different environment variables and options; for a full list, see
the cmake reference documentation. The following environment variables are commonly needed:

CMAKE_INCLUDE_PATH
Directories to be searched for include files, for example

/opt/Ice-3.6.5/include

A : or ; separator character is used to separate directories, depending on the platform. Note these are used only
for feature tests, not for passing to the compiler when building, for which CMAKE_CXX_FLAGS is needed.

CMAKE_LIBRARY_PATH
Directories to be searched for libraries, for example

/opt/Ice-3.6.5/1ib

Directories are separated by : or ; as with CMAKE_INCLUDE_PATH. Note these are used only for feature tests and
finding libraries, not for passing to the linker when building, for which CMAKE_*_LINKER_FLAGS is needed.

(09,4
C++ compiler executable. Useful with ccache.

CXXFLAGS
C++ compiler flags. Use of CMAKE_CXX_FLAGS is preferred.

ICE_HOME
The location of the Ice installation. If this is not sufficient to discover the correct binary and library directo-
ries, they may otherwise be manually specified with the options below. Likewise for the include and slice
directories. This may also be set as a cmake cache variable (see below).

VERBOSE
If set to 1, show the actual build commands rather than the pretty “Compiling XYZ...” statements.

In addition, cmake options may be defined directly when running cmake. Commonly needed options include:

-DCMAKE_PREFIX_PATH

Search this location when searching for programs, headers and libraries. Use to search /usr/local or /opt/
Ice, for example. More specific search locations may be specified using cmake -DCMAKE_INCLUDE_PATH,
cmake -DCMAKE_LIBRARY_PATH and cmake -DCMAKE_PROGRAM_PATH separately, if required.

432 Chapter 3. Developer Documentation

https://www.cmake.org/cmake/help/documentation.html
https://ccache.samba.org/

OMERO

-DCMAKE_INCLUDE_PATH

Search this location when searching for headers. Use to include /usr/local/include or /opt/Ice/include,
for example.

-DCMAKE_LIBRARY_PATH

Search this location when searching for libraries. Use to include /usr/local/1lib or /opt/Ice/lib, for ex-
ample.

-DCMAKE_PROGRAM_PATH

Search this location when searching for programs. Use to include /usr/local/bin or /opt/Ice/bin, for
example.

-DCMAKE_CXX_FLAGS

C++ compiler flags. Use to set any additional linker flags desired.

-DCMAKE_EXE_LINKER_FLAGS

Executable linker flags. Use to set any additional linker flags desired.

-DCMAKE_MODULE_LINKER_FLAGS

Loadable module linker flags. Use to set any additional linker flags desired.

-DCMAKE_SHARED_LINKER_FLAGS
Shared library linker flags. Use to set any additional linker flags desired.

-DCMAKE_VERBOSE_MAKEFILE
Default to printing all commands executed by make. This may be overridden with the make VERBOSE variable.

-DIce_HOME
The location of the Ice installation. If this is not sufficient to discover the correct binary and library directo-

ries, they may otherwise be manually specified with the options below. Likewise for the include and slice
directories.

-DIce_SLICE2XXX_EXECUTABLE
Specific location of individual Ice slice2xxx programs, e.g. Ice_SLICE2CPP_EXECUTABLE for slice2cpp

or Ice_SLICE2JAVA_EXECUTABLE for slice2java. These are typically found in ${ICE_HOME}/bin or on the
default PATH. These will not normally require setting.

-DIce_INCLUDE_DIR

Location of Ice headers. This is typically ${ICE_HOME}/include or on the default include search path. This
will not normally require setting.

-DIce_SLICE_DIR

Location of Ice slice interface definitions. This is typically ${ICE_HOME}/slice. Use for installations
where cmake -DIce_HOME does not contain slice or situations where you wish to build without setting
cmake -DIce_HOME. Note that when building using build.py, rather than building directly with cmake, the
SLICEPATH environment variable should be used instead (the ant build can’t use the cmake variables since it
only runs cmake after a full build of the Java server).

-DIce_<C>_LIBRARIES

Specific libraries for Ice component <C>, where <C> is the uppercased name of the Ice component, e.g. ICE for
the Ice component, ICEUTIL for the IceUtil component or GLACIER2 for the Glacier2 component. These
libraries are typically found in ${ICE_HOME}/1ib or on the default library search path. These will not normally
require setting.

-DIce_DEBUG

Set to ON to print detailed diagnostics about the detected Ice installation. Use if there are any problems finding
Ice.

3.2. Using the OMERO API 433

OMERO

cmake offers many additional options. Please refer to the documentation for further details, in particular to the variables
which change the behavior of the build.

Visual Studio configuration

Warning: OMERO.cpp will not currently build on Windows due to exceeding DLL symbol limits on this platform,
leading to a failure when linking the DLL. It is hoped that this platform limitation can be worked around in a future
OMERO release.

cmake has full support for Visual Studio. Use the cmake -G option to set the generator for your Visual Studio
version, with a Win64 suffix for an x64 build. The correct Ice programs and libraries for your Ice installation should
be automatically discovered.

[cmake -G "Visual Studio 11 Win64" [cmake options] /path/to/openmicroscopy]

This is for a 64-bit Visual Studio 2012 build. Modify appropriately for other versions and compilers. Running

[cmake --help]

will list the available generators for your platform (without the Win64 suffix).

Once cmake has finished running, the generated project and solution files may be then opened in Visual Studio, or
built directly using the msbuild command-line tool (make sure that the Visual Studio command prompt matches
the generator chosen) or by running:

[cmake --build . J

As for the Unix build, above, it is also possible to build on Windows using build.py or ant, providing that you
configure the generator appropriately using the correct cmake options. However, this will not work for all generators
reliably, and the Windows shell quoting makes passing nested quotes to ant quite tricky, so running cmake by hand is
recommended.

Note: It may be necessary to specify /Zm1000 as an additional compiler setting.

Installing the library

If using make, run:

[make [DESTDIR=/path/to/staging/directory] install J

If using another build system, please invoke the equivalent install target for that system.

434 Chapter 3. Developer Documentation

https://www.cmake.org/cmake/help/v3.0/
https://www.cmake.org/cmake/help/v3.0/manual/cmake-variables.7.html#variables-that-change-behavior
https://www.cmake.org/cmake/help/v3.0/manual/cmake-variables.7.html#variables-that-change-behavior

20

21

22

23

24

25

26

27

28

29

OMERO

Using the library

To use OMERO C++ language bindings it is necessary to point your compiler and linker at the mentioned directories
above. A simple GNU make Makefile might look like this:

#

MAKEFILE:

#

Where the OMERO distribution was installed
OMERO_DIST ?= /opt/omero

Where the Ice 1lib/ and include/ directories are to be found
ICE_HOME ?= /usr/share/Ice

INCLUDES=-I$(OMERO_DIST)/include -I$(ICE_HOME)/include

LIBS = -L$(OMERO_DIST)/1lib -L$(ICE_HOME)/lib -L$(ICE_HOME)/1lib64 \
-1Ice -1IceUtil -1Glacier2 -lomero-client

LIBPATH = $(LD_LIBRARY_PATH) :$(ICE_HOME)/lib:$(ICE_HOME)/1ib64:$(OMERO_DIST)/lib
.PHONY: clean run

yourcode.o: yourcode.cpp
$(CXX) $(CXXFLAGS) -c -o $@ $< $(INCLUDES)

yourcode: yourcode.o
$(CXX) -o %@ $A $(LIBS)

run: yourcode
LD_LTBRARY_PATH="$(LIBPATH)" ./yourcode --Ice.Config=../etc/ice.config

clean:
rm -f yourcode *.o0 *~ core

A trivial example: yourcode.cpp

A simple example might look something like the following:

//
// yourcode.cpp:
//

// Domain
#include <omero/client.h>
#include <omero/api/IAdmin.h>
// Std
#include <iostream>
#include <cassert>
#include <vector>
#include <time.h>
#include <map>
(continues on next page)

3.2. Using the OMERO API 435

22

23

24

25

26

27

28

29

OMERO

(continued from previous page)

using namespace std;

/:’r
* Pass "--Ice.Config=your_config_file" to the executable, or
* set the ICE_CONFIG environment variable.
:’:/
int main(int argc, char* argv[])
{
omero::client_ptr omero = new omero::client(argc, argv);
omero: :api::ServiceFactoryPrx sf = omero->createSession();
sf->closeOnDestroy();
// IAdmin is responsible for all user/group creation, password changing, etc.
omero: :api::TAdminPrx admin = sf->getAdminService();
// Who you are logged in as.
cout << admin->getEventContext()->userName << endl;
// These two services are used for database access
omero: :api::IQueryPrx query = sf->getQueryService();
omero: :api::IUpdatePrx update = sf->getUpdateService();
return 0;
}

This code does not do much. It creates a server session, loads a few services, and prints the user’s name. For serious
examples, see Working with OMERO.

Compiling and running your code

To compile and run yourcode, download the two files above (Makefile and yourcode.cpp) and then in a shell:

make OMERO_DIST=dist yourcode
LD_LIBRARY_PATH=dist/lib ./yourcode --Ice.Config=dist/etc/ice.config

where you have edited dist/etc/ice.config to contain the values:

omero.host=localhost
omero.user=your_name
omero.pass=your_password

Alternatively, you can pass these on the command-line:

LD_LIBRARY_PATH=dist/lib ./yourcode omero.host=localhost --omero.user=foo --omero.
—,pass=bar

Note: This example explains how to run on Linux only. For doing the same on MacOS X, change all instances of
LD_LIBRARY_PATH to DYLD_LIBRARY_PATH.

436 Chapter 3. Developer Documentation

OMERO

Further information

For the details behind writing, configuring, and executing a client, please see Working with OMERO.
See also:

Ice, OMERO.grid, OMERO Application Programming Interface, Build System, #1596 which added 64-bit support

3.2.7 JSON API

Overview

The OMERO JSON API described here provides create, read, update and delete access to an underlying OMERO
server. It is implemented as a Django app named api in the OMERO.web framework.

Omero-marshal and Projection-based APIs

The majority of the API URLSs use omero-marshal to generate JSON dictionaries from OMERO model objects. All
these URLSs are under the m prefix:

[<server>/api/v®/m/ J

The webclient currently uses a small number of URLS to perform customized queries for browsing Project, Dataset and
Image hierarchies. These queries use projections and typically load a subset of fields for OMERO objects in order to
improve performance for large data counts. These will be made available under the p prefix in future releases but are
not yet supported.

[<server>/api/v®/p/ J

Versioning

The JSON API uses major and minor version numbers to reflect breaking and non-breaking changes respectively. Non-
breaking changes include simple addition of attributes to JSON data or addition of new URLs. The API version is not
tied to the version of OMERO.server.

The major version is included in the URL such as /v0®/ whereas the full version number can be found in the header:

[X—OMERO—Ainersion : 0.2 J

JSON format

The JSON objects generated by omero-marshal are defined by the OME-Model. The OMERO model closely follows
the OME schema but is not identical. In the cases where OMERO-specific fields are included, these will be prefixed by
omero:. For example, omero:details specifies the owner, group and permissions of each object in OMERO. JSON
objects also include an @id of the object in the OMERO database and a @type that specifies the OME Schema used to
generate it such as http://www.openmicroscopy.org/Schemas/OME/2016-06#Project.

All the fields of the OMERO model object will be included in the JSON except those that are null, which will be omit-
ted. Where supported, modifying the JSON object and saving this back to OMERO will update the object accordingly.

3.2. Using the OMERO API 437

https://zeroc.com
https://trac.openmicroscopy.org/ome/ticket/1596
https://github.com/ome/omero-marshal
https://github.com/ome/omero-marshal
https://docs.openmicroscopy.org/latest/ome-model/ome-xml/

OMERO

URLs in JSON

URLs are included in JSON objects using keys with the url: prefix. URLs are added for related objects to facilitate
exploration of the API in a browser. You may find that a JSON formatting plugin for your browser improves both the
presentation and navigation of JSON data.

Pagination

Requests that return a list of items will be paginated, showing a 1imit of the first 200 objects by default. Pagination
can be specified using the 1imit and offset query parameters:

List the first 100 Projects (offset=0 by default)
<server>/api/v0/m/projects/?1imit=100

List the next 100 Projects
<server>/api/v0/m/projects/?1imit=100&offset=100

Pagination details will be returned in a meta JSON object, including the totalCount of objects for that query, the
current offset and 1imit as well as the maxLimit that you can use.

"meta": {
"totalCount": 13240,
"maxLimit": 500,
"limit": 200,
"offset": 0

1,

Sysadmins can configure the default 1imit and maxLimit settings for their server, for example:

$ omero config set omero.web.api.limit 100
$ omero config set omero.web.api.max_limit 300

The maxLimit setting prevents API consumers from requesting very large amounts of data by limiting the number of
top-level objects that are loaded.

Loading of linked objects

In most cases the API loads only the requested objects along with their omero:details. For example, /api/v0/
m/projects/ loads Projects but does not also load their child Datasets. However, it is sometimes useful to load a
number of closely related objects. For example, loading Images also loads their Pixels data (but not Channels) and
loading Wells also loads WellSamples (fields) and Images (but not Pixels). The number of objects loaded when listing
Images or Wells is kept to a minimum to avoid requesting too much data. This restriction is relaxed when a single
Image or Well is loaded. For example, loading a single Image will also load Channels.

438 Chapter 3. Developer Documentation

OMERO

Normalizing Experimenters and Groups

When returning a list of JSON objects that each contain omero:details with owner and group data, these will
typically be nested many times within the list. In order to avoid this duplication, we can remove objects from within
each omero:details and place them under top-level experimenters and experimenterGroups lists. You can
specify this with the ?normalize=true query parameter. N.B.: Currently this normalizing will only apply to the
top-level objects being listed, such as Projects, Datasets and Images. Where child objects are also loaded (for example
Pixels within an Image), the omero:details of these objects will not be affected by the ?normalize=true parameter.

Child counts

For container objects such as Projects, Datasets and Screens it is often useful to know the number of children within
them. This can be specified with ?childCount=true parameter. This will add an omero:childCount value to the
JSON data.

Filtering by Owner and Group

Most data in OMERO has an Owner and is assigned to a permissions Group. By default, queries will return data from
all owners across all groups that are accessible to the current user. Use the query strings to filter by owner and/or group:

[/api/v@/m/projects/?owner:B&group:S J

When you are retrieving data using an object ID you will not need to filter by group since all the data will be in the
same group. For example, Datasets in a specified Project will all be in the same group as the Project.

Error handling

Errors will result in responses with an appropriate status and may include JSON content with a message to provide
more information:

* 404 Not Found: Caused by an invalid URL or when a specified object cannot be found in OMERO.

* 400 Bad Request: May be caused by invalid query parameters or submitting invalid JSON content. For example,
?1imit=foo will give a response of:

[{"message": "invalid literal for int() with base 10: 'foo'"} J

* 405 Method Not Allowed: Returned if you try to use the wrong http method for a url, such as POST to /api/
v0/m/projects/. It can also be caused by trying to create or update an unsupported object, such as an Image.

¢ 500 Internal Server Error: Generated from any unhandled exceptions. See the message returned and check
whether a stacktrace is also included.

3.2. Using the OMERO API 439

OMERO

Getting started

You may find this example python script useful. It uses the python requests library to connect to the JSON api, login,
query data, create and delete Projects. These steps are covered in more detail below.

For an example how to use the API with Java, see JSONClient. java.

See the following link for a JSON client example https://github.com/ome/openmicroscopy/blob/develop/examples/
Training/javascript/index.html.

List supported versions

You need to find which versions of the API are supported by your server, as described above. These are provided by
the base URL:

[GET Japi/

Response

{
"data": [
{
"version": "0",
"url:base": "http://<server>/api/v0/
3

"

]

}

List starting URLs

The base URL for the chosen version will list a number of URLSs for logging on and getting started.

[GET /api/ve/

Response

{
"url:login": "http://<server>/api/v0/login/",
"url:save": "http://<server>/api/v0/m/save/",
"url:projects": "http://<server>/api/v0/m/projects/",
"url:plates": "http://<server>/api/v0/m/plates/",
"url:datasets": "http://<server>/api/v0/m/datasets/",
"url:token": "http://<server>/api/v0®/token/",
"url:schema": "http://www.openmicroscopy.org/Schemas/OME/2016-06",

"url:screens": "http://<server>/api/v0/m/screens/",
"url:servers": "http://<server>/api/v0/servers/",
"url:images": "http://<server>/api/v0/m/images/"

440 Chapter 3. Developer Documentation

https://github.com/ome/openmicroscopy/blob/develop/examples/Training/python/Json_Api/Login.py
https://github.com/ome/openmicroscopy/blob/develop/examples/Training/javascript/index.html
https://github.com/ome/openmicroscopy/blob/develop/examples/Training/javascript/index.html

OMERO

List available OMERO servers

Your API may allow you to connect to several different OMERO servers.

[GET /api/v0®/servers/

Response

{
"data": [
{
"host": "<server>",
"server": "omero",
"id": 1,
"port": 4064

Get CSRF token

In order to prevent CSRF attacks, CSRF tokens are required for any POST, PUT and DELETE requests. You will need
to obtain a CSRF token for your session and use it for all subsequent requests in that session. You can obtain this from
the csrftoken cookie of any request or from the following URL:

[GET /api/v0®/token/

Response

{
"data": "eNoVq528b0glhQqbCzKuviODTRX3PUO2"

}

Login

You can login to create an OMERO session. You must also include the CSRF token, either in the POST parameters as
csrfmiddlewaretoken or in the session header as X-CSRFToken.

The EventContext for this session will be returned to you.

[POST /api/v0/login/

Parameters

Name Type Description

server Number ID of the server

username String User's username

password String User's password

csrfmiddlewaretoken String CSRF token (can be provided in header)
Response

3.2. Using the OMERO API 411

OMERO

{
"eventContext": {
"userName": "ben",
"eventId": -1,
"sessionUuid": "Ob30ee4a-cOb2-4b0f-9c61-f48b31bcad8c",
"eventType": "User",
"userId": 3,
"sessionId": 171319,
"groupName": "Nevis Lab",
"isAdmin": False,
"memberOfGroups": [5, 1, 4],
"leaderOfGroups": [],
"groupId": 5
i
"success": true
}

Projects, Datasets and Images

OMERO organizes Images in two types of many-to-many hierarchy: screen/plate/[run]/well/image for HCS
data and project/dataset/image for other data. Plates, Datasets and Images can also be Orphaned if not contained
within any parent container.

Parameters

These query parameters are used by many queries below:

Name Type Description

offset Number Pagination offset. The default is 0

limit Number The size of each page. The default is 200

normalize Boolean Place Experimenters and Groups into top-level lists instead
of nesting within objects

childCount Boolean Use ?childCount=true to include an omero:childCount attribute
for container objects

owner Number Filter by Experimenter ID

group Number Filter by Group ID

List Projects

Parameters
Name Type Description
dataset Number Filter Projects by child Dataset ID

These query parameters are also supported (see above):

442 Chapter 3. Developer Documentation

OMERO

[offset, limit, owner, group, childCount, normalize }
[GET /api/v0®/m/projects/ J
Response
{
"data": [
{
"Name": "New data",
"Description": "Example Project",

"url:project": "https://server.openmicroscopy.org/api/v0/m/projects/11601/",

"url:datasets": "https://server.openmicroscopy.org/api/v0/m/projects/11601/
—datasets/",

"@id": 11601,

"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Project",

"omero:details": {

"owner": {
"UserName": "ben",
"FirstName": "Ben",
"MiddleName": "",

"omero:details": {
"@type": "TBD#Details",
"permissions'": {
"isUserWrite": false,
"isWorldWrite": false,
"canDelete": false,
"isWorldRead": false,
"perm": "------ ",
"canEdit": false,
"canAnnotate": false,
"isGroupAnnotate": false,
"isGroupWrite": false,
"canLink": false,
"isUserRead": false,
"@type": "TBD#Permissions",
"isGroupRead": false

}

e

"Email": "",

"LastName": "Nevis",

"@id": 0,

"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#Experimenter"

b
"group": {

"omero:details": {
"@type": "TBD#Details",
"permissions": {

"isUserWrite": true,
"isWorldWrite": false,
"canDelete": false,
"isWorldRead": false,
"perm": "rwra--",

(continues on next page)

3.2. Using the OMERO API 443

OMERO

(continued from previous page)
"canEdit": false,
"canAnnotate": false,
"isGroupAnnotate": true,
"isGroupWrite": false,
"canLink": false,
"isUserRead": true,
"@type": "TBD#Permissions",
"isGroupRead": true

}
e
"@id": 5,
"@type": "http://www.openmicroscopy.org/Schemas/OME/2016-06#ExperimenterGroup",
"Name": "read-ann"
be